ANADIGICS HELP3E[™] Dual-band Cellular & PCS CDMA 3.4 V Linear Power Amplifier Module

FEATURES

- InGaP HBT Technology
- High Efficiency:
 - 37 % @ Pout = +28 dBm
 - 20 % @ Pout = +16 dBm
 - 10 % @ Pout = +10 dBm
- Low Quiescent Current: 4 mA ٠
- Internal Voltage Regulation
- Built-in Directional Coupler ٠
- Common VMODE Control Line •
- Suitable for SMPS and average power tracking systems with variable supply voltages
- APT can reduce TS.09 average power • consumption more than 25%
- Reduced External Component Count •
- Thin Package: 0.9 mm
- RoHS Compliant Package, 260 °C MSL-3

APPLICATIONS

- Dual-band Wireless Handsets and Data Devices for CDMA/EVDO networks:
 - Cellular BC 0 and 10
 - PCS BC 1 and 14

PRODUCT DESCRIPTION

AWC6325 addresses the demand for increased integration in dual-band handsets for CDMA networks. The small footprint 3 mm x 5 mm x 0.9 mm surface mount RoHS compliant package contains independent RF PA paths to ensure optimal performance in both frequency bands in less board area than two single band PAs. The package pinout was chosen to enable handset manufacturers to independently provide bias to both power amplifiers and simplify control with common mode pins. The AWC6325 is part of ANADIGICS' 3rd generation of High-Efficiency-at-Low-Power (HELP3E[™]) family of power amplifiers, which deliver low guiescent currents and significantly greater efficiency through selectable bias modes for high, medium and low power operation. The AWC6325 is designed for use both with and without average power tracking (APT). APT can be used to optimize the Vcc level for the desired output power level

PRELIMINARY DATA SHEET - Rev 1.3

and linearity, which greatly reduces the total current drawn from the battery. This feature, in conjunction with selectable operating modes, enables significant improvements in overall power added efficiency of the AWC6325 across the entire dynamic range of operating powers. APT requires use of an external variable voltage supply (DC-DC converter), which is used to provide the variable voltage to Vcc pad of the amplifier. A low-leakage shutdown mode increases standby time. This PA has built-in directional couplers for each band, with a common coupler output port CPL OUT. The 3 mm x 5 mm x 0.9 mm surface mount package incorporates matching networks optimized for output power, efficiency and linearity in a 50 Ω system. The device is manufactured on an advanced InGaP HBT MMIC technology offering state-of-the-art reliability, temperature stability, and ruggedness.

Figure 2: Pinout

Table 1: Pin Description

PIN	NAME	DESCRIPTION		
1	Ven_cell	Enable Voltage for Cell Band		
2	RFIN_CELL	RF Input for Cell Band		
3	VMODE1	Mode Control Voltage 1		
4	VBATT	Battery Voltage		
5	VMODE2	Mode Control Voltage 2		
6	RFIN_PCS	RF Input for PCS Band		
7	Ven_pcs	Enable Voltage for PCS Band		
8	RFout_pcs	RF Output for PCS Band		
9	GND	Ground		
10	CPLout	Coupler Output Port		
11	VccA	Supply Voltage A		
12	Vcc	Supply Voltage		
13	RFOUT_CELL	RF Output for Cell Band		
14	GND	Ground		

ELECTRICAL CHARACTERISTICS

PARAMETER	MIN	MAX	UNIT
Supply Voltage (VBATT, Vcc, VccA)	0	+5	V
Mode Control Voltage (VMODE1.2, VEN)	0	+3.5	V
RF Input Power (Pℕ)	-	+10	dBm
Storage Temperature (Tstg)	-40	+150	°C

Table 2: Absolute Minimum and Maximum Ratings

Stresses in excess of the absolute ratings may cause permanent damage. Functional operation is not implied under these conditions. Exposure to absolute ratings for extended periods of time may adversely affect reliability.

PARAMETER	MIN	TYP	MAX	UNITS	COMMENTS			
Operating Frequency (f)	814 1850	-	849 1915	MHz	Cellular BC0 & 10 PCS BC1 & 14			
Supply Voltage (Vcc, VccA)	+0.8	+3.4	+4.35	V				
Battery Voltage (VBATT)	+3.2	+3.4	+4.35	V				
Enable Voltage (Ven_cell, ven_pcs)	+1.35 0	+1.8 0	+3.1 +0.5	V	PA "on" PA "shut down"			
Mode Control Voltage (VMODE1,2)	+1.35 0	+1.8 0	+3.1 +0.5	V	Logic High Logic Low			
Cellular RF Output Power CDMA CDMA, HPM CDMA, MPM CDMA, LPM	27.5 ⁽¹⁾ - -	28.0 16.0 10.0	- - -	dBm	CDMA 2000, RC-1			
PCS RF Output Power CDMA CDMA, HPM CDMA, MPM CDMA, LPM	27.5 ⁽¹⁾ - -	28.0 16.0 10.0	- -	dBm	CDMA 2000, RC-1			
Case Temperature (Tc)	-30	-	+90	°C				

Table 3: Operating Ranges

The device may be operated safely over these conditions; however, parametric performance is guaranteed only over the conditions defined in the electrical specifications.

Notes:

(1) For operation at Vcc = +3.2 V, Pour is derated by 0.5 dB.

Table 4: Electrical Specifications - Cellular Band (BC 0, 10)
(Tc = +25 °C, V _{BATT} = V _{CC} = +3.4 V, V _{EN_CELL} = +1.8 V, 50 Ω system, CDMA2000 RC-1 waveform

	MIN	ТҮР	МАХ	UNIT	COMMENTS		
PARAMETER					Роит	VMODE1	VMODE2
Gain	25 14 7	28 17 12	31 19 14	dB	+28 dBm +16 dBm +10 dBm	0 V 1.8 V 1.8 V	0 V 0 V 1.8 V
Adjacent Channel Power at ± 885 kHz offset ⁽¹⁾ Primary Channel BW = 1.23 MHz Adjacent Channel BW = 30 kHz	- -	-48.5 -52 -53.5	-46.5 -46.5 -46.5	dBc	+28 dBm +16 dBm +10 dBm	0 V 1.8 V 1.8 V	0 V 0 V 1.8 V
Adjacent Channel Power at ± 1.98 MHz offset ⁽¹⁾ Primary Channel BW = 1.23 MHz Adjacent Channel BW = 30 kHz	- -	-58 -59 -68	-56 -56 -56	dBc	+28 dBm +16 dBm +10 dBm	0 V 1.8 V 1.8 V	0 V 0 V 1.8 V
Power-Added Efficiency (1)	- -	37.5 19.5 10	-	%	+28 dBm 0 V 0 V +16 dBm 1.8 V 0 V +10 dBm 1.8 V 1.8 V		0 V 0 V 1.8 V
Quiescent Current (Icq)	-	4	-	mA	through Vcc pins, VMODE1,2 = +1.8 V		
Mode Control Current	-	0.5	-	mA	through VMODE pin, VMODE1,2 = +1.8 V		
BATT Current	-	1.5	-	mA	through VBATT pin, VMODE1,2 = +1.8V		= +1.8V
Enable Current	-	0.3	-	mA	through Ven_cell pin, VMODE1,2 = +1.8 V		_{1,2} = +1.8 V
Total Decoder Current on VBATT (in Shutdown mode)	-	7	-	μA	VBATT = +4.35 V, Vcc = +4.35 V, Ven_cell = 0 V, Vmode1,2 = 0 V		85 V, V
HBT Leakage Current (Vcc) (Shutdown mode)	-	<1	-	μA	VBATT = +4.35 V, Vcc = +4.35 V, Ven_cell = 0 V, Vmode1,2 = 0 V		85 V, V
Noise In Receive Band	-	-133	-	dBm/Hz	869 MHz to 8	394 MHz	
Harmonics 2fo 3fo, 4fo	-	-	-35 -35	dBc	Pou⊤ <u>≤</u> +28 dBm		
Input Impedence	-	2.5:1	-	VSWR			
Coupling Factor	-	22	-	dB			
Spurious Output Level (all spurious outputs)	-	-	-65	dBc	Pout \leq +28 dBm In-band load VSWR < 5:1 Out-of-band load VSWR < 10:1 Applies over all operating conditions		
Load mismatch stress with no permanent degradation or failure	8:1	-	-	VSWR	Applies over	full operating I	range

Notes:

(1) PAE and ACP measured at 836.5 MHz.

