Power MOSFET 40 V, 8.9 A, 25 m Ω , Dual N–Channel SO–8

Features

- Low R_{DS(on)}
- Low Capacitance
- Optimized Gate Charge
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

MAXIMUM RATINGS (T _J = 25°C unless otherwise stated)						
Parameter			Value	Unit		
Drain-to-Source Voltage			40	V		
Gate-to-Source Voltage		V _{GS}	±20	V		
	$T_A = 25^{\circ}C$	I _D	7.4	А		
Steady	$T_A = 70^{\circ}C$		5.9			
State	$T_A = 25^{\circ}C$	PD	2.1	W		
	$T_A = 70^{\circ}C$		1.3			
t <10 a	$T_A = 25^{\circ}C$	۱ _D	8.9	А		
	$T_A = 70^{\circ}C$		7.1			
1 210 5	$T_A = 25^{\circ}C$	PD	3.0	W		
	$T_A = 70^{\circ}C$		1.9			
t _p = 10 μs		I _{DM}	35	A		
Operating Junction and Storage Temperature		T _J , T _{STG}	–55 to +150	°C		
Source Current (Body Diode)			7.0	А		
Single Pulse Drain-to-Source Avalanche		EAS	20	mJ		
Energy (L = 0.1 mH)			21	А		
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)		ΤL	260	°C		
	meter age age Steady State t ≤10 s t ≤10 s t_p = nd Storage / Diode) p=Source A	meter age $T_A = 25^{\circ}C$ $T_A = 70^{\circ}C$ $T_A = 70^{\circ}C$ $T_A = 70^{\circ}C$ $T_A = 70^{\circ}C$ $T_A = 25^{\circ}C$ $T_A = 25^{\circ}C$ $T_A = 25^{\circ}C$ $T_A = 70^{\circ}C$	symbolageVDSSageVGSAgeVGSAgeTA = 25°CTA = 70°CIDTA = 70°CTA = 70°CTA = 70°CTA = 70°CTA = 70°CTA = 70°CTA = 25°CIDTA = 70°CTA = 70°CIDTA = 70°CIDTA = 70°CIDMto StorageISto Soldering PurposesTL	Symbol Value age VDSS 40 age VDSS 40 age VGS ± 20 Age TA = 25°C ID 7.4 Steady State TA = 25°C PD 2.1 TA = 25°C PD 2.1 TA = 70°C PD 2.1 TA = 25°C PD 3.0 TA = 70°C IDM 35 Mod Storage IL 7.0 Diode) IL S 7.0 Diode/ IL <t< td=""></t<>		

MAXIMI IM RATINGS (T. - 25°C unless otherwise stated)

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

THERMAL RESISTANCE MAXIMUM RATINGS

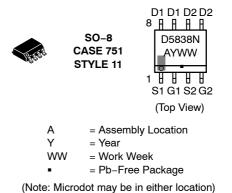
Parameter	Symbol	Value	Unit
Junction-to-Ambient Steady State (Notes 1 & 3)	R_{\thetaJA}	58	
Junction–to–Ambient – t ≤10 s (Note 1)	R_{\thetaJA}	40	°C/W
Junction-to-Ambient Steady State (Note 2)	$R_{\theta JA}$	106	

1. Surface-mounted on FR4 board using 1 sq-in pad

(Cu area = 1.127 in sq [2 oz] including traces). 2. Surface-mounted on FR4 board using 0.155 in sq (100mm²) pad size.

3. Both channels receive equivalent power dissipation

1 W applied on each channel: T_J = 2 W * 58°C/W + 25°C = 141°C


ON Semiconductor®

http://onsemi.com

V _{(BR)DSS}	R _{DS(ON)} MAX	I _D MAX
40 V	25 mΩ @ 10 V	8.9 A
40 V	$30.8~\mathrm{m}\Omega$ @ $4.5~\mathrm{V}$	0.9 A

