4-Mbit (128 K $\times 32$) Pipelined Sync SRAM

Features

■ Registered inputs and outputs for pipelined operation
■ $128 \mathrm{~K} \times 32$ common I/O architecture
■ 3.3 V core power supply (V_{DD})
■ $2.5 \mathrm{~V} / 3.3 \mathrm{~V} \mathrm{I/O} \mathrm{power} \mathrm{supply} \mathrm{(} \mathrm{~V}_{\mathrm{DDQ}}$)
■ Fast clock-to-output times口 4.0 ns (for $133-\mathrm{MHz}$ device)
■ Provide high-performance 3-1-1-1 access rate
■ User-selectable burst counter supporting Intel ${ }^{\circledR}$ Pentium ${ }^{\circledR}$ interleaved or linear burst sequences

- Separate processor and controller address strobes

■ Synchronous self-timed writes
■ Asynchronous output enable
■ Available in Pb-free 100-pin TQFP package
■ "ZZ" sleep mode option

Functional Description

The CY7C1339G SRAM integrates $128 \mathrm{~K} \times 32$ SRAM cells with advanced synchronous peripheral circuitry and a two-bit counter for internal burst operation. All synchronous inputs are gated by registers controlled by a positive-edge-triggered clock input (CLK). The synchronous inputs include all addresses, all data inputs, address-pipelining chip enable (CE_{1}), depth-expansion chip enables $\left(\mathrm{CE}_{2}\right.$ and $\left.\overline{C E}_{3}\right)$, burst control inputs (ADSC, ADSP, and $\overline{A D V}$), write enables (BW ${ }_{[A: D]}$, and $\overline{B W E}$), and global write ($\overline{\mathrm{GW}}$). Asynchronous inputs include the output enable (OE) and the $Z Z$ pin.
Addresses and chip enables are registered at rising edge of clock when either address strobe processor (ADSP) or address strobe controller (ADSC) are active. Subsequent burst addresses can be internally generated as controlled by the advance pin (ADV).
Address, data inputs, and write controls are registered on-chip to initiate a self-timed write cycle.This part supports byte write operations (see Pin Descriptions and Truth Table for further details). Write cycles can be one to four bytes wide as controlled by the byte write control inputs. GW when active LOW causes all bytes to be written.
The CY7C1339G operates from a +3.3 V core power supply while all outputs may operate with either $\mathrm{a}+2.5$ or +3.3 V supply. All inputs and outputs are JEDEC-standard JESD8-5-compatible.

Logic Block Diagram

Contents

Selection Guide 3
Pin Configurations 3
Pin Definitions 4
Functional Overview 5
Single Read Accesses 5
Single Write Accesses Initiated by ADSP 5
Single Write Accesses Initiated by ADSC 5
Burst Sequences 6
Sleep Mode 6
Interleaved Burst Address Table 6
Linear Burst Address Table 6
ZZ Mode Electrical Characteristics 6
Truth Table 7
Partial Truth Table for Read/Write 8
Maximum Ratings 9
Operating Range 9
Electrical Characteristics 9
Capacitance 10
Thermal Resistance 10
AC Test Loads and Waveforms 10
Switching Characteristics 11
Switching Waveforms 12
Ordering Information 16
Ordering Code Definitions 16
Package Diagrams 17
Acronyms 18
Document Conventions 18
Units of Measure 18
Document History Page 19
Sales, Solutions, and Legal Information 21
Worldwide Sales and Design Support 21
Products 21
PSoC Solutions 21

Selection Guide

Description	$\mathbf{1 3 3} \mathbf{~ M H z}$	Unit
Maximum access time	4.0	ns
Maximum operating current	225	mA
Maximum CMOS standby current	40	mA

Pin Configurations

Figure 1. 100 -pin TQFP ($14 \times 20 \times 1.4 \mathrm{~mm}$) pinout

Pin Definitions

Name	1/O	Description
$\mathrm{A}_{0}, \mathrm{~A}_{1}, \mathrm{~A}$	Inputsynchronous	Address inputs used to select one of the 128 K address locations. Sampled at the rising edge of the CLK if $\overline{A D S P}$ or $\overline{A D S C}$ is active LOW, and $\mathrm{CE}_{1}, C E_{2}$, and $\overline{C E}_{3}$ are sampled active. A1:A0 are fed to the two-bit counter.
$\begin{aligned} & \overline{\mathrm{BW}}_{\mathrm{A}}, \overline{\mathrm{BW}}_{\mathrm{B}}, \\ & \mathrm{BW}_{\mathrm{C}},,_{\mathrm{BW}} \end{aligned}$	Inputsynchronous	Byte write select inputs, active LOW. Qualified with $\overline{\text { BWE }}$ to conduct byte writes to the SRAM. Sampled on the rising edge of CLK.
$\overline{\mathrm{GW}}$	Inputsynchronous	Global write enable input, active LOW. When asserted LOW on the rising edge of CLK, a global write is conducted (all bytes are written, regardless of the values on $\overline{\mathrm{BW}}_{[\mathrm{A}: \mathrm{D}]}$ and BWE).
$\overline{\text { BWE }}$	Inputsynchronous	Byte write enable input, active LOW. Sampled on the rising edge of CLK. This signal must be asserted LOW to conduct a byte write.
CLK	Inputclock	Clock input. Used to capture all synchronous inputs to the device. Also used to increment the burst counter when ADV is asserted LOW, during a burst operation.
$\overline{\mathrm{CE}}_{1}$	Inputsynchronous	Chip enable 1 input, active LOW. Sampled on the rising edge of CLK. Used in conjunction with CE_{2} and $\overline{\mathrm{CE}}_{3}$ to select/deselect the device. $\overline{\mathrm{ADSP}}$ is ignored if $\overline{\mathrm{CE}}_{1}$ is $\mathrm{HIGH} . \overline{\mathrm{CE}}_{1}$ is sampled only when a new external address is loaded.
CE_{2}	Inputsynchronous	Chip enable 2 input, active HIGH. Sampled on the rising edge of CLK. Used in conjunction with $\overline{\mathrm{CE}}{ }_{1}$ and CE_{3} to select/deselect the device. CE_{2} is sampled only when a new external address is loaded.
$\overline{\mathrm{CE}}_{3}$	Inputsynchronous	Chip enable 3 input, active LOW. Sampled on the rising edge of CLK. Used in conjunction with $\overline{\mathrm{CE}}_{1}$ and CE_{2} to select/deselect the device. $\overline{\mathrm{CE}}_{3}$ is sampled only when a new external address is loaded.
$\overline{\mathrm{OE}}$	Inputasynchronous	Output enable, asynchronous input, active LOW. Controls the direction of the I/O pins. When LOW, the I/O pins behave as outputs. When deasserted HIGH, I/O pins are tri-stated, and act as input data pins. OE is masked during the first clock of a read cycle when emerging from a deselected state.
$\overline{\text { ADV }}$	Inputsynchronous	Advance input signal, sampled on the rising edge of CLK, active LOW. When asserted, it automatically increments the address in a burst cycle.
$\overline{\text { ADSP }}$	Inputsynchronous	Address strobe from processor, sampled on the rising edge of CLK, active LOW. When asserted LOW, addresses presented to the device are captured in the address registers. A1:A0 are also loaded into the burst counter. When $\overline{\text { ADSP }}$ and $\overline{\text { ADSC }}$ are both asserted, only ADSP is recognized. $\overline{\text { ASDP }}$ is ignored when CE_{1} is deasserted HIGH.
$\overline{\text { ADSC }}$	Inputsynchronous	Address strobe from controller, sampled on the rising edge of CLK, active LOW. When asserted LOW, addresses presented to the device are captured in the address registers. A1:A0 are also loaded into the burst counter. When $\overline{\text { ADSP }}$ and $\overline{\text { ADSC }}$ are both asserted, only $\overline{\text { ADSP }}$ is recognized.
ZZ	Inputasynchronous	ZZ "sleep" input, active HIGH. When asserted HIGH places the device in a non-time-critical "sleep" condition with data integrity preserved. For normal operation, this pin has to be LOW or left floating. ZZ pin has an internal pull-down.
DQs	I/Osynchronous	Bidirectional data I/O lines. As inputs, they feed into an on-chip data register that is triggered by the rising edge of CLK. As outputs, they deliver the data contained in the memory location specified by the addresses presented during the previous clock rise of the read cycle. The direction of the pins is controlled by $\overline{\mathrm{OE}}$. When $\overline{\mathrm{OE}}$ is asserted LOW, the pins behave as outputs. When HIGH, DQs are placed in a tri-state condition.
V_{DD}	Power supply	Power supply inputs to the core of the device.
$\mathrm{V}_{\text {SS }}$	Ground	Ground for the core of the device.
$V_{\text {DDQ }}$	I/O power supply	Power supply for the I/O circuitry.
$\mathrm{V}_{\text {SSQ }}$	I/O ground	Ground for the I/O circuitry.
MODE	Inputstatic	Selects burst order. When tied to GND selects linear burst sequence. When tied to $V_{D D}$ or left floating selects interleaved burst sequence. This is a strap pin and should remain static during device operation. Mode pin has an internal pull-up.

Pin Definitions (continued)

Name	I/O	
NC,	-	No Connects. Not internally connected to the die. NC/9M, NC/18M, NC/72M, NC/144M, NC/288M,
NC/9M,		NC/576M and NC/1G are address expansion pins are not internally connected to the die.
NC/18M,		
NC/72M,		
NC/144M,		
NC/288M,		
NC/576M,		
NC/1G		

Functional Overview

All synchronous inputs pass through input registers controlled by the rising edge of the clock. All data outputs pass through output registers controlled by the rising edge of the clock. Maximum access delay from the clock rise (t_{co}) is $4.0 \mathrm{~ns}(133-\mathrm{MHz}$ device).
The CY7C1339G supports secondary cache in systems utilizing either a linear or interleaved burst sequence. The interleaved burst order supports Pentium and $1486{ }^{\text {™ }}$ processors. The linear burst sequence is suited for processors that utilize a linear burst sequence. The burst order is user selectable, and is determined by sampling the MODE input. Accesses can be initiated with either the processor address strobe ($\overline{\mathrm{ADSP}}$) or the controller address strobe ($\overline{\mathrm{ADSC}}$). Address advancement through the burst sequence is controlled by the $\overline{\text { ADV }}$ input. A two-bit on-chip wraparound burst counter captures the first address in a burst sequence and automatically increments the address for the rest of the burst access.
Byte write operations are qualified with the byte write enable (BWE) and byte write select ($\overline{\mathrm{BW}}_{[\mathrm{A}: \mathrm{D}]}$) inputs. A global write enable ($\overline{\mathrm{GW}}$) overrides all byte write inputs and writes data to all four bytes. All writes are simplified with on-chip synchronous self-timed write circuitry.
Three synchronous chip selects $\left(\overline{\mathrm{CE}}_{1}, \mathrm{CE}_{2}, \overline{\mathrm{CE}}_{3}\right)$ and an asynchronous output enable ($\overline{O E}$) provide for easy bank selection and output tri-state control. $\overline{\mathrm{ADSP}}$ is ignored if $\overline{\mathrm{CE}}_{1}$ is HIGH.

Single Read Accesses

This access is initiated when the following conditions are satisfied at clock rise: (1) $\overline{\text { ADSP }}$ or $\overline{\text { ADSC }}$ is asserted LOW,
(2) $\overline{C E}_{1}, \mathrm{CE}_{2}, \overline{\mathrm{CE}}_{3}$ are all asserted active, and (3) the write signals ($\overline{\mathrm{GW}}$, BWE) are all deserted HIGH. ADSP is ignored if CE_{1} is HIGH . The address presented to the address inputs (A) is stored into the address advancement logic and the address register while being presented to the memory array. The corresponding data is allowed to propagate to the input of the output registers. At the rising edge of the next clock the data is allowed to propagate through the output register and onto the data bus within 2.6 ns ($250-\mathrm{MHz}$ device) if $\overline{\mathrm{OE}}$ is active LOW. The only exception occurs when the SRAM is emerging from a deselected state to a selected state, its outputs are always tri-stated during the first cycle of the access. After the first cycle of the access, the outputs are controlled by the $\overline{\mathrm{OE}}$ signal. Consecutive single read cycles are supported. Once the SRAM is deselected at clock rise by the chip select and either ADSP or $\overline{\text { ADSC }}$ signals, its output will tri-state immediately.

Single Write Accesses Initiated by ADSP

This access is initiated when both of the following conditions are satisfied at clock rise: (1) $\overline{\text { ADSP }}$ is asserted LOW, and (2) $\overline{C E}_{1}$, $\mathrm{CE}_{2}, \mathrm{CE}_{3}$ are all asserted active. The address presented to A is loaded into the address register and the address advancement logic while being delivered to the memory array. The Write signals ($\overline{\mathrm{GW}}, \overline{\mathrm{BWE}}$, and $\overline{\mathrm{BW}}_{[\mathrm{A}: \mathrm{D}]}$) and $\overline{\mathrm{ADV}}$ inputs are ignored during this first cycle.
ADSP-triggered write accesses require two clock cycles to complete. If $\overline{\mathrm{GW}}$ is asserted LOW on the second clock rise, the data presented to the DQs inputs is written into the corresponding address location in the memory array. If $\overline{\mathrm{GW}}$ is HIGH, then the write operation is controlled by BWE and $\overline{B W}_{[\mathrm{A}: \mathrm{D}]}$ signals. The CY7C1339G provides byte write capability that is described in the Write Cycle Descriptions table. Asserting the byte write enable input ($\overline{\mathrm{BWE}}$) with the selected byte write $\left(\overline{B W}_{[A: D]}\right)$ input, will selectively write to only the desired bytes. Bytes not selected during a byte write operation will remain unaltered. A synchronous self-timed Write mechanism has been provided to simplify the Write operations.
Because the CY7C1339G is a common I/O device, the output enable $(\overline{\mathrm{OE}})$ must be deserted HIGH before presenting data to the DQs inputs. Doing so will tri-state the output drivers. As a safety precaution, DQs are automatically tri-stated whenever a write cycle is detected, regardless of the state of $\overline{O E}$.

Single Write Accesses Initiated by ADSC

$\overline{\text { ADSC }}$ Write accesses are initiated when the following conditions are satisfied: (1) $\overline{\text { ADSC }}$ is asserted LOW, (2) $\overline{\text { ADSP }}$ is deserted HIGH, (3) $\overline{C E}_{1}, \mathrm{CE}_{2}, \overline{\mathrm{CE}}_{3}$ are all asserted active, and (4) the appropriate combination of the write inputs ($\overline{\mathrm{GW}}, \overline{\mathrm{BWE}}$, and $\left.\overline{B W}_{[\mathrm{A}: \mathrm{D}]}\right)$ are asserted active to conduct a write to the desired byte(s). ADSC-triggered write accesses require a single clock cycle to complete. The address presented to A is loaded into the address register and the address advancement logic while being delivered to the memory array. The $\overline{\mathrm{ADV}}$ input is ignored during this cycle. If a global write is conducted, the data presented to the DQs is written into the corresponding address location in the memory core. If a byte write is conducted, only the selected bytes are written. Bytes not selected during a byte write operation will remain unaltered. A synchronous self-timed write mechanism has been provided to simplify the write operations.
Because the CY7C1339G is a common I/O device, the output enable ($\overline{\mathrm{OE}})$ must be deserted HIGH before presenting data to the DQs inputs. Doing so will tri-state the output drivers. As a safety precaution, DQs are automatically tri-stated whenever a Write cycle is detected, regardless of the state of $\overline{O E}$.

CY7C1339G

Burst Sequences

The CY7C1339G provides a two-bit wraparound counter, fed by A1:A0, that implements either an interleaved or linear burst sequence. The interleaved burst sequence is designed specifically to support Intel Pentium applications. The linear burst sequence is designed to support processors that follow a linear burst sequence. The burst sequence is user selectable through the MODE input.
Asserting $\overline{\mathrm{ADV}}$ LOW at clock rise will automatically increment the burst counter to the next address in the burst sequence. Both Read and Write burst operations are supported.

Sleep Mode

The $Z Z$ input pin is an asynchronous input. Asserting ZZ places the SRAM in a power conservation "sleep" mode. Two clock cycles are required to enter into or exit from this "sleep" mode. While in this mode, data integrity is guaranteed. Accesses pending when entering the "sleep" mode are not considered valid nor is the completion of the operation guaranteed. The device must be deselected prior to entering the "sleep" mode. $\overline{\mathrm{CE}}_{1}, \mathrm{CE}_{2}$, CE_{3}, ADSP, and ADSC must remain inactive for the duration of $\mathrm{t}_{\text {ZZREC }}$ after the ZZ input returns LOW.

