MEMORY

CMOS 4M × 4 BIT HYPER PAGE MODE DYNAMIC RAM

MB8117405A-60/-70

CMOS 4,194,304 × 4 BIT Hyper Page Mode Dynamic RAM

■ DESCRIPTION

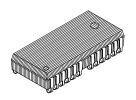
The Fujitsu MB8117405A is a fully decoded CMOS Dynamic RAM (DRAM) that contains 16,777,216 memory cells accessible in 4-bit increments. The MB8117405A features a "hyper page" mode of operation whereby high-speed random access of up to 1,024-bits of data within the same row can be selected. The MB8117405A DRAM is ideally suited for mainframe, buffers, hand-held computers video imaging equipment, and other memory applications where very low power dissipation and high bandwidth are basic requirements of the design. Since the standby current of the MB8117405A is very small, the device can be used as a non-volatile memory in equipment that uses batteries for primary and/or auxiliary power.

The MB8117405A is fabricated using silicon gate CMOS and Fujitsu's advanced four-layer polysilicon and two-layer aluminum process. This process, coupled with advanced stacked capacitor memory cells, reduces the possibility of soft errors and extends the time interval between memory refreshes. Clock timing requirements for the MB8117405A are not critical and all inputs are TTL compatible.

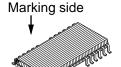
■ PRODUCT LINE & FEATURES

Pa	rameter	MB8117405A-60	MB8117405A-70
RAS Access Tim	ne	60 ns max.	70 ns max.
Randam Cycle T	ime	104 ns min.	124 ns min.
Address Access	Time	30 ns max.	35 ns max.
CAS Access Tim	ne	15 ns max.	17 ns max.
Hyper Page Mod	le Cycle Time	25 ns min.	30 ns min.
Low Power Dissipation	Operating current	577.5 mW max.	495 mW max.
	Standby current	11 mW max. (TTL level)/5.5 mW max. (CMOS level)	

- 4,194,304 words × 4 bit organization
- Silicon gate, CMOS, Advanced Capacitor Cell
- All input and output are TTL compatible
- 2048 refresh cycles every 32.8ms
- Early Write or OE controlled write capability
- RAS only, CAS-before-RAS, or Hidden Refresh
- Hyper Page Mode, Read-Modify-Write capability
- On chip substrate bias generator for high performance

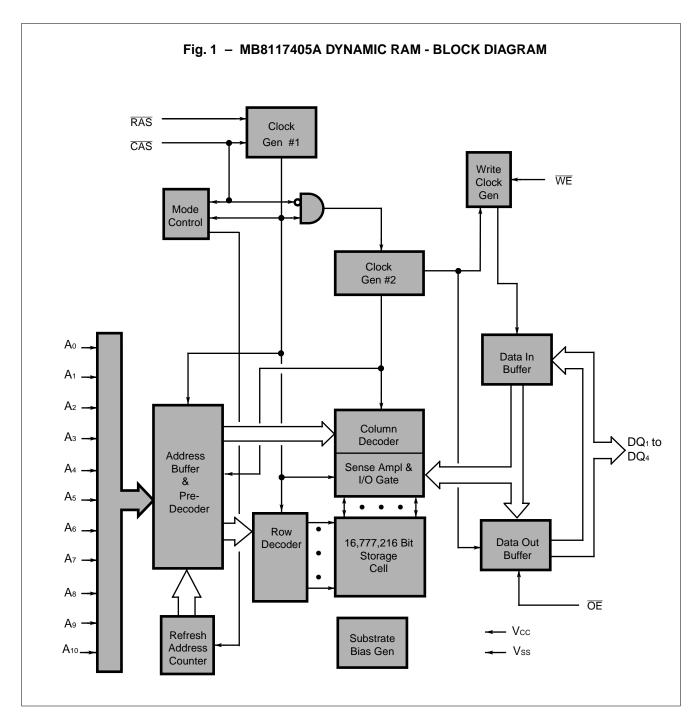

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields. However, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.

■ ABSOLUTE MAXIMUM RATINGS (See NOTE.)


Parameter	Symbol	Value	Unit
Voltage at any pin relative to Vss	VIN, VOUT	-0.5 to +7	V
Voltage of Vcc supply relative to Vss	Vcc	−0.5 to +7	V
Power Dissipation	Po	1.0	W
Short Circuit Output Current	louт	-50 to +50	mA
Operating Temperature	Торе	0 to +70	°C
Storage Temperature	Тѕтс	-55 to +125	°C

NOTE: Permanent device damage may occur if the above **Absolute Maximum Ratings** are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

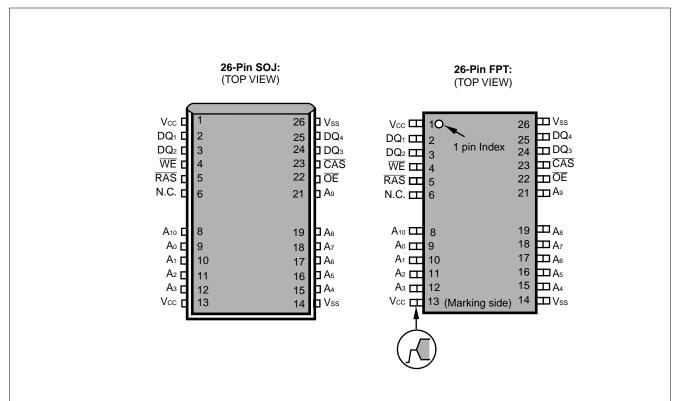
■ PACKAGE


Plastic SOJ Package (LCC-26P-M09)

Plastic TSOP Package (FPT-26P-M05)

Package and Ordering Information

- 26-pin plastic (300mil) SOJ, order as MB8117405A-xxPJ
- 26-pin plastic (300mil) TSOP-II with normal bend leads, order as MB8117405A-xxPFTN



■ CAPACITANCE

 $(T_A = 25^{\circ}C, f = 1 \text{ MHz})$

Parameter	Symbol	Тур.	Max.	Unit
Input Capacitance, Ao toA10	C _{IN1}	_	5	pF
Input Capacitance, RAS, CAS, WE, OE	C _{IN2}	_	5	pF
Input/Output Capacitance, DQ1 to DQ4	CDQ	_	7	pF

■ PIN ASSIGNMENTS AND DESCRIPTIONS

Designator	Function
DQ ₁ to DQ ₄	Data Input/ Output
WE	Write Enable.
RAS	Row address strobe.
A ₀ to A ₁₀	Address inputs.
Vcc	+5 volt power supply.
ŌĒ	Output enable.
CAS	Column address strobe.
Vss	Circuit ground.
N.C.	No Connection

■ RECOMMENDED OPERATING CONDITIONS

Parameter	Notes	Symbol	Min.	Тур.	Max.	Unit	Ambient Operating Temp.
Spply Voltage		Vcc	4.5	5.0	5.5	V	
Sppry voltage	1	Vss	0	0	0	v	
Input High Voltage, all inputs	1	Vıн	2.4	_	6.5	V	0°C to +70°C
Input Low Voltage, all inputs/outputs *	1	VıL	-0.3	_	0.8	V	

^{*:} Undershoots of up to -2.0 volts with a pulse width not exceeding 20ns are acceptable.

■ FUNCTIONAL OPERATION

ADDRESS INPUTS

Twenty-two input bits are required to decode any four of 16,777,216 cell addresses in the memory matrix. Since only twelve address bits (A_0 to A_{10}) are available, the row and column inputs are separately strobed by \overline{RAS} and \overline{CAS} as shown in Figure 1. First, twelve row address bits are input on pins A_0 -through- A_{10} and latched with the row address strobe (\overline{RAS}) then, ten column address bits are input and latched with the column address strobe (\overline{CAS}). Both row and column addresses must be stable on or before the falling edge of \overline{RAS} and \overline{CAS} , respectively. The address latches are of the flow-through type; thus, address information appearing after t_{RAH} (min.)+ t_T is automatically treated as the column address.

WRITE ENABLE

The read or write mode is determined by the logic state of \overline{WE} . When \overline{WE} is active Low, a write cycle is initiated; when \overline{WE} is High, a read cycle is selected. During the read mode, input data is ignored.

DATA INPUT

Input data is written into memory in either of three basic ways: an early write cycle, an \overline{OE} (delayed) write cycle, and a read-modify-write cycle. The falling edge of \overline{WE} or \overline{CAS} , whichever is later, serves as the input data-latch strobe. In an early write cycle, the input data (DQ₁-DQ₄) is strobed by \overline{CAS} and the setup/hold times are referenced to \overline{CAS} because \overline{WE} goes Low before \overline{CAS} . In a delayed write or a read-modify-write cycle, \overline{WE} goes Low after \overline{CAS} ; thus, input data is strobed by \overline{WE} and all setup/hold times are referenced to the write-enable signal.

DATA OUTPUT

The three-state buffers are TTL compatible with a fanout of two TTL loads. Polarity of the output data is identical to that of the input; the output buffers remain in the high-impedance state until the column address strobe goes Low. When a read or read-modify-write cycle is executed, valid outputs and High-Z state are obtained under the following conditions:

 t_{RAC} : from the falling edge of \overline{RAS} when t_{RCD} (max.) is satisfied.

tcac: from the falling edge of CAS when tred is greater than tred (max.).

taa : from column address inpit when trad is greater than trad (max.), and tred (max.) is satisfied.

toea: from the falling edge of \overline{OE} when \overline{OE} is brought Low after trac, tcac, or taa.

toez: from OE inactive.

toff: from \overline{CAS} inactive while \overline{RAS} inactive. toff: from \overline{RAS} inactive while \overline{CAS} inactive. twez: from \overline{WE} active while \overline{CAS} inactive.

The data remains valid after either \overline{OE} is inactive, or both \overline{RAS} and \overline{CAS} are inactive, or \overline{CAS} is reactived. When an early write is execute, the output buffers remain in a high-impedance state during the entire cycle.

HYPER PAGE MODE OF OPERATION

The hyper page mode of operation provides faster memory access and lower power dissipation. The hyper page mode is implemented by keeping the same row address and strobing in successive column addresses. To satisfy these conditions, \overline{RAS} is held Low for all contiguous memory cycles in which row addresses are common. For each page of memory (with column address locations), any of 1,024-bits can be accessed and, when multiple MB8117405As are used, \overline{CAS} is decoded to select the desired memory page. Hyper page mode operations need not be addressed sequentially and combinations of read, write, and/or read-modify-write cycles are permitted. Hyper page mode features that output remains valid when \overline{CAS} is inactive until \overline{CAS} is reactivated.

■ DC CHARACTERISTICS

(Recommended operating conditions unless otherwise noted.)

Note 3

Doromotor	Notes	Symbol	Conditions		Unit			
Parameter	Notes	Symbol	Conditions	Min.	Тур.	Max.		
Output high voltage	1	Vон	Iон = −5 mA	2.4	_	_	- V	
Output low voltage	1	Vol	IoL = 4.2 mA	_	_	0.4	V	
Input leakage current (any input)	lı(L)	$0 \text{ V} \le \text{V}_{\text{IN}} \le 5.5 \text{ V};$ $4.5 \text{ V} \le \text{V}_{\text{CC}} \le 5.5 \text{ V};$ $\text{V}_{\text{SS}} = 0 \text{ V};$ All other pins under test = 0 V	-10	_	10	μА	
Output leakage curren	t	I _{O(L)}	0 V ≤ V _{OUT} ≤ 5.5 V; Data out disabled −10 —			10		
Operating current (Average power	MB8117405A-60	- Icc1	RAS & CAS cycling;		_	105	- mA	
supply current) 2	MB8117405A-70	ICC1	trc = min.	_		90		
Standby current	TTL level	lcc2	RAS = CAS = VIH			2.0	- mA	
(Power supply current)	CMOS level	ICC2	RAS = CAS ≥ Vcc −0.2 V	_		1.0		
Refresh current#1 (Average power	MB8117405A-60	1	CAS = V _{IH} , RAS cycling;		_	105	- mA	
supply current) 2	MB8117405A-70	- Іссз	thec = min.	_		90		
Hyper Page Mode	MB8117405A-60	laa.	RAS = V _{IL} , CAS cycling;		_	105	A	
current 2	MB8117405A-70	- Icc4	thec = min.	_		90	mA	
Refresh current#2 (Average power	MB8117405A-60	- Iccs	RAS cycling; CAS-before-RAS;		_	105	- mA	
supply current) 2	MB8117405A-70	TCC5	t _{RC} = min.	_		90		

■ AC CHARACTERISTICS

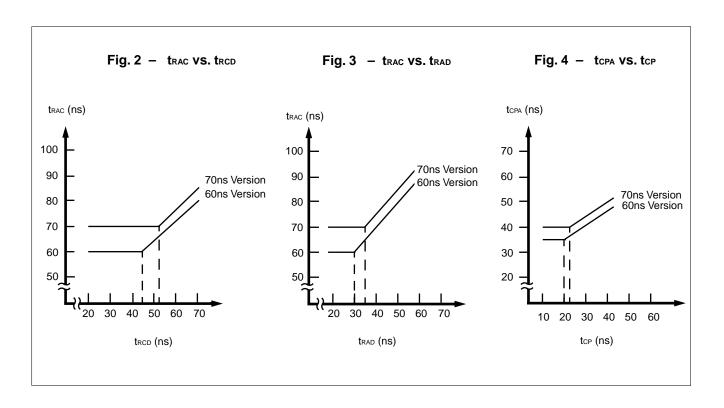
(At recommended operating conditions unless otherwise noted.)

Notes 3, 4, 5

(At 1	ecommended operating condition	S ullies	5 Othe			Notes		
No.	Parameter No	otes Sy	Symbol		405A-60	MB8117	Unit	
110.	r drameter 140),tes 6,	,,,,,	Min.	Max.	Min.	Max.	Oille
1	Time Between Refresh		t ref	_	32.8	_	32.8	ms
2	Random Read/Write Cycle Time		trc	104	_	124	_	ns
3	Read-Modify-Write Cycle Time		trwc	138	_	162	_	ns
4	Access Time from RAS 6	5, 9	t rac	_	60	_	70	ns
5	Access Time from CAS 7	, 9	t CAC	_	15	_	17	ns
6	Column Address Access Time 8	, 9	t AA	_	30	_	35	ns
7	Output Hold Time		tон	3	_	3	_	ns
8	Output Hold Time from CAS		tонс	5	_	5	_	ns
9	Output Buffer Turn On Delay Time		ton	0	_	0	_	ns
10	Output Buffer Turn off Delay Time	10	t off	_	15	_	17	ns
11	Output Buffer Turn Off Delay Time from RAS	10	t ofr	_	15	_	17	ns
12	Output Buffer Turn Off Delay Time from WE	10	twez	_	15	_	17	ns
13	Transition Time		t⊤	1	50	1	50	ns
14	RAS Precharge Time		t RP	40	_	50	_	ns
15	RAS Pulse Width		tras	60	100000	70	100000	ns
16	RAS Hold Time		t RSH	15	_	17	_	ns
17	CAS to RAS Precharge Time	21	t CRP	5	_	5	_	ns
18	RAS to CAS Delay Time 11, 1	12, 22	t RCD	14	45	14	53	ns
19	CAS Pulse Width		tcas	10	_	13	_	ns
20	CAS Hold Time		t csH	40	_	50	_	ns
21	CAS Precharge Time (Normal)	19	t CPN	10	_	10	_	ns
22	Row Address Set Up Time		t asr	0	_	0	_	ns
23	Row Address Hold Time		t rah	10	_	10	_	ns
24	Column Address Set Up Time		tasc	0	_	0	_	ns
25	Column Address Hold Time		t CAH	10	_	10	_	ns
26	Column Address Hold Time from RAS		t ar	24	_	24	_	ns
27	RAS to Column Address Delay Time	13	t RAD	12	30	12	35	ns
28	Column Address to RAS Lead Time		tral	30	_	35	_	ns
29	Column Address to CAS Lead Time		t CAL	23	_	28	_	ns
30	Read Command Set Up Time		trcs	0	_	0	_	ns
31	Treferenced to IVAS	14	t rrh	0	_	0	_	ns
32	Read Command Hold Time Referenced to CAS	14	t rch	0		0		ns
33	Write Command Set Up Time 15,	, 20	twcs	0	_	0	_	ns
34	Write Command Hold Time		twcн	10	_	10	_	ns
35	Write Hold Time from RAS		twcr	24	_	24	_	ns

(Continued)

■ AC CHARACTERISTICS (Continued)

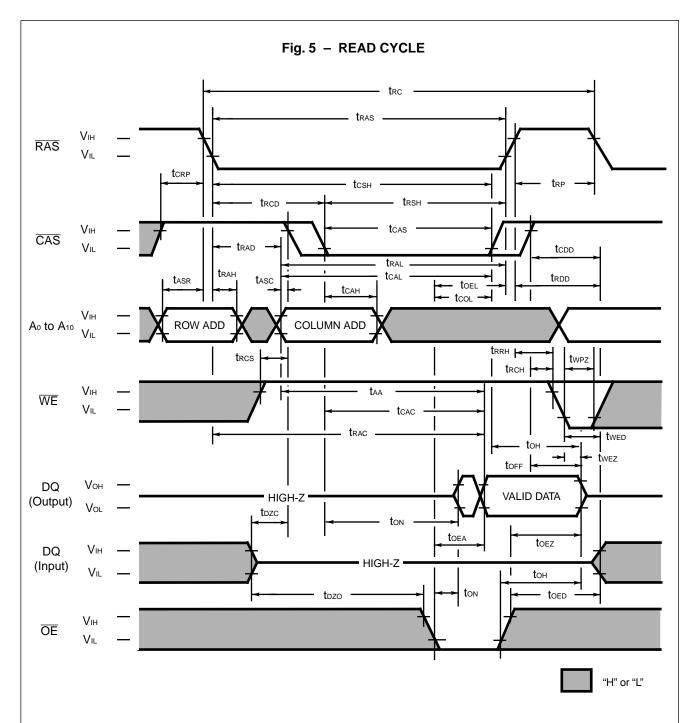

(At recommended operating conditions unless otherwise noted.)

Notes 3, 4, 5

(, ,, ,	econfinenced operating conditions unit				NOTES		
No.	Parameter Notes	Symbol		7405A-60		405A-70	Unit
		-	Min.	Max.	Min.	Max.	
36	WE Pulse Width	t wp	10	_	10	_	ns
37	Write Command to RAS Lead Time	t RWL	15	_	17	_	ns
38	Write Command to CAS Lead Time	tcwL	10	_	13	_	ns
39	DIN Set Up Time	t os	0	_	0	_	ns
40	DIN Hold Time	t DH	10	_	10	_	ns
41	Data Hold Time from RAS	t dhr	24	_	24	_	ns
42	RAS to WE Delay Time	t rwd	77	_	89	_	ns
43	CAS to WE Delay Time 20	t cwp	32	_	36	_	ns
44	Column Address to WE Delay Time	t awd	47	_	54	_	ns
45	RAS Precharge Time to CAS Active Time (Refresh cycles)	t RPC	5	_	5	_	ns
46	CAS Set Up Time for CAS-before-RAS Refresh	tcsr	0	_	0	_	ns
47	CAS Hold Time for CAS-before-RAS Refresh	t chr	10	_	12	_	ns
48	Access time from OE 9	t oea	_	15	_	17	ns
49	Output Buffer Turn Off Delay from OE	t oez	_	15	_	17	ns
50	OE to RAS Lead Time for Valid Data	toel	10	_	10	_	ns
51	OE to CAS Lead Time	t coL	5	_	5	_	ns
52	OE Hold Time Referenced to WE	t oeh	5	_	5	_	ns
53	OE to Data in Delay Time	toed	15	_	17	_	ns
54	RAS to Data in Delay Time	t RDD	15	_	17	_	ns
55	CAS to Data in Delay Time	tcdd	15	_	17	_	ns
56	DIN to CAS Delay Time 17	t DZC	0	_	0	_	ns
57	DIN to OE Delay Time 17	t DZO	0	_	0	_	ns
58	DIN to OE Delay Time	toep	8	_	8	_	ns
59	OE Hold Time Referenced to CAS	t oech	10	_	10	_	ns
60	WE Precharge Time	t wpz	8	_	8	_	ns
61	WE to Date In Delay Time	twed	15	_	17	_	ns
62	Hyper Page Mode RAS Pulse width	t rasp	_	100000	_	100000	ns
63	Hyper Page Mode Read/Write Cycle Time	thpc	25	_	30	_	ns
64	Hyper Page Mode Read-Modify-Write Cycle Time	t HPRWC	69	_	79	_	ns
65	Access Time from CAS Precharge 9, 18	t CPA	_	35	_	40	ns
66	Hyper Page Mode CAS Precharge Time	t cp	10	_	10	_	ns
67	Hyper Page Mode RAS Hold Time from CAS Precharge	t rhcp	35	_	40	_	ns
68	Hyper Page Mode CAS Precharge to WE Delay Time	t CPWD	52		59		ns

Notes: 1. Referenced to Vss.

- 2. Icc depends on the output load conditions and cycle rates; The specified values are obtained with the output open. Icc depends on the number of address change as $\overline{RAS} = V_{IL}$, $\overline{CAS} = V_{IH}$ and $\overline{V}_{IL} > -0.3 \text{ V}$. Icc1, Icc3, Icc4 and Icc5 are specified at one time of address change during $\overline{RAS} = V_{IL}$ and $\overline{CAS} = V_{IH}$. Icc2 is specified during $\overline{RAS} = V_{IH}$ and $V_{IL} > -0.3 \text{ V}$.
- 3. An initial pause ($\overline{RAS} = \overline{CAS} = V_{IH}$) of 200 µs is required after power-up followed by any eight \overline{RAS} -only cycles before proper device operation is achieved. In case of using internal refresh counter, a minimum of eight \overline{CAS} -before- \overline{RAS} initialization cycles instead of 8 \overline{RAS} cycles are required.
- 4. AC characteristics assume $t_T = 2ns$.
- 5. V_{IH} (min.) and V_{IL} (max.) are reference levels for measuring timing of input signals. Also transition times are measured between V_{IH} (min.) and V_{IL} (max.).
- 6. Assumes that tRCD ≤ tRCD (max.), tRAD ≤ tRAD (max.). If tRCD is greater than the maximum recomended value shown in this table, tRAC will be increased by the amount that tRCD exceeds the value shown. Refer to Fig. 2 and 3.
- 7. If $trcd \ge trcd$ (max.), $trad \ge trad$ (max.), and $tasc \ge taa tcac t\tau$, access time is tcac.
- 8. If $trcd \ge trcd$ (max.) and $tasc \le taa tcac t\tau$, access time is taa.
- 9. Measured with a load equivalent to two TTL loads and 50 pF.
- 10. toff and toez is specified that output buffer change to high impedance state.
- 11. Operation within the trod (max.) limit ensures that trac (max.) can be met. trod (max.) is specified as a reference point only; if trod is greater than the specified trod (max.) limit, access time is controlled exclusively by trac or trad.
- 12. t_{RCD} (min.) = t_{RAH} (min.)+ $2t_{T}$ + t_{ASC} (min.).
- 13. Operation within the trad (max.) limit ensures that trac (max.) can be met. trad (max.) is specified as a reference point only; if trad is greater than the specified trad (max.) limit, access time is controlled exclusively by trac or trad.
- 14. Either trrh or trch must be satisfied for a read cycle.
- 15. twcs is specified as a reference point only. If twcs ≥ twcs (min.) the data output pin will remain High-Z state through entire cycle.
- 16. Assumes that twcs < twcs (min.).
- 17. Either tozc or tozo must be satisfied.
- 18. tcpA is access time from the selection of a new column address (that is caused by changing CAS from "L" to "H"). Therefore, if tcp is long, tcpA is longer than tcpA (max.).
- 19. Assumes that CAS-before-RAS refresh.
- 20. twcs, tcwb, trwb and tawb are not restrictive operating parameters. They are included in the data sheet as an electrical characteristic only. If twcs > twcs (min.), the cycle is an early write cycle and Dout pin will maintain high impedance state thoughout the entire cycle. If tcwb > tcwb (min.), trwb > trwb (min.), and tawb > tawb (min.), the cycle is a read modify-write cycle and data from the selected cell will appear at the Dout pin. If neither of the above conditions is satisfied, the cycle is a delayed write cycle and invalid data will appear the Dout pin, and write operation can be executed by satisfying trwb, tcwb, and trab specifications.
- 21. The last CAS rising edge.
- 22. The first CAS falling edge.



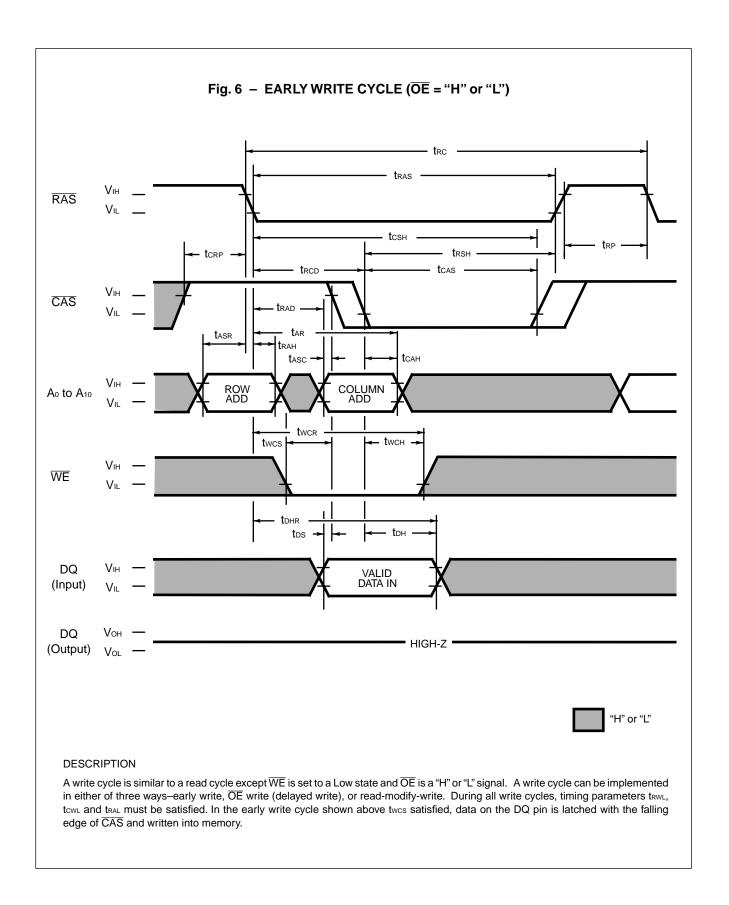
■ FUNCTIONAL TRUTH TABLE

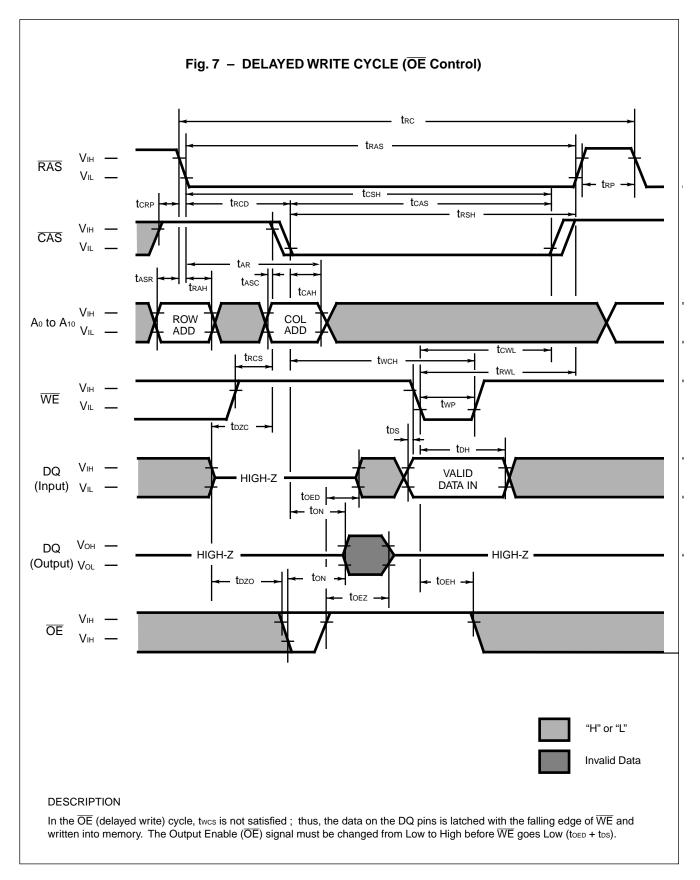
Operation Mode	Clock Input			Add	Address		Input Data		Note	
Operation wode	RAS	CAS	WE	ŌΕ	Row	Column	Input	Output	Refresh	Note
Standby	Н	Н	Х	Х	_	_	_	High-Z	_	
Read Cycle	L	L	Н	L	Valid	Valid	_	Valid	Yes *	trcs ≥ trcs (min.)
Write Cycle (Early Write)	L	L	L	Х	Valid	Valid	Valid	High-Z	Yes *	twcs≥twcs (min.)
Read-Modify- Write Cycle	L	L	H→L	L→H	Valid	Valid	Valid	Valid	Yes *	
RAS-only Refresh Cycle	L	Н	Х	Х	Valid	_	_	High-Z	Yes	
CAS-before- RAS Refresh Cycle	L	L	Н	х	_	_	_	High-Z	Yes	tcsr≥tcsr (min.)
Hidden Refresh Cycle	H→L	L	Н→Х	L	_	_	_	Valid	Yes	Previous dat is kept.

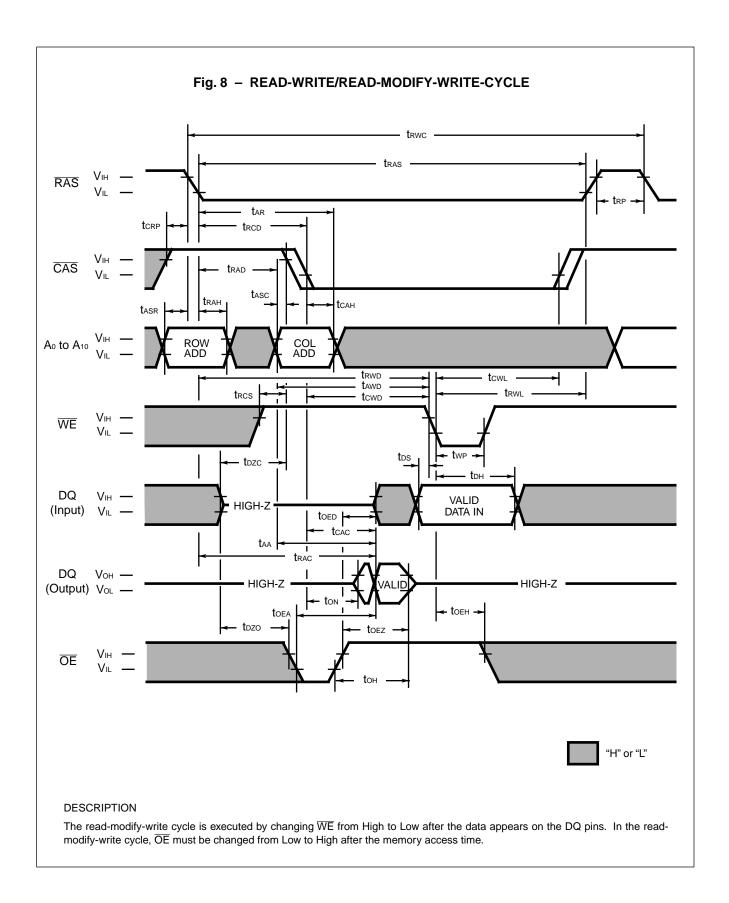
X: "H" or "L"

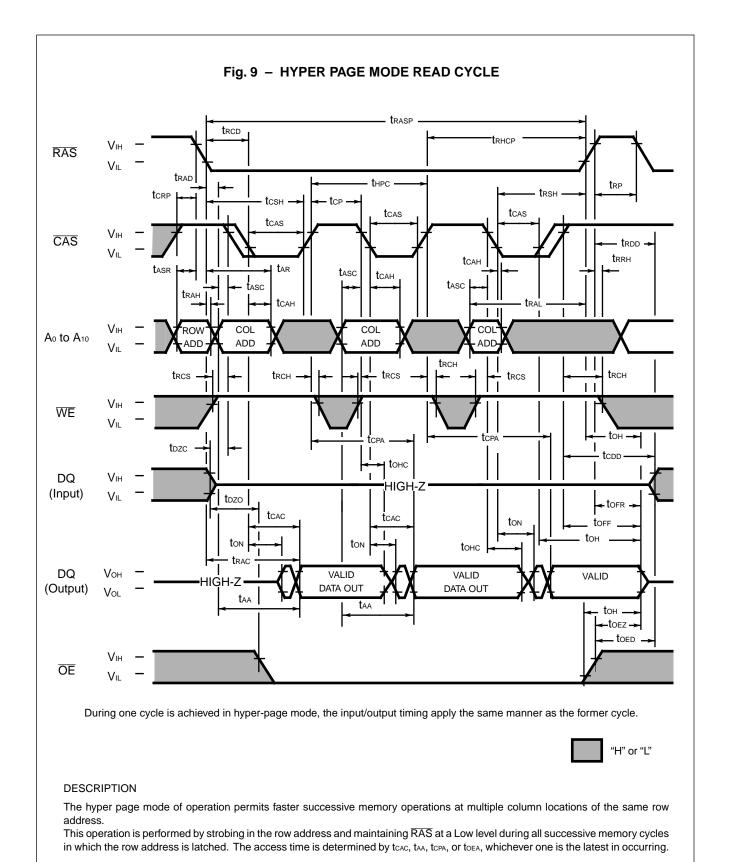
^{*:} It is impossible in Hyper Page Mode

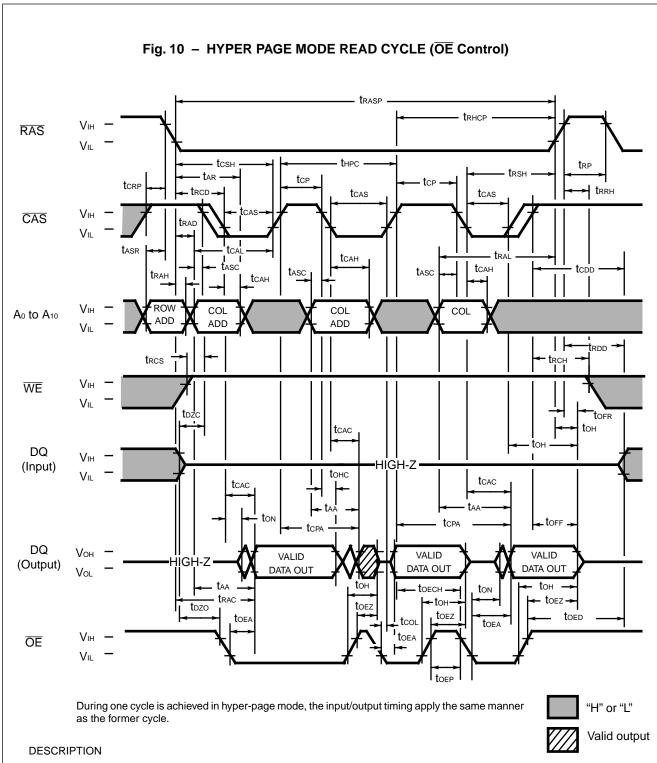
DESCRIPTION

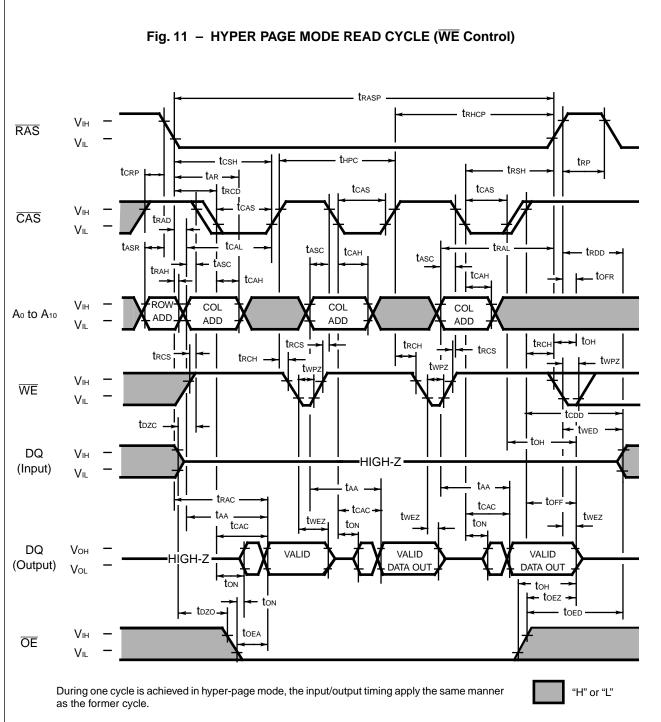

To implement a read operation, a valid address is latched in by the \overline{RAS} and \overline{CAS} and with \overline{WE} set to a High level and \overline{OE} set to a Low level, the output is valid once the memory access time has elapsed. The access time is determined by $\overline{RAS}(t_{RAC})$, $\overline{CAS}(t_{CAC})$, $\overline{OE}(t_{OEA})$ or column addresses (taa) under the following conditions:


If $t_{RCD} > t_{RCD}$ (max.), access time = t_{CAC} .


If $t_{RAD} > t_{RAD}$ (max.), access time = t_{AA} .

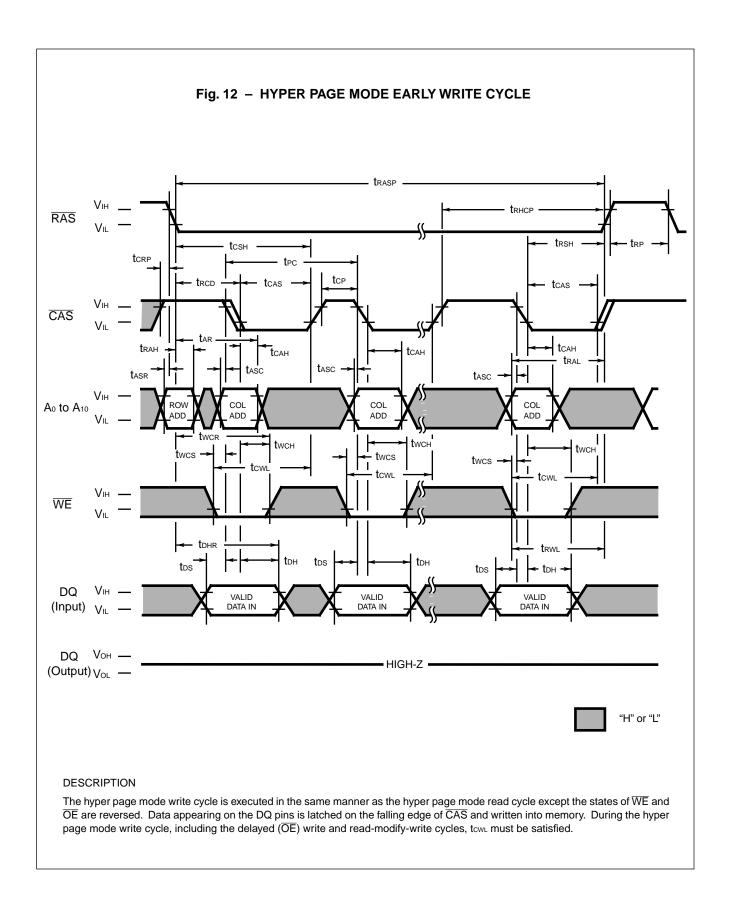

If \overline{OE} is brought Low after trac, tcac, or taa (whichever occurs later), access time = toea

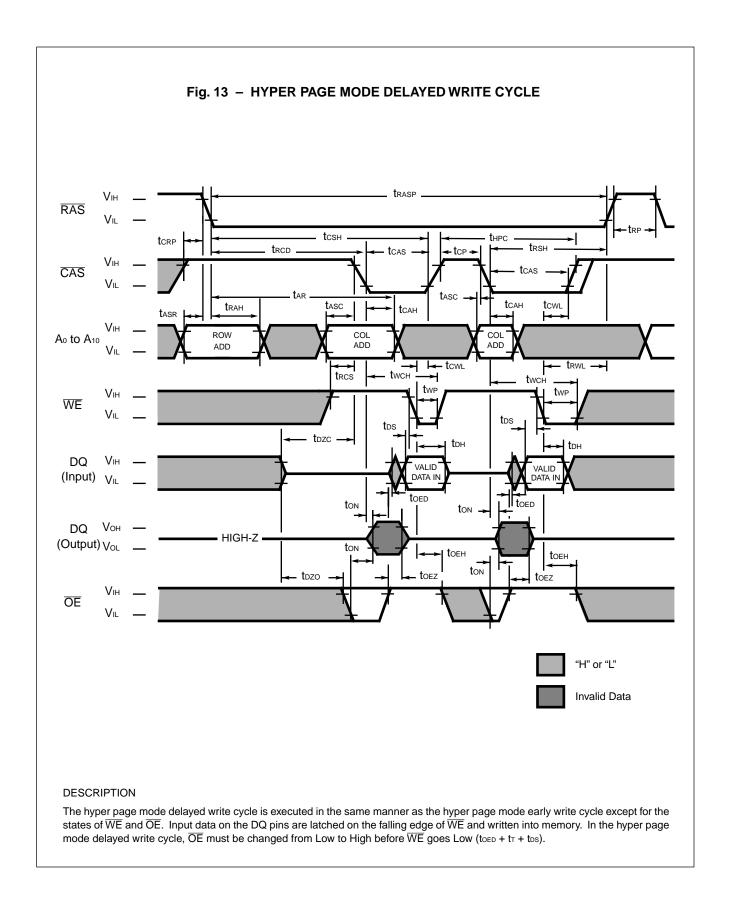

However, if either CAS or OE goes High, the output returns to a high-impedance state after toh is satisfied.

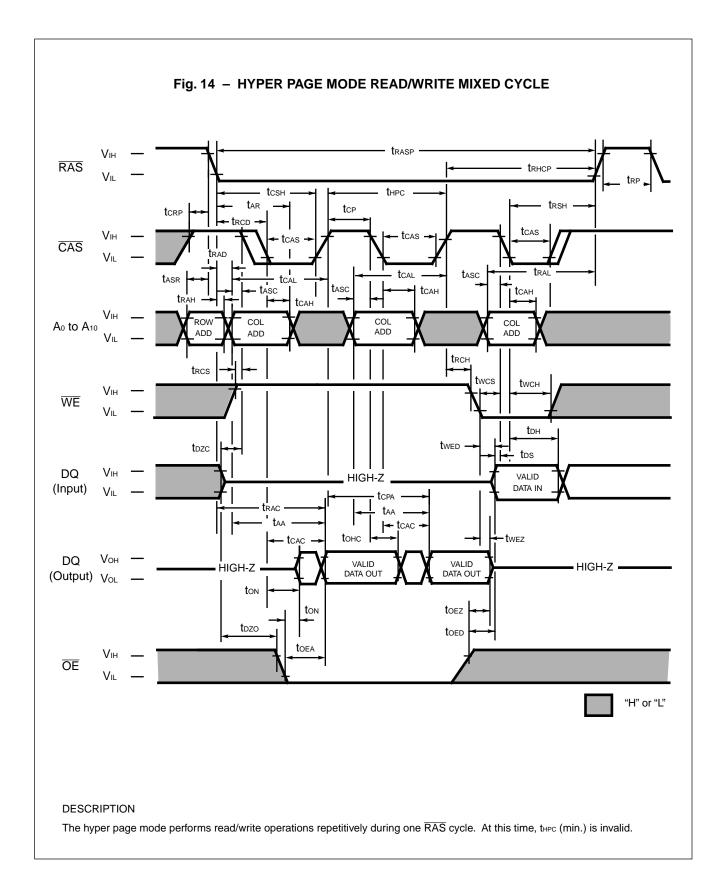


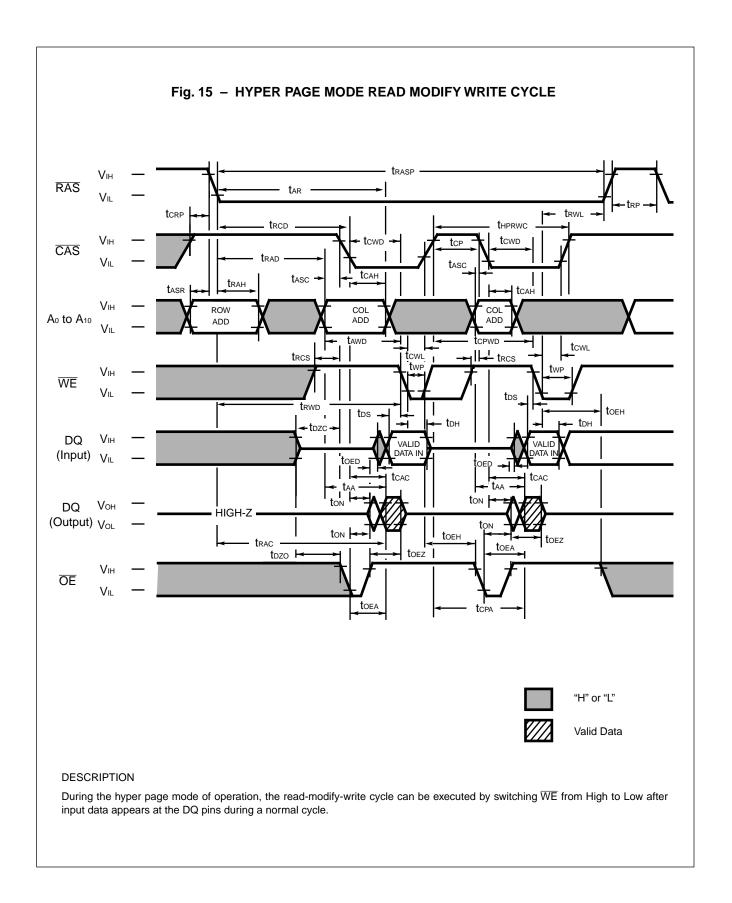
The hyper page mode of operation permits faster successive memory operations at multiple column locations of the same row address.

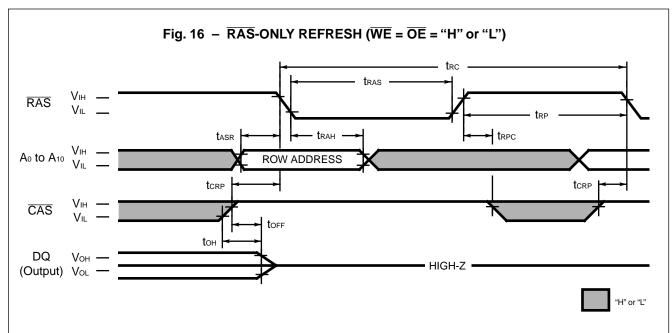
This operation is performed by strobing in the row address and maintaining \overline{RAS} at a Low level and \overline{WE} at a High level during all successive memory cycles in which the row address is latched. The access time is determined by tcac, taa, tcpa, or toea, whichever one is the latest in occurring.

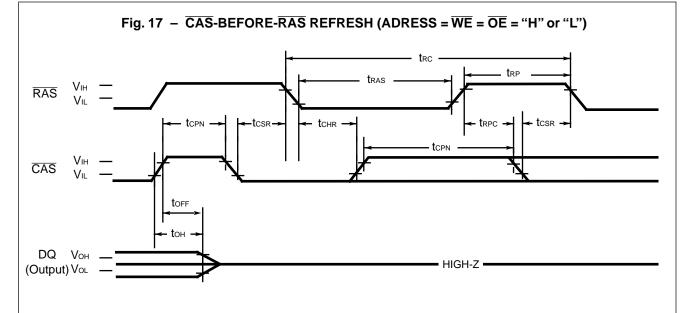

To obtain a high impedance state, set $\overline{\text{OE}}$ or both $\overline{\text{RAS}}$ and $\overline{\text{CAS}}$ going high level.



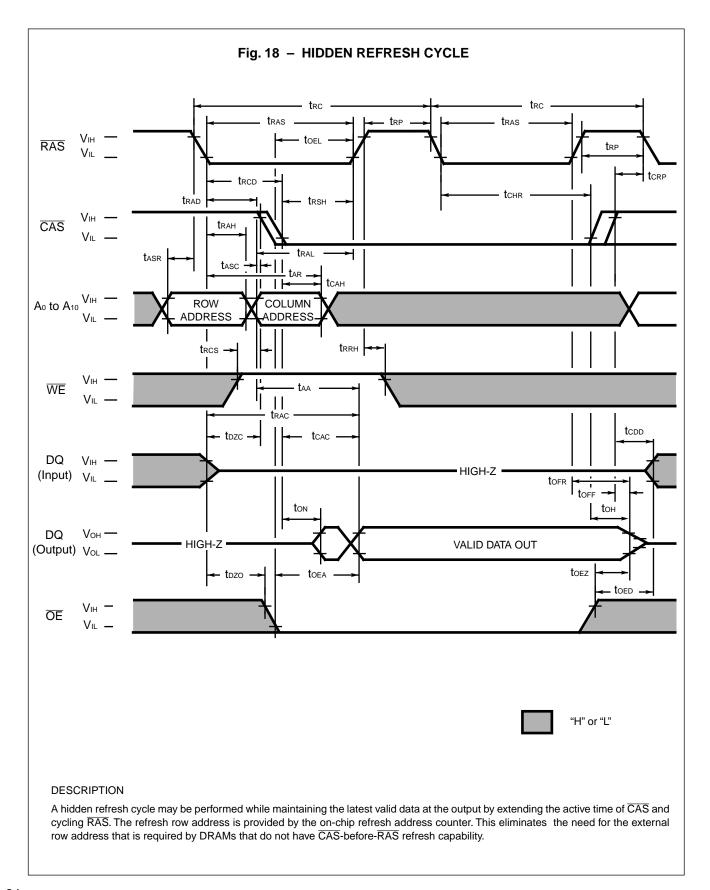

DESCRIPTION

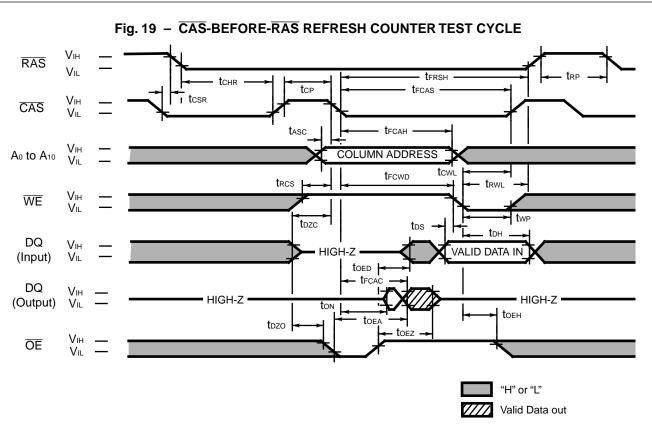

The hyper page mode of operation permits faster successive memory operations at multiple column locations of the same row address.


This operation is performed by strobing in the row address and maintaining \overline{RAS} at a Low level during all successive memory cycles in which the row address is latched. The access time is determined by tcAC, tAA, tCPA, or toEA, whichever one is the latest in occurring. To obtain a high impedance state, confirm either of the following conditions, \overline{OE} set to a High level or \overline{WE} set to a Low level after \overline{CAS} set to a High level or \overline{RAS} and \overline{CAS} set to a High level.



DESCRIPTION


Refresh of RAM memory cells is accomplished by performing a read, a write, or a read-modify-write cycle at each of 2048 row addresses every 32.8-milliseconds. Three refresh modes are available: RAS-only refresh, CAS-before-RAS refresh, and hidden refresh.


 \overline{RAS} -only refresh is performed by keeping \overline{RAS} Low and \overline{CAS} High throughout the cycle; the row address to be refreshed is latched on the falling edge of \overline{RAS} . During \overline{RAS} -only refresh, D_{OUT} pin is kept in a high-impedance state.

DESCRIPTION

CAS-before-RAS refresh is an on-chip refresh capability that eliminates the need for external refresh addresses. If CAS is held Low for the specified setup time (tcsr) before RAS goes Low, the on-chip refresh control clock generators and refresh address counter are enabled. An internal refresh operation automatically occurs and the refresh address counter is internally incremented in preparation for the next CAS-before-RAS refresh operation.

DESCRIPTION

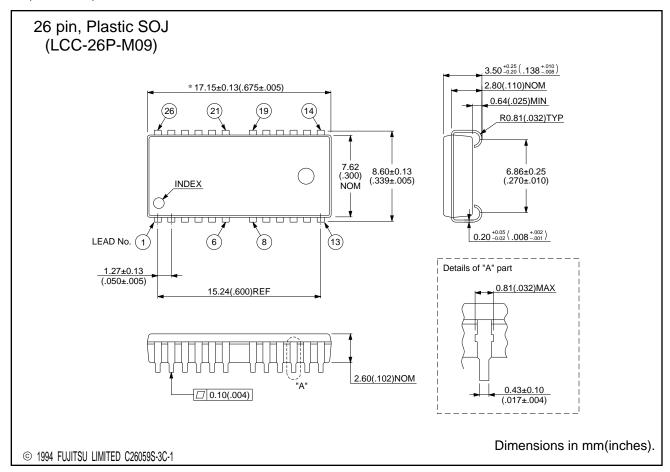
A special timing sequence using the $\overline{\text{CAS}}$ -before- $\overline{\text{RAS}}$ refresh counter test cycle provides a convenient method to verify the functionality of $\overline{\text{CAS}}$ -before- $\overline{\text{RAS}}$ refresh circuitry. If, after a $\overline{\text{CAS}}$ -before- $\overline{\text{RAS}}$ refresh cycle $\overline{\text{CAS}}$ makes a transition from High to Low while $\overline{\text{RAS}}$ is held Low, read and write operations are enabled as shown above. Row and column addresses are defined as follows:

Row Address: Bits A₀ through A₁₀ are defined by the on-chip refresh counter.

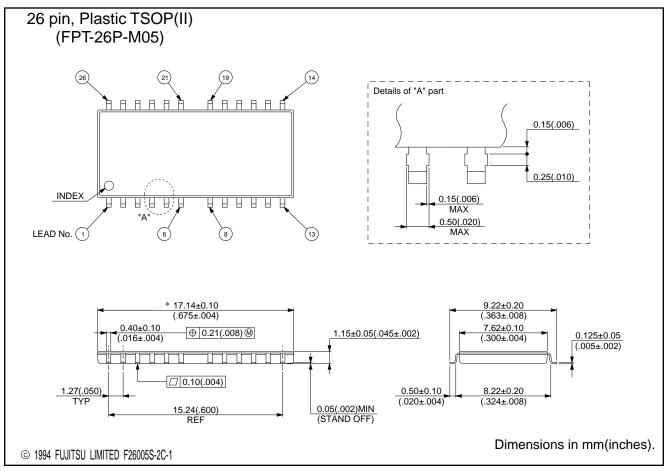
Column Address: Bits A₀ through A₁₀ are defined by latching levels on A₀-A₁₀ at the second falling edge of CAS.

The CAS-before-RAS Counter Test procedure is as follows;

- 1) Initialize the internal refresh address counter by using 8 RAS only refresh cycles.
- 2) Use the same column address throughout the test.
- 3) Write "0" to all 2048 row addresses at the same column address by using normal write cycles.
- 4) Read "0" written in procedure 3) and check; simultaneously write "1" to the same addresses by using CAS-before-RAS refresh counter test (read-modify-write cycles). Repeat this procedure 2048 times with addresses generated by the internal refresh address counter.
- 5) Read and check data written in procedure 4) by using normal read cycle for all 2048 memory locations.
- 6) Reverse test data and repeat procedures 3), 4), and 5).


(At recommended operating conditions unless otherwise noted.)

Na	D	Symbol	MB8117	405A-60	MB8117	Unit	
No.	Parameter		Min.	Max.	Min.	Max.	Onit
69	Access Time from CAS	t FCAC	_	50	_	55	ns
70	Column Address Hold Time	t FCAH	35	_	35	_	ns
71	CAS to WE Delay Time	t FCWD	70	_	77	_	ns
72	CAS Pulse width	trcas	90	_	99	_	ns
73	RAS Hold Time	t FRSH	90	_	99	_	ns


Note. Assumes that $\overline{\text{CAS}}$ -before- $\overline{\text{RAS}}$ refresh counter test cycle only.

■ PACKAGE DIMENSIONS

(Suffix: -PJ)

■ PACKAGE DIMENSIONS (Continued) (Suffix: -PFTN)

FUJITSU LIMITED

For further information please contact:

Japan

FUJITSU LIMITED
Corporate Global Business Support Division
Electronic Devices
KAWASAKI PLANT, 4-1-1, Kamikodanaka
Nakahara-ku, Kawasaki-shi
Kanagawa 211-88, Japan

Tel: (044) 754-3763 Fax: (044) 754-3329

North and South America

FUJITSU MICROELECTRONICS, INC. Semiconductor Division 3545 North First Street San Jose, CA 95134-1804, U.S.A.

Tel: (408) 922-9000 Fax: (408) 432-9044/9045

Europe

FUJITSU MIKROELEKTRONIK GmbH Am Siebenstein 6-10 63303 Dreieich-Buchschlag Germany Tel: (06103) 690-0

Fax: (06103) 690-0

Asia Pacific

FUJITSU MICROELECTRONICS ASIA PTE. LIMITED #05-08, 151 Lorong Chuan New Tech Park

Singapore 556741 Tel: (65) 281-0770 Fax: (65) 281-0220

All Rights Reserved.

The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information and circuit diagrams in this document presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams.

FUJITSU semiconductor devices are intended for use in standard applications (computers, office automation and other office equipment, industrial, communications, and measurement equipment, personal or household devices, etc.).

CAUTION:

Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with FUJITSU sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval.

Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Control Law of Japan, the prior authorization by Japanese government should be required for export of those products from Japan.

F9703

© FUJITSU LIMITED Printed in Japan