H11AG1 H11AG2 H11AG3 ### **DESCRIPTION** The H11AG series consists of a Gallium-Aluminum-Arsenide IRED emitting diode coupled with a silicon phototransistor in a dual in-line package. This device provides the unique feature of the high current transfer ratio at both low output voltage and low input current. This makes it ideal for use in low power logic circuits, telecommunications equipment and portable electronics isolation applications. ### **FEATURES** - High efficiency low degradation liquid epitaxial IRED - Logic level compatible, input and output currents, with CMOS and LS/TTL - High DC current transfer ratio at low input currents - Underwriters Laboratory (UL) recognized File #E90700 ### **APPLICATIONS** - · CMOS driven solid state reliability - Telephone ring detector - Digital logic isolation | ABSOLUTE MAXIMUM RATINGS | | | | | | |---|---------------------|--------|----------------|-------|--| | Parameters | Symbol | Device | Value | Units | | | TOTAL DEVICE | - | All | 55 (450 | | | | Storage Temperature | T _{STG} | All | -55 to +150 | °C | | | Operating Temperature | T _{OPR} | All | -55 to +100 | °C | | | Lead Solder Temperature | T _{SOL} | All | 260 for 10 sec | °C | | | Total Device Power Dissipation @ 25°C (LED plus detector) | D | All | 260 | mW | | | Derate Linearly From 25°C | P_{D} | All | 3.5 | mW/°C | | | EMITTER | | All | 50 | A | | | Continuous Forward Current | I _F | All | 50 | mA | | | Reverse Voltage | V_{R} | All | 6 | V | | | Forward Current - Peak (1 µs pulse, 300 pps) | I _F (pk) | All | 3.0 | А | | | LED Power Dissipation 25°C Ambient | Б | A.II | 75 | mW | | | Derate Linearly From 25°C | P _D All | | 1.0 | mW/°C | | | DETECTOR | | | | | | | Detector Power Dissipation @ 25°C | | A.II | 150 | mW | | | Derate Linearly from 25°C | P_{D} | All | 2.0 | mW/°C | | | Continuous Collector Current | | All | 50 | mA | | H11AG1 H11AG2 H11AG3 # **ELECTRICAL CHARACTERISTICS** (T_A = 0-70°C Unless otherwise specified.) | INDIVIDUAL COMPONENT CHARACTERISTICS | | | | | | | | |--------------------------------------|---|-------------------|--------|-----|-----|-----|-------| | Parameters | Test Conditions | Symbol | Device | Min | Тур | Max | Units | | EMITTER | | | | | | | | | Input Forward Voltage | I _F = 1 mA | V_{F} | All | | | 1.5 | V | | Davis and Landson Occurrent | V _R = 5 V, T _A = 25°C | I _R | All | | | 10 | μA | | Reverse Leakage Current | V _R = 5 V, T _A = 70°C | I _R | All | | | 100 | μA | | Capacitance | V = 0, f = 1.0 MHz | CJ | All | | | 100 | pF | | DETECTOR | | | | | | | | | Breakdown Voltage | | | | | | | | | Collector to Emitter | $I_C = 1.0 \text{ mA}, I_F = 0$ | BV _{CEO} | All | 30 | | | V | | Collector to Base | $I_C = 100 \mu A, I_F = 0$ | BV _{CBO} | All | 70 | | | V | | Emitter to Collector | $I_C = 100 \mu A, I_F = 0$ | BV _{ECO} | All | 7 | | | V | | Leakage Current | | | | | | | | | Collector to Emitter | $V_{CE} = 10 \text{ V}, I_{F} = 0$ | I _{CEO} | All | | 5 | 10 | μΑ | | Capacitance | V _{CE} = 10 V, f = 1 MHz | C _{CE} | All | | 2 | | pF | | ISOLATION CHARACTERISTICS | | | | | | | |--------------------------------|-----------------------------------|------------------|------|-----|-----|----------| | Parameters | Test Conditions | Symbol | Min | Тур | Max | Units | | Input-Output Isolation Voltage | $I_{I-0} \le 1 \mu A, t = 1 min.$ | V _{ISO} | 5300 | | | Vac(rms) | | TRANSFER CHARACTERISTICS (T _A = 25°C Unless otherwise specified.) | | | | | | | | |--|--|----------------------|--------|-------------------------------------|-----|-----|-------| | DC Characteristics | Test Conditions | Symbol | Device | Min | Тур | Max | Units | | | | | H11AG1 | 300 | | | | | | $I_F = 1 \text{ mA}, V_{CE} = 5 \text{ V}$ | CTR | H11AG2 | Min Ty 300 200 100 100 50 20 100 50 | | | | | | | | H11AG3 | 100 | | | | | | | | H11AG1 | 100 | | | % | | Current Transfer Ratio | $I_F = 1 \text{ mA}, V_{CE} = 0.6 \text{ V}$ | CTR | H11AG2 | 50 | | | | | | | | H11AG3 | | | | | | | 1 00 = 4 1/ 45 1/ | CTR | H11AG1 | 100 | | | | | | $I_F = 0.2 \text{ mA}, V_{CE} = 1.5 \text{ V}$ | | H11AG2 | 50 | | | | | Saturation Voltage | $I_F = 2.0 \text{ mA}, I_C = 0.5 \text{ mA}$ | V _{CE(SAT)} | All | | | .40 | V | | AC Characteristics | Test Conditions | Symbol | Device | Min | Тур | Max | Units | | Non-Saturated Switching Times | | | | | | | | | Turn-On Time | $R_L = 100 \Omega$, $I_F = 1 \text{mA}$, $V_{CC} = 5 \text{V}$ | t _{on} | All | | 5 | | μS | | Turn-Off Time | $R_L = 100 \Omega$, $I_F = 1 \text{mA}$, $V_{CC} = 5 \text{V}$ | t _{off} | All | | 5 | | μS | H11AG1 H11AG2 H11AG3 Figure 2. Normalized Current Transfer Ratio vs. Forward Current 1.2 1.0 0.8 0.8 0.4 0.4 0.2 NORMALIZED