Table 5: Electrical Specifications - PCS Band (BC 1, 14)(Tc = +25 °C, VBATT = Vcc = +3.4 V, VEN_PCS = +1.8 V, 50 Ω system, CDMA2000 RC-1 waveform)

DADAMETED	MIN	ТҮР	МАХ	UNIT	COMMENTS			
PARAMETER					Ρουτ	VMODE1	VMODE2	
Gain	24 10 7	26.5 13 9	30 16 12	dB	+28 dBm +16 dBm +10 dBm	0 V 1.8 V 1.8 V	0 V 0 V 1.8 V	
Adjacent Channel Power at ± 1.25 MHz offset ⁽¹⁾ Primary Channel BW = 1.23 MHz Adjacent Channel BW = 30 kHz	- -	-48 -52.5 -53	-46.5 -46.5 -46.5	dBc	+28 dBm +16 dBm +10 dBm	0 V 1.8 V 1.8 V	0 V 0 V 1.8 V	
Adjacent Channel Power at ± 1.98 MHz offset ⁽¹⁾ Primary Channel BW = 1.23 MHz Adjacent Channel BW = 30 kHz	-	-55 -60 -63	-54 -54 -54	dBc	+28 dBm +16 dBm +10 dBm	0 V 1.8 V 1.8 V	0 V 0 V 1.8 V	
Adjacent Channel Power at ± 2.25 MHz offset ⁽¹⁾ Primary Channel BW = 1.23 MHz Adjacent Channel BW = 30 kHz		-59.5 -63.5 -67.5	-56.5 -57 -57	dBc	+28 dBm +16 dBm +10 dBm	0 V 1.8 V 1.8 V	0 V 0 V 1.8 V	
Power-Added Efficiency (1)	- - -	37 20 10	- -	%	+28 dBm +16 dBm +10 dBm	0 V 1.8 V 1.8 V	0 V 0 V 1.8 V	
Quiescent Current (Icq)	-	4	-	mA	through Vcc	through Vcc pins, VMODE1,2 = +1.8 V		
Mode Control Current	-	0.5	-	mA	through VMODE pin, VMODE1,2 = +1.8 V			
BATT Current	-	1.5	-	mA	through VBAT	through VBATT pin, VMODE1,2 = +1.8V		
Enable Current	-	0.3	-	mA	through VEN_	through Ven_PCs pin, VMODE1,2 = +1.8 V		
Total Decoder Current on VBATT (in Shutdown mode)	-	7	-	μA	VBATT = +4.35 V, VCC = +4.35 V, VEN_CELL = 0 V, VMODE1,2 = 0 V			
HBT Leakage Current on Vcc (in Shutdown mode)	-	<1	-	μA	VBATT = +4.35 V, Vcc = +4.35 V, VEN_CELL = 0 V, VMODE1,2 = 0 V		.35 V, 0 V	
Noise In Receive Band	-	-133	-	dBm/Hz	1930 MHz to	1990 MHz		
Harmonics 2fo 3fo, 4fo	-	-	-30 -30	dBc	Pou⊤ ≤ +28 dBm			
Input Impedence	-	-	2:1	VSWR				
Coupling Factor	-	22	-	dB				
Spurious Output Level (all spurious outputs)	-	-	-65	dBc	Pout ≤ +28 dBm In-band load VSWR < 5:1 Out-of-band load VSWR < 10:1 Applies over all operating conditions		10:1 onditions	
Load mismatch stress with no permanent degradation or failure	8:1	-	-	VSWR	Applies over	full operating r	ange	

Notes:

(1) ACPRs and Efficiency measured at 1880 MHz.

APPLICATION INFORMATION

To ensure proper performance, refer to all related Application Notes on the ANADIGICS web site: http://www.anadigics.com

Shutdown Mode

The power amplifier may be placed in a shutdown mode by applying logic low levels (see Operating Ranges table) to the VENABLE and VMODE pads.

Bias Modes

The power amplifier may be placed in Low, Medium, or High Bias modes by applying the appropriate logic level (see Operating Ranges table) to the V_{MODE} pin. The Bias Control table lists the recommended modes of operation for various applications.

Notes:

(1) Level might be changed after RF is ON.

(2) RF OFF defined as $P_{IN} \leq -30 \text{ dBm}$.

(3) Switching simultaneously between VMODE and VEN is not recommended.

APPLICATION	Роит LEVELS	BIAS MODE	Ven_cell Ven_pcs	VMODE1	VMODE2	Vcc	VBATT
Low Bias Mode	< +10 dBm	Low	+1.8 V	+1.8 V	+1.8 V	0.8 - 4.35 V	> 3.2 V
Medium Bias Mode	> +10 dBm < +16 dBm	Medium	+1.8 V	+1.8 V	0 V	0.8 - 4.35 V	> 3.2 V
High Bias Mode	> +16 dBm	High	+1.8 V	0 V	0 V	1.3 - 4.35 V	> 3.2 V
Shutdown	-	Shutdown	0 V	0 V	0 V	3.2 - 4.35 V	>3.2 V

Table 6: Bias Control

Figure 4: Application Circuit

PACKAGE OUTLINE

S _{YM}	MI	LLIMETE	RS		NOTE			
"0 _L	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.		
А	0.85	0.90	0.95	0.033	0.035	0.037	—	
A1	PLEASE REFER TO LAMINATE CONTROL DRAWING							
b	0.32	0.37	0.41	0.013	0.015	0.016	3	
С	-	0.10	—	-	0.004	—		
D	2.88	3.00	3.12	0.113	0.118	0.123	Ι	
D1	1.45	1.50	1.57	0.057	0.059	0.062	3	
E	4.88	5.00	5.12	0.192	0.197	0.202	I	
E1	4.70	4.75	4.80	0.185	0.187	0.189	3	
е	_	0.73	_	-	0.029	-	4	
L	0.32	0.37	0.41	0.013	0.015	0.016	3	

NOTES:

- 1. CONTROLLING DIMENSIONS: MILLIMETERS
- CONTROLLING DIMENSIONS: MILLIMETERS
 UNLESS SPECIFIED TOLERANCE=±0.076[0.003].
 PADS (INCLUDING CENTER) SHOWN UNIFORM SIZE FOR REFERENCE ONLY. ACTUAL PAD SIZE AND LOCATION WILL VARY WITHIN MIN. AND MAX. DIMENSIONS ACCORDING TO SPECIFIC LAMINATE DESIGN.
- PITCH MEASUREMENT (e) TAKEN CENTERLINE TO CENTERLINE OF SOLDER MASK OPENINGS. UNLESS SPECIFIED DIMENSIONS ARE SYMMETRICAL ABOUT CENTER LINES SHOWN. 4.
- 5.

Figure 5: Package Outline - 14 Pin 3 mm x 5 mm x 0.9 mm Surface Mount Module

PCB BOARD DESIGN GUIDELINES

Refer to Figure 7 for the recommended PCB metal design, soldermask design, and stencil print patterns when assembling with ANADIGICS modules.

It is important to note that the PCB metal design is dependent upon several factors: the electrical and thermal performance requirements of the product, and the PCB-to-device interconnect pattern. The PCB metal design recommendations primarily deal with the PCB-to-device interconnection. Specific board-level electrical and thermal performance requirements will be dictated by the physical geometry of the specific application and are the responsibility of the end product manufacturer.

Figure 7: PCB Board Design Guidelines

DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994

Figure 9: Reel Drawing

ORDERING INFORMATION

ORDER NUMBER	TEMPERATURE RANGE	PACKAGE DESCRIPTION	COMPONENT PACKAGING
AWC6325Q7	-30 °C to +90 °C	RoHS Compliant 14 Pin 3 mm x 5 mm x 0.9 mm Surface Mount Module	Tape and Reel, 2500 pieces per Reel
AWC6325P9	-30 °C to +90 °C	RoHS Compliant 14 Pin 3 mm x 5 mm x 0.9 mm Surface Mount Module	Partial Tape and Reel

ANADIGICS, Inc.

141 Mount Bethel Road Warren, New Jersey 07059, U.S.A. Tel: +1 (908) 668-5000 Fax: +1 (908) 668-5132

URL: http://www.anadigics.com

IMPORTANT NOTICE

ANADIGICS, Inc. reserves the right to make changes to its products or to discontinue any product at any time without notice. The product specifications contained in Advanced Product Information sheets and Preliminary Data Sheets are subject to change prior to a product's formal introduction. Information in Data Sheets have been carefully checked and are assumed to be reliable; however, ANADIGICS assumes no responsibilities for inaccuracies. ANADIGICS strongly urges customers to verify that the information they are using is current before placing orders.

WARNING

ANADIGICS products are not intended for use in life support appliances, devices or systems. Use of an ANADIGICS product in any such application without written consent is prohibited.