BROADBAND $_{\text {m }}$

CFK2062-P1
 800 to 900 MHz
 +30 dBm Power GaAs FET

[^0]
Product Specifications
 December 1997 (1 of 4)

Features

- High Gain
$\square+30 \mathrm{dBm}$ Power Output
\square Proprietary Power FET Process
$\square>40 \%$ Linear Power Added Efficiency
\square Surface Mount SO-8 Power Package

Applications

\square ISM Band Base Stations and Terminals
\square Cellular Base Stations and Terminals
\square Wireless Local Loop

Description

The CFK2062-P1 is a high-gain FET intended for driver amplifier applications in high-power systems, and output stage usage in medium power applications at power levels up to +30 dBm . The device is easily matched and provides excellent

Specifications $\left(\mathrm{TA}=25^{\circ} \mathrm{C}\right)$ The following specifications are guaranteed at room temperature in Celeritek test fixture at 850 MHz .

Parameters	Conditions	Min	Typ	Max	Units
$\mathbf{V}_{\mathbf{d}}=\mathbf{8 V}, \mathbf{I}_{\mathbf{d}}=\mathbf{4 0 0} \mathbf{~ m A}$ (Quiescent)					
$\mathbf{\mathbf { P } _ { \mathbf { - 1 ~ d B } }}$		29.0	30.0	-	dBm
$\mathbf{S S G}$		18.0	20.0	-	dB
Srd Order Products					
Efficiency	@ P1dB	-	30	-	dBc
$\mathbf{V}_{\mathbf{d}}=\mathbf{5 V}, \mathbf{I}_{\mathbf{d}}=\mathbf{6 0 0} \mathbf{~ m A}$ (Quiescent)					
$\mathbf{P}_{\mathbf{- 1 ~ d B}}$	-	40	-	$\%$	
$\mathbf{S S G}$		-	29.5	-	dBm

Parameters	Conditions	Min	Typ	Max	Units
$\mathbf{g}_{\mathbf{m}}$	Vds $=2.0 \mathrm{~V}, \mathrm{Vgs}=0 \mathrm{~V}$	-	650	-	mS
$\mathbf{I}_{\mathbf{d s s}}$	Vds $=2.0 \mathrm{~V}, \mathrm{Vgs}=0 \mathrm{~V}$	-	1.4	-	A
$\mathbf{V}_{\mathbf{p}}$	Vds $=3.0 \mathrm{~V}, \mathrm{Ids}=25 \mathrm{~mA}$	-	-1.8		Volts
$\mathbf{B V}_{\mathbf{G D}}$	Igd $=2.5 \mathrm{~mA}$	15	17	-	Volts
$\Theta_{\mathbf{J L}}{ }^{(2)}$	$@ 150^{\circ} \mathrm{C} \mathrm{TCH}$	-	12	-	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Absolute Maximum Ratings

Parameter	Symbol	Rating
Drain-Source Voltage	V_{DS}	$10 \mathrm{~V}^{(3)}$
Gate-Source Voltage	V_{GS}	-5 V
Drain Current	I_{DS}	Idss
Continuous Dissipation	P_{T}	6 W
Channel Temperature	T_{CH}	$175^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\text {STG }}$	$-65^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$

800 to 900 MHz +30 dBm Power GaAs FET

Package Diagram

linearity at 1 Watt. Manufactured in Celeritek's proprietary power FET process, this device is assembled in an industry standard surface mount SO-8 power package that is compatible with high volume, automated board assembly techniques.

SO-8 Power Package Physical Dimensions

DIMENSION	MINIMUM	NOMINAL	MAXIMUM
A		$.086[2.184]$	$.100[2.540]$
A 1	$.005[.1270]$	$.008[.2032]$	$.011[.2794]$
b	$.017[.4318]$	$.020[.5080]$	$.023[.5842]$
c	$.007[.1778]$	$.008[2032]$	$.009[.2286]$
D	$.195[4.953]$	$.200[5.080]$	$.205[5.207]$
E	$.135[3.429]$	$.140[3.556]$	$.145[3.683]$
E 1	$.155[3.937]$	$.160[4.064]$	$.165[4.191]$
e		$.050[1.270]$	
L	$.020[.5080]$		$.040[1.016]$
L 1	$.055[1.397]$	$.065[1.651]$	$.075[1.905]$
\propto	0		8.

DIMENSIONS IN INCHES [MILIMETERS]

Notes:

1. Sum to two tones with 1 MHz spacing $=25 \mathrm{dBm}$.
2. See thermal considerations information on page 4.
3. Maximum potential difference across the device $(\mathrm{Vd}+\mathrm{Vg})$ cannot exceed 12 V .
Typical Scattering Parameters $\quad\left(\mathrm{TA}=25^{\circ} \mathrm{C}, \mathrm{Vds}=\mathbf{5} \mathrm{V}\right.$, Ids $\left.=\mathbf{6 0 0} \mathrm{mA}\right)$

Frequency $(\mathbf{G H z})$	Mag	$\mathbf{S}_{\mathbf{1 1}}$	Ang	Mag	Ang	$\mathbf{S}_{\mathbf{2 1}}$	$\mathbf{S}_{\mathbf{1 2}}$	Mag

$\left(\mathbf{T A}=25^{\circ} \mathrm{C}, \mathrm{Vds}=8 \mathrm{~V}, \mathrm{Ids}=400 \mathrm{~mA}\right)$

0.6	0.91	-131.25	9.129	100.5	0.026	17.07	0.521	-174.04
0.7	0.905	-139.87	7.943	95.18	0.026	13.22	0.534	-176.65
0.8	0.906	-146.47	7.028	90.26	0.026	11.05	0.543	-178.82
0.9	0.906	-151.44	6.281	86.16	0.027	8.59	0.547	179.94
1.0	0.904	-155.33	5.68	82.61	0.027	6.34	0.548	178.8
1.1	0.903	-158.37	5.226	79.83	0.027	3.72	0.547	178.18
1.2	0.903	-160.69	4.866	77.15	0.027	3.34	0.544	177.57
1.3	0.899	-167.2	4.574	74.6	0.028	0.5	0.538	176.86
1.4	0.897	-164.68	4.366	71.76	0.029	1.6	0.53	176.13
1.5	0.892	-166.63	4.203	68.96	0.03	-0.36	0.519	174.97
2.0	0.877	176.74	3.696	50.36	0.035	-13.77	0.463	160.21
2.5	0.882	150.43	3.014	26.66	0.036	-31.65	0.486	133.49
3.0	0.915	135.06	2.136	10.26	0.031	-46.6	0.579	121.99
3.5	0.93	137.37	1.662	4.59	0.027	-43.86	0.611	128.44
4.0	0.912	143.75	1.642	-0.35	0.031	-43.95	0.541	137.64

RF Match Data shown in the performance graphs was taken in the test circuit shown at right. Layout is important for proper operation. Phase length of input and output 50Ω line varies as a function of exact desired frequency of operation. Output shunt inductor effects output performance. Celeritek recommends the use of a high impedance printed inductor Lambda/4 in length.Please contact the factory for an evaluation board and/or more detailed application support.

Typical Performance

Power Output \& Power Added Efficiency vs Power Input $850 \mathrm{MHz}, \mathrm{V}_{\mathrm{DS}}=8 \mathrm{~V}, \mathrm{I}_{\mathrm{DS}}=400 \mathrm{~mA}$

Power Output and Gain vs Frequency

Power Output and Gain vs Voltage @ $\mathbf{8 5 0} \mathbf{~ M H z}$

Power Output \& Power Added Efficiency vs Power Input

Power Output and Gain vs Frequency

Power Output and Gain vs Voltage @ 850 MHz
$\mathrm{I}_{\mathrm{DS}}=600 \mathrm{~mA}$

Thermal Considerations

The data shown was taken on a 31 mil thick FR-4 board with 1 ounce copper on both sides. The board was mounted to a baseplate with 3 screws as shown. The screws bring the top side copper temperature to the same value as the baseplate. The thermal resistance to the indicated reference lead, Θ_{JL}, is $12^{\circ} \mathrm{C} / \mathrm{W}$. The thermal resistance to the reference screw is $14^{\circ} \mathrm{C} / \mathrm{W}$.

1. Use 1 or 2 ounce copper if possible.
2. Solder all eight leads of the CFK2062-P1 package to the appropriate electrical connection.
3. Solder the copper pad on the backside of the CFK2062-P1 package to the ground plane.
4. Use a large ground pad area with many plated through-holes as shown.
5. If possible, use at least one screw no more than 0.2 inches from the CFK2062-P1 package to provide a low thermal resistance path to the baseplate of the package.

BOARD LAYOUT

Ordering Information

The CFK2062-P1 power stage is available in a SO-8 surface mount package. Devices are available in tape and reel. Ordering part numbers are listed.

Part Number for Ordering
CFK2062-P1
CFK2062-P1-000T

Function

800-900 MHz Power Stage
800-900 MHz Power Stage

Package

SO-8 surface mount power package
SO-8 surface mount power package in tape and reel regarding the design or manufacture of the part. Celeritek is a registered trademark of Celeritek, Inc. Celeritek, Inc. is an Equal Opportunity/Affirmative Action Employer.

Handling and Assembly Information

CAUTION! - Mimix Broadband MMIC Products contain gallium arsenide (GaAs) which can be hazardous to the human body and the environment. For safety, observe the following procedures:

- Do not ingest.
- Do not alter the form of this product into a gas, powder, or liquid through burning, crushing, or chemical processing as these by-products are dangerous to the human body if inhaled, ingested, or swallowed.
- Observe government laws and company regulations when discarding this product. This product must be discarded in accordance with methods specified by applicable hazardous waste procedures.

Life Support Policy - Mimix Broadband's products are not authorized for use as critical components in life support devices or systems without the express written approval of the President and General Counsel of Mimix Broadband. As used herein: (1) Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user. (2) A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Package Attachment - This packaged product from Mimix Broadband is provided as a rugged surface mount package compatible with high volume solder installation. Care should be taken not to apply heavy pressure to the top or base material to avoid package damage. Vacuum tools or other suitable pick and place equipment may be used to pick and place this part. Care should be taken to ensure that there are no voids or gaps in the solder connection so that good RF, DC and ground connections are maintained. Voids or gaps can eventually lead not only to RF performance degradation, but reduced reliability and life of the product due to thermal stress.

Mimix Lead-Free RoHS Compliant Program - Mimix has an active program in place to meet customer and governmental requirements for eliminating lead (Pb) and other environmentally hazardous materials from our products. All Mimix RoHS compliant components are form, fit and functional replacements for their non-RoHS equivalents. Lead plating of our RoHS compliant parts is 100% matte tin (Sn) over copper alloy and is backwards compatible with current standard SnPb low-temperature reflow processes as well as higher temperature ($260^{\circ} \mathrm{C}$ reflow) " Pb Free" processes.

[^0]: Mimix Broadband, Inc. 10795 Rockley Rd., Houston, Texas 77099
 Tel: 281.988.4600 Fax: 281.988.4615 www.mimixbroadband.com ©2005 Mimix Broadband, Inc.