Interleaved Burst Address Table

(MODE = Floating or V_{DD})

First Address $\mathbf{A 1 : A 0}$	Second Address $\mathbf{A 1}: \mathbf{A 0}$	Third Address $\mathbf{A 1 : A 0}$	Fourth Address $\mathbf{A 1 : A 0}$
00	01	10	11
01	00	11	10
10	11	00	01
11	10	01	00

Linear Burst Address Table

(MODE = GND)

First Address A1:A0	Second Address A1:A0	Third Address A1:A0	Fourth Address A1:A0
00	01	10	11
01	10	11	00
10	11	00	01
11	00	01	10

ZZ Mode Electrical Characteristics

Parameter	Description	Test Conditions	Min	Max	Unit
$\mathrm{I}_{\mathrm{DDZZ}}$	Snooze mode standby current	$\mathrm{ZZ} \geq \mathrm{V}_{\mathrm{DD}}-0.2 \mathrm{~V}$	-	40	mA
$\mathrm{t}_{\mathrm{ZZS}}$	Device operation to ZZ	$\mathrm{ZZ} \geq \mathrm{V}_{\mathrm{DD}}-0.2 \mathrm{~V}$	-	$2 \mathrm{t}_{\mathrm{CYC}}$	ns
$\mathrm{t}_{\mathrm{ZZREC}}$	ZZ recovery time	$\mathrm{ZZ} \leq 0.2 \mathrm{~V}$	$2 \mathrm{t}_{\mathrm{CYC}}$	-	ns
$\mathrm{t}_{\mathrm{ZZI}}$	ZZ active to snooze current	This parameter is sampled	-	$2 \mathrm{t}_{\mathrm{CYC}}$	ns
$\mathrm{t}_{\text {RZZI }}$	ZZ Inactive to exit snooze current	This parameter is sampled	0	-	ns

Truth Table

The truth table for CY7C1339G follows. ${ }^{[1, ~ 2, ~ 3, ~ 4, ~ 5, ~ 6] ~}$

Operation	Add. Used	$\overline{C E}_{1}$	CE_{2}	CE_{3}	ZZ	$\overline{\text { ADSP }}$	$\overline{\text { ADSC }}$	$\overline{\text { ADV }}$	WRITE	$\overline{\mathrm{OE}}$	CLK	DQ
Deselect cycle, power-down	None	H	X	X	L	X	L	X	X	X	L-H	Tri-state
Deselect cycle, power-down	None	L	L	X	L	L	X	X	X	X	L-H	Tri-state
Deselect cycle, power-down	None	L	X	H	L	L	X	X	X	X	L-H	Tri-state
Deselect cycle, power-down	None	L	L	X	L	H	L	X	X	X	L-H	Tri-state
Deselect cycle, power-down	None	L	X	H	L	H	L	X	X	X	L-H	Tri-state
Snooze mode, power-down	None	X	X	X	H	X	X	X	X	X	X	Tri-state
READ cycle, begin burst	External	L	H	L	L	L	X	X	X	L	L-H	Q
READ cycle, begin burst	External	L	H	L	L	L	X	X	X	H	L-H	Tri-state
WRITE cycle, begin burst	External	L	H	L	L	H	L	X	L	X	L-H	D
READ cycle, begin burst	External	L	H	L	L	H	L	X	H	L	L-H	Q
READ cycle, begin burst	External	L	H	L	L	H	L	X	H	H	L-H	Tri-state
READ cycle, continue burst	Next	X	X	X	L	H	H	L	H	L	L-H	Q
READ cycle, continue burst	Next	X	X	X	L	H	H	L	H	H	L-H	Tri-state
READ cycle, continue burst	Next	H	X	X	L	X	H	L	H	L	L-H	Q
READ cycle, continue burst	Next	H	X	X	L	X	H	L	H	H	L-H	Tri-state
WRITE cycle, continue burst	Next	X	X	X	L	H	H	L	L	X	L-H	D
WRITE cycle, continue burst	Next	H	X	X	L	X	H	L	L	X	L-H	D
READ cycle, suspend burst	Current	X	X	X	L	H	H	H	H	L	L-H	Q
READ cycle, suspend burst	Current	X	X	X	L	H	H	H	H	H	L-H	Tri-state
READ cycle, suspend burst	Current	H	X	X	L	X	H	H	H	L	L-H	Q
READ cycle, suspend burst	Current	H	X	X	L	X	H	H	H	H	L-H	Tri-state
WRITE cycle, suspend burst	Current	X	X	X	L	H	H	H	L	X	L-H	D
WRITE cycle, suspend burst	Current	H	X	X	L	X	H	H	L	X	L-H	D

Notes

1. $\mathrm{X}=$ "Don't Care." H = Logic HIGH, L = Logic LOW.
2. $\overline{W R I T E}=L$ when any one or more byte write enable signals $\left(\overline{B W}_{A}, \overline{\mathrm{BW}}_{B}, \overline{\mathrm{BW}}_{C}, \overline{\mathrm{BW}}_{D}\right)$ and $\overline{\mathrm{BWE}}=\mathrm{L}$ or $\overline{\mathrm{GW}}=\mathrm{L}$. $\overline{\text { WRITE }}=\mathrm{H}$ when all byte write enable signals $\left(\overline{\mathrm{BW}}_{\mathrm{A}}\right.$, $\left.\mathrm{BW}_{\mathrm{B}}, \mathrm{BW}_{\mathrm{C}}, \mathrm{BW}_{\mathrm{D}}\right), \mathrm{BWE}, \overline{\mathrm{GW}}=\mathrm{H}$.
3. The DQ pins are controlled by the current cycle and the $\overline{\mathrm{OE}}$ signal. $\overline{\mathrm{OE}}$ is asynchronous and is not sampled with the clock.
4. $\overline{\mathrm{CE}}_{1}, \mathrm{CE}_{2}$, and CE_{3} are available only in the TQFP package.
5. The SRAM always initiates a read cycle when $\overline{\mathrm{ADSP}}$ is asserted, regardless of the state of $\overline{\mathrm{GW}}, \overline{\mathrm{BWE}}$, or $\overline{\mathrm{BW}}_{\mathrm{A}: ~ \mathrm{DP}}$. Writes may occur only on subsequent clocks after the ADSP or with the assertion of $\overline{A D S C}$. As a result, $\overline{\mathrm{OE}}$ must be driven HIGH prior to the start of the write cycle to allow the outputs to tri-state. OE is a don't care for the remainder of the write cycle.
6. $\overline{O E}$ is asynchronous and is not sampled with the clock rise. It is masked internally during write cycles. During a read cycle all data bits are tri-state when $\overline{O E}$ is inactive or when the device is deselected, and all data bits behave as output when OE is active (LOW).

CY7C1339G

Partial Truth Table for Read/Write

The partial truth table for Read/Write for CY7C1339G follows. ${ }^{[7, ~ 8]}$

Function	$\overline{\text { GW }}$	BWE	$\overline{B W}_{\text {D }}$	$\overline{\mathrm{BW}}_{\mathrm{C}}$	$\overline{B W}_{B}$	$\overline{\mathrm{BW}}_{\text {A }}$
Read	H	H	X	X	X	X
Read	H	L	H	H	H	H
Write byte $\mathrm{A}-\mathrm{DQ}_{\mathrm{A}}$	H	L	H	H	H	L
Write byte $\mathrm{B}-\mathrm{DQ}_{B}$	H	L	H	H	L	H
Write bytes B, A	H	L	H	H	L	L
Write byte C-DQ ${ }_{\text {C }}$	H	L	H	L	H	H
Write bytes C, A	H	L	H	L	H	L
Write bytes C, B	H	L	H	L	L	H
Write bytes C, B, A	H	L	H	L	L	L
Write byte $\mathrm{D}-\mathrm{DQ}_{\mathrm{D}}$	H	L	L	H	H	H
Write bytes D, A	H	L	L	H	H	L
Write bytes D, B	H	L	L	H	L	H
Write bytes D, B, A	H	L	L	H	L	L
Write bytes D, C	H	L	L	L	H	H
Write bytes D, C, A	H	L	L	L	H	L
Write bytes D, C, B	H	L	L	L	L	H
Write all bytes	H	L	L	L	L	L
Write all bytes	L	X	X	X	X	X

Notes
7. $\mathrm{X}=$ "Don't Care." H = Logic HIGH, L = Logic LOW.
8. Table only lists a partial listing of the byte write combinations. Any combination of $\overline{\mathrm{BW}}_{X}$ is valid. Appropriate write will be done based on which byte write is active.

Maximum Ratings

Exceeding maximum ratings may shorten the useful life of the device. User guidelines are not tested.
Storage temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient temperature with
power applied ... $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply voltage on V_{DD} relative to GND -0.5 V to +4.6 V
Supply voltage on $V_{D D Q}$ relative to $G N D \ldots . .-0.5 \mathrm{~V}$ to $+\mathrm{V}_{\mathrm{DD}}$
DC voltage applied to outputs
in tri-state
-0.5 V to $\mathrm{V}_{\mathrm{DDQ}}+0.5 \mathrm{~V}$
DC input voltage -0.5 V to $\mathrm{V}_{\mathrm{DD}}+0.5 \mathrm{~V}$

Current into outputs (LOW) .. 20 mA
Static discharge voltage
(per MIL-STD-883, method 3015) > 2001 V
Latch-up current ... > 200 mA
Operating Range

Range	Ambient Temperature	\mathbf{V}_{DD}	$\mathbf{V}_{\mathrm{DDQ}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$3.3 \mathrm{~V}-5 \% /$ $+10 \%$	$2.5 \mathrm{~V}-5 \%$ to V_{DD}

Electrical Characteristics

Over the Operating Range

Parameter ${ }^{[9,10]}$	Description	Test Conditions		Min	Max	Unit
V_{DD}	Power supply voltage			3.135	3.6	V
$\mathrm{V}_{\text {DDQ }}$	I/O supply voltage			2.375	V_{DD}	V
V_{OH}	Output HIGH voltage	for $3.3 \mathrm{~V} \mathrm{I/O}, \mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$		2.4	-	V
		for $2.5 \mathrm{~V} \mathrm{I/O}, \mathrm{I}_{\mathrm{OH}}=-1.0 \mathrm{~mA}$		2.0	-	V
V_{OL}	Output LOW voltage	for $3.3 \mathrm{~V} \mathrm{I/O}, \mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}$		-	0.4	V
		for $2.5 \mathrm{~V} \mathrm{I} / \mathrm{O}, \mathrm{I}_{\mathrm{OL}}=1.0 \mathrm{~mA}$		-	0.4	V
V_{IH}	Input HIGH voltage ${ }^{[9]}$	for $3.3 \mathrm{~V} \mathrm{I/O}$		2.0	$\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$	V
		for $2.5 \mathrm{~V} \mathrm{I/O}$		1.7	$\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$	V
$\mathrm{V}_{\text {IL }}$	Input LOW voltage ${ }^{\text {[9] }}$	for $3.3 \mathrm{~V} \mathrm{I/O}$		-0.3	0.8	V
		for $2.5 \mathrm{VI} / \mathrm{O}$		-0.3	0.7	V
Ix	Input leakage current except ZZ and MODE	$\mathrm{GND} \leq \mathrm{V}_{1} \leq \mathrm{V}_{\mathrm{DDQ}}$		-5	5	$\mu \mathrm{A}$
	Input current of MODE	Input $=\mathrm{V}_{\text {SS }}$		-30	-	$\mu \mathrm{A}$
		Input $=V_{\text {DD }}$		-	5	$\mu \mathrm{A}$
	Input current of ZZ	Input $=\mathrm{V}_{\text {SS }}$		-5	-	$\mu \mathrm{A}$
		Input $=\mathrm{V}_{\mathrm{DD}}$		-	30	$\mu \mathrm{A}$
loz	Output leakage current	$\mathrm{GND} \leq \mathrm{V}_{1} \leq \mathrm{V}_{\mathrm{DDQ}}$, output disabled		-5	5	$\mu \mathrm{A}$
${ }^{\text {l }}$ D	V_{DD} operating supply current	$\begin{aligned} & V_{D D}=M a x, I_{O U T}=0 \mathrm{~mA}, \\ & f=f_{M A X}=1 / t_{\mathrm{CYC}} \end{aligned}$	7.5-ns cycle, 133 MHz	-	225	mA
${ }^{\text {SBB1 }}$	Automatic CE power-down current - TTL inputs	$V_{D D}=$ Max, device deselected, $V_{I N} \geq V_{I H}$ or $V_{I N} \leq V_{I L}$, $\mathrm{f}=\mathrm{f}_{\mathrm{MAX}}=1 / \mathrm{t}$ CYC	7.5-ns cycle, 133 MHz	-	90	mA
${ }^{\text {SB } 2}$	Automatic CE power-down current - CMOS inputs	$\mathrm{V}_{\mathrm{DD}}=$ Max, device deselected, $\mathrm{V}_{\mathrm{IN}} \leq 0.3 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{DDQ}}-0.3 \mathrm{~V}$, $\mathrm{f}=0$	7.5-ns cycle, 133 MHz	-	40	mA
${ }^{\text {SBB }}$	Automatic CE power-down current - CMOS inputs	$\begin{aligned} & V_{D D}=\text { Max, device deselected, } \\ & V_{I N} \leq 0.3 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{DDQ}}-0.3 \mathrm{~V}, \\ & \mathrm{f}=\mathrm{f}_{\mathrm{MAX}}=1 / \mathrm{t}_{\mathrm{CYC}} \end{aligned}$	7.5-ns cycle, 133 MHz	-	75	mA
${ }^{\text {SB4 }}$	Automatic CE power-down current - TTL inputs	$\mathrm{V}_{\mathrm{DD}}=$ Max, device deselected, $\mathrm{V}_{\text {IN }} \geq \mathrm{V}_{\mathrm{IH}}$ or $\mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\mathrm{IL}}, \mathrm{f}=0$	7.5-ns cycle, 133 MHz	-	45	mA

[^0]
Capacitance

Parameter ${ }^{[11]}$	Description	Test Conditions	100-pin TQFP Package	Unit
C_{IN}	Input capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	5	pF
$\mathrm{C}_{\mathrm{CLK}}$	Clock input capacitance	$\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DDQ}}=3.3 \mathrm{~V}$	5	pF
$\mathrm{C}_{\mathrm{I} / \mathrm{O}}$	Input/output capacitance		5	pF

Thermal Resistance

Parameter ${ }^{[11]}$	Description	Test Conditions	100-pin TQFP Package	Unit
Θ_{JA}	Thermal resistance (junction to ambient)	Test conditions follow standard test methods and procedures for measuring thermal impedance, per	30.32	${ }^{\circ} \mathrm{C} / \mathrm{W}$
	Thermal resistance (junction to case)	ElA/JESD51	6.85	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Θ_{JC}				

AC Test Loads and Waveforms

Figure 2. AC Test Loads and Waveforms

3.3 V I/O Test Load

(a)

(b)

(c)

2.5 V I/O Test Load

Note
11. Tested initially and after any design or process change that may affect these parameters.

Switching Characteristics

Over the Operating Range

Parameter ${ }^{[12,13]}$	Description	-133		Unit
		Min	Max	
tpower	V_{DD} (typical) to the first access ${ }^{[14]}$	1	-	ms
Clock				
$\mathrm{t}_{\mathrm{CYC}}$	Clock cycle time	7.5	-	ns
t_{CH}	Clock HIGH	3.0	-	ns
t_{CL}	Clock LOW	3.0	-	ns
Output Times				
t_{co}	Data output valid after CLK rise	-	4.0	ns
$\mathrm{t}_{\mathrm{DOH}}$	Data output hold after CLK rise	1.5	-	ns
$\mathrm{t}_{\text {CLZ }}$	Clock to low $\mathrm{Z}^{[15,16,17]}$	0	-	ns
$\mathrm{t}_{\mathrm{CHZ}}$	Clock to high Z [15, 16, 17]	-	4.0	ns
$\mathrm{t}_{\text {OEV }}$	$\overline{\mathrm{OE}}$ LOW to output valid	-	4.0	ns
toekz	$\overline{\mathrm{OE}}$ LOW to output low $\mathrm{Z}^{[15,16,17]}$	0	-	ns
$\mathrm{t}_{\text {OEHz }}$	$\overline{\mathrm{OE}}$ HIGH to output high Z [15, 16, 17]	-	4.0	ns
Set-up Times				
$\mathrm{t}_{\text {AS }}$	Address set-up before CLK rise	1.5	-	ns
$t_{\text {ADS }}$	$\overline{\text { ADSC }}$, $\overline{\text { ADSP }}$ set-up before CLK rise	1.5	-	ns
$\mathrm{t}_{\text {ADVS }}$	$\overline{\mathrm{ADV}}$ set-up before CLK rise	1.5	-	ns
${ }^{\text {t WES }}$	$\overline{\mathrm{GW}}$, $\overline{\mathrm{BWE}}^{\text {BW }} \overline{\mathrm{X}}_{\text {S }}$ set-up before CLK rise	1.5	-	ns
t_{DS}	Data input set-up before CLK rise	1.5	-	ns
$\mathrm{t}_{\text {CES }}$	Chip enable set-up before CLK rise	1.5	-	ns
Hold Times				
t_{AH}	Address hold after CLK rise	0.5	-	ns
$\mathrm{t}_{\text {ADH }}$	$\overline{\text { ADSP, }} \overline{\text { ADSC }}$ hold after CLK rise	0.5	-	ns
$\mathrm{t}_{\text {ADVH }}$	$\overline{\text { ADV }}$ hold after CLK rise	0.5	-	ns
$\mathrm{t}_{\text {WEH }}$	$\overline{\mathrm{GW}}, \overline{\mathrm{BWE}}, \overline{\mathrm{BW}}_{\mathrm{X}}$ hold after CLK rise	0.5	-	ns
t_{DH}	Data input hold after CLK rise	0.5	-	ns
$\mathrm{t}_{\text {CEH }}$	Chip enable hold after CLK rise	0.5	-	ns

[^1]CY7C1339G

Switching Waveforms

Figure 3. Read Cycle Timing ${ }^{[18]}$

Note
18. On this diagram, when $\overline{\mathrm{CE}}$ is LOW, $\overline{\mathrm{CE}}_{1}$ is LOW, CE_{2} is HIGH and $\overline{\mathrm{CE}}_{3}$ is LOW. When $\overline{\mathrm{CE}}$ is $\mathrm{HIGH}, \overline{\mathrm{CE}}_{1}$ is HIGH or CE_{2} is LOW or $\overline{\mathrm{CE}}_{3}$ is HIGH .

Switching Waveforms (continued)
Figure 4. Write Cycle Timing ${ }^{[19,20]}$

Notes
19. On this diagram, when $\overline{\mathrm{CE}}$ is LOW, $\overline{\mathrm{CE}}_{1}$ is LOW, CE_{2} is HIGH and $\overline{\mathrm{CE}}_{3}$ is LOW. When $\overline{\mathrm{CE}}$ is HIGH, $\overline{\mathrm{CE}}_{1}$ is HIGH or CE 2 is LOW or $\overline{\mathrm{CE}}_{3}$ is HIGH. 20. Full width write can be initiated by either $\overline{\mathrm{GW}} \mathrm{LOW}$; or by $\overline{\mathrm{GW}} \mathrm{HIGH}, \overline{\mathrm{BWE}} \mathrm{LOW}$ and $\overline{\mathrm{BW}}_{[\mathrm{A}: \mathrm{D}]} \mathrm{LOW}$.

Switching Waveforms (continued)
Figure 5. Read/Write Cycle Timing [21, 22, 23]

[^2]Switching Waveforms (continued)

Figure 6. ZZ Mode Timing ${ }^{[24,25]}$

[^3]
Ordering Information

Cypress offers other versions of this type of product in many different configurations and features. The following table contains only the list of parts that are currently available.
For a complete listing of all options, visit the Cypress website at www.cypress.com and refer to the product summary page at http://www.cypress.com/products or contact your local sales representative.
Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives and distributors. To find the office closest to you, visit us at http://www.cypress.com/go/datasheet/offices.

Speed $(\mathbf{M H z})$	Ordering Code	Package Diagram	Package Type	Operating Range
133	CY7C1339G-133AXC	$51-85050$	$100-$ pin TQFP $(14 \times 20 \times 1.4 \mathrm{~mm})$ Pb-free	Commercial

Ordering Code Definitions

CY7C1339G

Package Diagrams

Figure 7. 100 -pin TQFP ($14 \times 20 \times 1.4 \mathrm{~mm}$) A100RA Package Outline, 51-85050

NDTE:

1. JEDEC STD REF MS-026

B BDD LENGTH DIMENSIDN DDES NDT INCLUDE MDLD PRDTRUSIDN/END FLASH
MLLD PRDTRUSIDN/END FLASH SHALL NDT EXCEED 0.0098 in (0.25 mm) PER SIDE BODY LENGTH DIMENSIUNS ARE MAX PLASTIC BODY SIZE INCLUDING MDLD MISMATCH
3. DIMENSIDNS IN MILLIMETERS

Acronyms

Acronym	Description
$\overline{\mathrm{CE}}$	chip enable
CMOS	complementary metal oxide semiconductor
EIA	electronic industries alliance
I/O	input/output
JEDEC	joint electron devices engineering council
$\overline{\text { OE }}$	output enable
SRAM	static random access memory
TQFP	thin quad flat pack
TTL	transistor-transistor logic

Document Conventions

Units of Measure

Symbol	Unit of Measure
${ }^{\circ} \mathrm{C}$	degree Celsius
MHz	megahertz
$\mu \mathrm{A}$	microampere
mA	milliampere
mm	millimeter
ms	millisecond
mV	millivolt
ns	nanosecond
Ω	ohm
$\%$	percent
pF	picofarad
V	volt
W	watt

Document History Page

Document Title: CY7C1339G, 4-Mbit (128 K $\times 32$) Pipelined Sync SRAM Document Number: 38-05520				
Rev.	ECN No.	Issue Date	Orig. of Change	Description of Change
**	224368	See ECN	RKF	New data sheet.
*A	288909	See ECN	VBL	Updated Ordering Information (Updated part numbers (Added Pb-free BGA package), changed TQFP package to Pb -free TQFP package).
*B	332895	See ECN	SYT	Updated Pin Configurations (Modified Address Expansion balls in the pinouts for 100-pin TQFP and 119-ball BGA Packages as per JEDEC standards). Updated Pin Definitions. Updated Electrical Characteristics (Updated test conditions for V_{OL} and V_{OH} parameters). Updated Thermal Resistance (Replaced TBDs for Θ_{JA} and Θ_{Jc} to their respective values). Updated Ordering Information (By shading and unshading MPNs as per availability).
*C	351194	See ECN	PCI	Updated Ordering Information (Updated part numbers).
*D	366728	See ECN	PCI	Updated Electrical Characteristics (Updated test conditions for $V_{D D}$ and $V_{D D Q}$ parameters, updated Note 10 (Changed test condition from $\mathrm{V}_{I H} \leq \mathrm{V}_{\mathrm{DD}}$ to $\mathrm{V}_{\mathrm{IH}}<\mathrm{V}_{\mathrm{DD}}$.
*E	420883	See ECN	RXU	Changed status from Preliminary to Final. Changed address of Cypress Semiconductor Corporation from "3901 North First Street" to "198 Champion Court". Updated Operating Range (Added Automotive Range). Updated Electrical Characteristics (Changed "Input Load Current except ZZ and MODE" to "Input Leakage Current except ZZ and MODE"). Updated Ordering Information (Updated part numbers, replaced Package Name column with Package Diagram in the Ordering Information table). Replaced Package Diagram of 51-85050 from *A to *B
*F	480368	See ECN	VKN	Updated Maximum Ratings (Added the Maximum Rating for Supply Voltage on $\mathrm{V}_{\mathrm{DDQ}}$ Relative to GND). Updated Ordering Information (Updated part numbers).
*G	2896584	03/19/2010	NJY	Updated Ordering Information (Removed obsolete part numbers). Updated Package Diagrams.
*H	3045943	10/03/2010	NJY	Added Ordering Code Definitions. Added Acronyms and Units of Measure. Minor edits and updated in new template.
*	3052769	10/08/2010	NJY	Updated Ordering Information (Removed pruned part CY7C1339G-133AXI).
*J	3365114	09/07/2011	PRIT	Updated Package Diagrams. Updated in new template.

CY7C1339G

Document History Page (continued)

Document Title: CY7C1339G, 4-Mbit (128 K × 32) Pipelined Sync SRAM Document Number: 38-05520				
Rev.	ECN No.	Issue Date	Orig. of Change	Description of Change
*K	3587066	05/10/2012	NJY / PRIT	Updated Features (Removed $250 \mathrm{MHz}, 200 \mathrm{MHz}$, and 166 MHz frequencies related information, removed 119-ball BGA package related information). Updated Functional Description (Removed the Note "For best-practices recommendations, please refer to the Cypress application note System Design Guidelines on www.cypress.com." and its reference). Updated Selection Guide (Removed $250 \mathrm{MHz}, 200 \mathrm{MHz}$, and 166 MHz frequencies related information). Updated Pin Configurations (Removed 119-ball BGA package related information). Updated Pin Definitions (Removed 119-ball BGA package related information). Updated Functional Overview (Removed 250 MHz, 200 MHz, and 166 MHz frequencies related information). Updated Truth Table (Updated Note 4 (Removed 119-ball BGA package related information)). Updated Operating Range (Removed Industrial and Automotive Temperature Ranges). Updated Electrical Characteristics (Removed $250 \mathrm{MHz}, 200 \mathrm{MHz}$, and 166 MHz frequencies related information, removed Industrial and Automotive Temperature Ranges). Updated Capacitance (Removed 119-ball BGA package related information). Updated Thermal Resistance (Removed 119-ball BGA package related information). Updated Switching Characteristics (Removed $250 \mathrm{MHz}, 200 \mathrm{MHz}$, and 166 MHz frequencies related information). Updated Package Diagrams (Removed 119-ball BGA package related information).
*L	3766472	10/04/2012	PRIT	No technical updates. Completing sunset review.

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

Automotive	cypress.com/go/automotive
Clocks \& Buffers	cypress.com/go/clocks
Interface	cypress.com/go/interface
Lighting \& Power Control	cypress.com/go/powerpsoc
cypress.com/go/plc	
Memory	cypress.com/go/memory
Optical \& Image Sensing	cypress.com/go/image
PSoC	cypress.com/go/psoc
Touch Sensing	cypress.com/go/touch
USB Controllers	cypress.com/go/USB
Wireless/RF	cypress.com/go/wireless

© Cypress Semiconductor Corporation, 2004-2012. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress.
Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

[^0]: Notes
 9. Overshoot: $\mathrm{V}_{\mathrm{IH}(\mathrm{AC})}<\mathrm{V}_{\mathrm{DD}}+1.5 \mathrm{~V}$ (Pulse width less than $\mathrm{t}_{\mathrm{CYC}} / 2$), undershoot: $\mathrm{V}_{\mathrm{IL}(\mathrm{AC})}>-2 \mathrm{~V}$ (Pulse width less than $\mathrm{t}_{\mathrm{CYC}} / 2$).
 10. TPower-up: Assumes a linear ramp from 0 V to $\mathrm{V}_{\mathrm{DD}(\min)}$ within 200 ms . During this time $\mathrm{V}_{I H}<\mathrm{V}_{\mathrm{DD}}$ and $\mathrm{V}_{\mathrm{DDQ}} \leq \mathrm{V}_{\mathrm{DD}}$

[^1]: Notes
 12. Timing reference level is 1.5 V when $\mathrm{V}_{\mathrm{DDQ}}=3.3 \mathrm{~V}$ and is 1.25 V when $\mathrm{V}_{\mathrm{DDQ}}=2.5 \mathrm{~V}$.
 13. Test conditions shown in (a) of Figure 2 on page 10 unless otherwise noted.
 14. This part has a voltage regulator internally; $t_{P O W E R}$ is the time that the power needs to be supplied above $V_{D D(m i n i m u m)}$ initially before a read or write operation can be initiated.
 15. $\mathrm{t}_{\mathrm{CHZ}}, \mathrm{t}_{\mathrm{CLZ}}, \mathrm{t}_{\mathrm{OELZ}}$, and $\mathrm{t}_{\mathrm{OEHZ}}$ are specified with AC test conditions shown in part (b) of Figure 2 on page 10 . Transition is measured $\pm 200 \mathrm{mV}$ from steady-state voltage. 16. At any given voltage and temperature, $\mathrm{t}_{\mathrm{OEHZ}}$ is less than $\mathrm{t}_{\mathrm{OELZ}}$ and $\mathrm{t}_{\mathrm{CHZ}}$ is less than $\mathrm{t}_{\mathrm{CLZ}}$ to eliminate bus contention between SRAMs when sharing the same data bus. These specifications do not imply a bus contention condition, but reflect parameters guaranteed over worst case user conditions. Device is designed to achieve high Z prior to low Z under the same system conditions.
 17. This parameter is sampled and not 100% tested.

[^2]: Notes
 21. On this diagram, when $\overline{\mathrm{CE}}$ is LOW, $\overline{\mathrm{CE}}_{1}$ is LOW, CE_{2} is HIGH and $\overline{\mathrm{CE}}_{3}$ is LOW . When $\overline{\mathrm{CE}}$ is $\mathrm{HIGH}, \overline{\mathrm{CE}}_{1}$ is HIGH or CE_{2} is LOW or $\overline{\mathrm{CE}}_{3}$ is HIGH .
 22. The data bus (Q) remains in high Z following a WRITE cycle, unless a new read access is initiated by ADSP or ADSC.
 23. $\overline{\mathrm{GW}}$ is HIGH .

[^3]: Notes
 24. Device must be deselected when entering ZZ mode. See Cycle Descriptions table for all possible signal conditions to deselect the device. 25. DQs are in high Z when exiting $Z Z$ sleep mode.