TO: I_F = 5mA V_{CE} = 5V T_A = 25°C 0.1 1 10 100 I_F - FORWARD CURRENT - mA H11AG1 H11AG2 H11AG3 Figure 5. Normalized Collector Base Photocurrent Ratio vs. Forward Current Figure 6. Normalized Collector - Base Current vs. Temperature Figure 7. Collector-Emitter Dark Current vs. Ambient Temperature www.fairchildsemi.com 4 OF 8 1/28/02 DS300213 H11AG1 H11AG2 H11AG3 Figure 8. CMOS Input, 3KW, Zero Voltage Switching Solid State Relay The H11AG1's superior performance at low input currents allows standard CMOS logic circuits to directly operate a 25A solid state relay. Circuit operation is as follows: power switching is provided by the SC160B, 25A triac. Its gate is controlled by the C203B via the DT230H rectifier bridge. The C203B turn-on is inhibited by the 2N4256 when line voltage is above 12V and/or the H11AG is off. False trigger and dv/dt protection are provided by the combination of the MOV[®] varistor and RC snubber network. | INPUT | R ₁ | C ₁ | Z | |--------------|----------------|----------------|-------| | 40-90 VRMS | 75 K | 0.1 μF | 40016 | | 20 Hz | 1/10 W | 100 V | 109K | | 95-135 VRMS | 180 K | 12 ηF | 00514 | | 60 Hz | 1/10 W | 200 V | 285K | | 200-280 VRMS | 390 K | 6.80 ηF | 55014 | | 50/60 Hz | 1/4 W | 400 V | 550K | DC component of input voltage is ignored due to C1 Figure 9. Telephone Ring Detector/A.C. Line CMOS Input Isolator The H11AG1 uses less input power than the neon bulb traditionally used to monitor telephone and line voltages. Additionally, response time can be tailored to ignore telephone dial tap, switching transients and other undesired signals by modifying the value of C2. The high impedance to line voltage also can simply board layout spacing requirements. DS300213 1/28/02 5 OF 8 www.fairchildsemi.com H11AG1 H11AG2 H11AG3 ### **NOTE** All dimensions are in inches (millimeters) | Option | Order Entry Identifier | Description | |--------|------------------------|--------------------------------------| | S | .S | Surface Mount Lead Bend | | SD | .SD | Surface Mount; Tape and reel | | W | .W | 0.4" Lead Spacing | | 300 | .300 | VDE 0884 | | 300W | .300W | VDE 0884, 0.4" Lead Spacing | | 38 | .3\$ | VDE 0884, Surface Mount | | 3SD | .3SD | VDE 0884, Surface Mount, Tape & Reel | ### **NOTE** All dimensions are millimeters ## **MARKING INFORMATION** | Definiti | Definitions | | | | | | |----------|--|--|--|--|--|--| | 1 | Fairchild logo | | | | | | | 2 | Device number | | | | | | | 3 | VDE mark (Note: Only appears on parts ordered with VDE option – See order entry table) | | | | | | | 4 | Two digit year code, e.g., '03' | | | | | | | 5 | Two digit work week ranging from '01' to '53' | | | | | | | 6 | Assembly package code | | | | | | #### **TRADEMARKS** The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks. | | ACEx™ | FAST® | ISOPLANAR™ | Power247™ | Stealth™ | |--|-----------------------------------|--------------------------------|--|---------------------|------------------------| | | ActiveArray™ | FASTr™ | LittleFET™ | PowerEdge™ | SuperFET™ | | | Bottomless™ | FPS™ | MICROCOUPLER™ | PowerSaver™ | SuperSOT™-3 | | | CoolFET™ | FRFET™ | MicroFET™ | PowerTrench® | SuperSOT™-6 | | | $CROSSVOLT^{\text{IM}}$ | GlobalOptoisolator™ | MicroPak™ | QFET® | SuperSOT™-8 | | | DOME™ | GTO™ ['] | MICROWIRE™ | QS TM | SyncFET™ | | | EcoSPARK™ | HiSeC™ | MSX TM | QT Optoelectronics™ | TinyLogic [®] | | | E ² CMOS TM | I ² C TM | MSXPro™ | Quiet Series™ | TINYOPTO™ | | | EnSigna™ | i-Lo TM | OCX TM | RapidConfigure™ | TruTranslation™ | | | FACT™ | ImpliedDisconnect™ | OCXPro [™] | RapidConnect™ | UHC™ | | | FACT Quiet Serie | | OPTOLOGIC® | μSerDes™ | UltraFET® | | Across the board. Around the world.™ The Power Franchise® Programmable Active Droop™ | | OPTOPLANAR™
PACMAN™
POP™ | SILENT SWITCHER®
SMART START™
SPM™ | VCX TM | | #### DISCLAIMER FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. #### LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein: - 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the - 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. #### PRODUCT STATUS DEFINITIONS #### **Definition of Terms** | Datasheet Identification | Product Status | Definition | |--------------------------|---------------------------|---| | Advance Information | Formative or
In Design | This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. | | Preliminary | First Production | This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design. | | No Identification Needed | Full Production | This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design. | | Obsolete | Not In Production | This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only. | Rev. I13