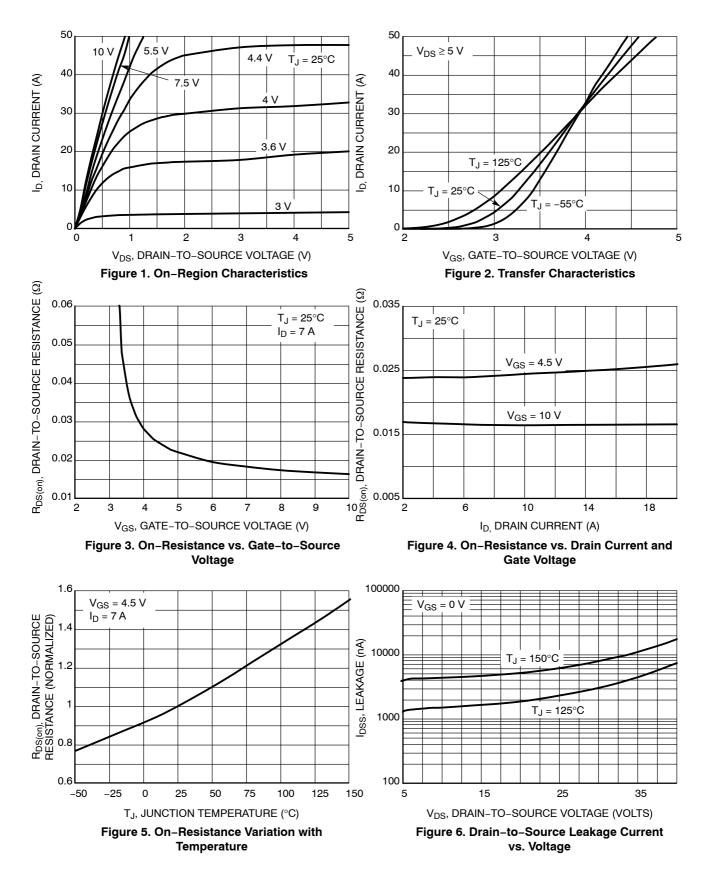
MARKING DIAGRAM/ PIN ASSIGNMENT

ORDERING INFORMATION

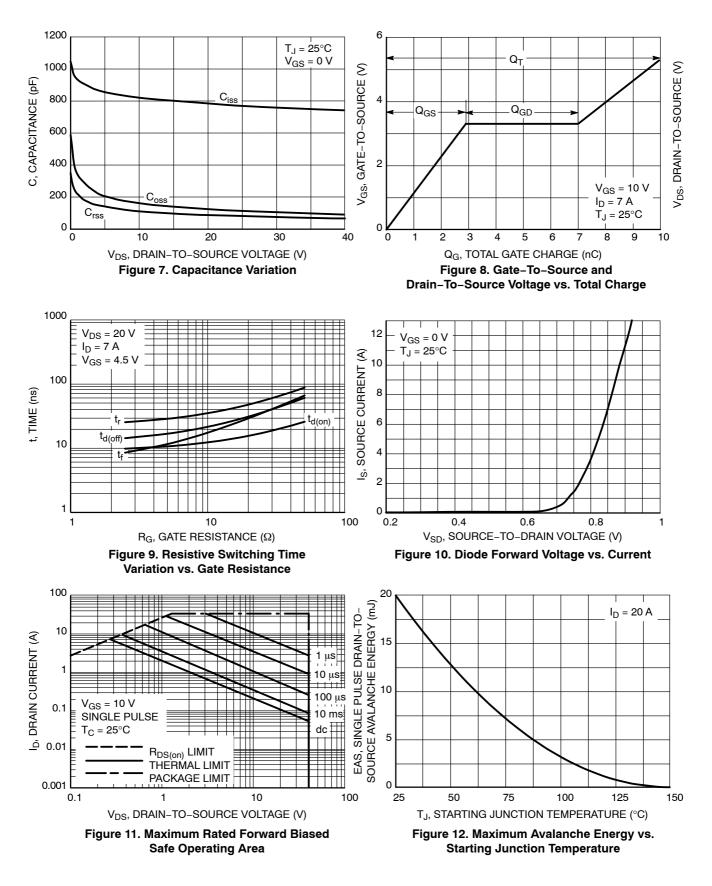
Device	Package	Shipping [†]
NTMD5838NLR2G	SO-8 (Pb-Free)	2500/Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

© Semiconductor Components Industries, LLC, 2011


April, 2011 - Rev. 0

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise specified)


Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
OFF CHARACTERISTICS							
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V_{GS} = 0 V, I _D = 250 μ A		40			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} / T _J				32		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	$ \begin{array}{c} V_{GS} = 0 \ V, \\ V_{DS} = 40 \ V \end{array} \qquad \begin{array}{c} T_{J} = 25 \ ^{\circ}C \\ T_{J} = 125 \ ^{\circ}C \end{array} $	T _J = 25 °C			1.0	<u> </u>
					100	μA	
Gate-to-Source Leakage Current	I _{GSS}	V _{DS} = 0 V, V _{GS} = ±20 V				±100	nA
ON CHARACTERISTICS (Note 4)				-	-		
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_D =$	= 250 μA	1.0	1.8	3.0	V
Negative Threshold Temperature Coefficient	V _{GS(TH)} /T _J				6.0		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 10 V, I _E) = 7 A		20.5	25	mΩ
		V_{GS} = 4.5 V, I _I	_D = 7 A		25.0	30.8	
Forward Transconductance	9 _{FS}	V _{DS} = 15 V, I _E	₀ = 7 A		4.0		S
CHARGES, CAPACITANCES & GATE RESIS	STANCE						
Input Capacitance	C _{ISS}	V _{GS} = 0 V, f = 1 MHz, V _{DS} = 20 V			785		pF
Output Capacitance	C _{OSS}				123		
Reverse Transfer Capacitance	C _{RSS}				90		
Total Gate Charge	Q _{G(TOT)}	V_{GS} = 10 V, V_{DS} = 20 V; I_{D} = 7 A			17		
					8.6	11	
Threshold Gate Charge	Q _{G(TH)}	V _{GS} = 4.5 V, V _{DS} = 20 V; I _D = 7 A			0.8		nC V
Gate-to-Source Charge	Q _{GS}				2.8		
Gate-to-Drain Charge	Q _{GD}				4.0		
Plateau Voltage	V _{GP}				3.2		
Gate Resistance	R _G				1.8		Ω
SWITCHING CHARACTERISTICS (Note 5)							
Turn-On Delay Time	t _{d(ON)}				11		
Rise Time	t _r	V _{GS} = 4.5 V, V _{DS}	s = 20 V.		23		1
Turn-Off Delay Time	t _{d(OFF)}	$I_{\rm D} = 7 {\rm A}, {\rm R}_{\rm G} = 2.5 {\Omega}$			17		- ns
Fall Time	t _f				4.0		
DRAIN-SOURCE DIODE CHARACTERISTIC	S				•		
Forward Diode Voltage	V _{SD}	V _{GS} = 0 V,	$T_J = 25^{\circ}C$		0.84	1.2	v
		$I_{\rm S} = 7 \rm A$	T _J = 125°C		0.7		
Reverse Recovery Time	t _{RR}	V _{GS} = 0 V, dIS/dt = 100 A/µs, I _S = 7 A			17		
Charge Time	ta				11		ns
Discharge Time	t _b				6.0		1
Reverse Recovery Charge	Q _{RR}				10		nC

Pulse Test: pulse width ≤ 300 μs, duty cycle ≤ 2%.
 Switching characteristics are independent of operating junction temperatures.

TYPICAL PERFORMANCE CURVES

TYPICAL PERFORMANCE CURVES

TYPICAL PERFORMANCE CURVES

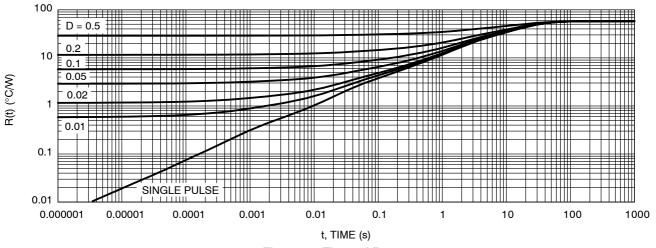
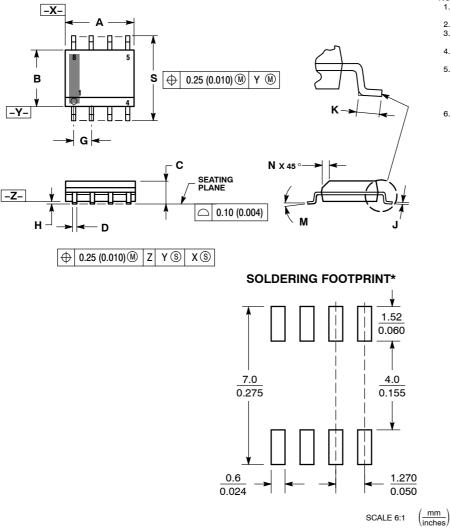



Figure 13. Thermal Response

PACKAGE DIMENSIONS

SOIC-8 NB CASE 751-07

ISSUE AK

NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: MILLIMETER.
 DIMENSION A AND B DO NOT INCLUDE

- MOLD PROTRUSION. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
- DIMENSION D DOES NOT INCLUDE DAMBAR 5 PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT
- MAXIMUM MATERIAL CONDITION. 751–01 THRU 751–06 ARE OBSOLETE. NEW STANDARD IS 751-07

	MILLIN	IETERS	INCHES			
DIM	MIN	MAX	MIN	MAX		
Α	4.80	5.00	0.189	0.197		
В	3.80	4.00	0.150	0.157		
С	1.35	1.75	0.053	0.069		
D	0.33	0.51	0.013	0.020		
G	1.27	1.27 BSC		50 BSC		
Н	0.10	0.25	0.004	0.010		
J	0.19	0.25	0.007	0.010		
κ	0.40	1.27	0.016	0.050		
Μ	0 °	8 °	0 °	8 °		
Ν	0.25	0.50	0.010	0.020		
S	5.80	6.20	0.228	0.244		

STYLE 11:

- PIN 1. SOURCE 1 2. GATE 1
 - SOURCE 2 З.
 - GATE 2 4.
 - DRAIN 2 5. DRAIN 2 6.
 - 7. DRAIN 1
 - 8. DRAIN 1

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and 💷 are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILC does not convey any license under its patent rights or the rights of others. SCILC products are not designed, intended, or authorized for use a components in systems intended for surgical implant into the body, or other applications. Buyer purchase or use SCILLC products for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative