

Semiconductor

http:// www.auk.co.kr

TO-92

SOT-89

ORDERING INFORMATION

Product	Marking	Package
SN317L	N317L	ТО-92
SN317LF	N317L	SOT-89

▲ Marking Detail Information

1 Device Code

② Grade & Year & Week Code

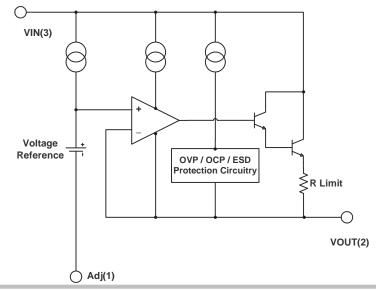
[100mA /Adjustable Output] Positive Voltage Regulator

SN317Lx

Description

The SN317Lx is an adjustable 3-terminal positive voltage regulator capable of supplying in excess of 100mA over an output voltage range of 1.2 V to 37 V. This voltage regulator is exceptionally easy to use and requires only two external resistors to set the output voltage. Further, it employs internal current limiting, thermal shutdown and safe area compensation, making it essentially blow-out proof.

This device can also be used to make a programmable output regulator, or by connecting a fixed resistor between the adjustment and output, the SN317Lx can be used as a precision current regulator.

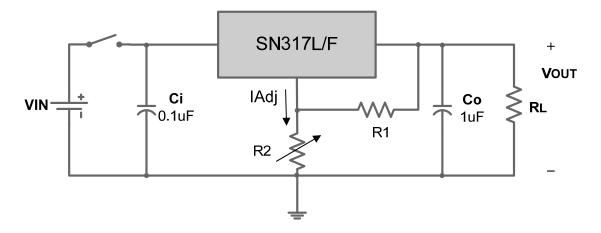

Application

- Consumer and personal electronics
- SMPS post-regulator / dc-to-dc modules
- High-efficiency linear power supplies
- LED Light Constant Current Controllers

Features and Benefits

- Output Current up to 100mA
- Output Adjustable Level : 1.2V to 37V
- Built in OVP, CLP circuit.
- ♦ Built in TSD Protection.
- Output Transistor Safe Area Protection.
- Ultra High level of ESD [Built in ESD Protection Cell]

Equivalent Circuit


KSD-I5B009-000

Pin Configuration

1 2 3 3	
ТО-92	SOT-89
1: Adj	1: Adj
2: V _{OUT}	2: V _{OUT}
3: V _{IN}	3: V _{IN}

Standard Application

Ci is required if regulator is located an appreciable distance from power supply filter. Co is not needed for stability, however, it is necessary to improve transient response.

Since I_{Adj} is controlled to less than 0.1mA, the error associated with this term is insignificant in most applications.

$$V_{OUT} = V_{ref(1.25V)} \times (1 + R_2/R_1) + I_{adj}R_2$$

Parameter		Symbol	Limits	Unit	
Input-Output Volta	Output Voltage DifferentialVI-VO40		40	V	
Power Dissingtion	ТО-92	P _d	Internally, Limited	mW	
Power Dissipation	SOT-89	r _d	Internally Limited	III W	
Junction Temperature		T_J	150	°C	
Operate Temper	ature Range	T _{opr}	0~+125	$^{\circ}$	
Storage Temperature Range		T _{stg}	-55 ~ +150	Ĉ	

Absolute Maximum Ratings ($Ta = 25 \degree$)

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the recommended operating conditions is not implied. Extended exposure to Stresses above the Recommended Operating Conditions may affect device reliability.

The maximum allowable power dissipation is a function of the maximum junction temperature, $T_{J(max)}$,

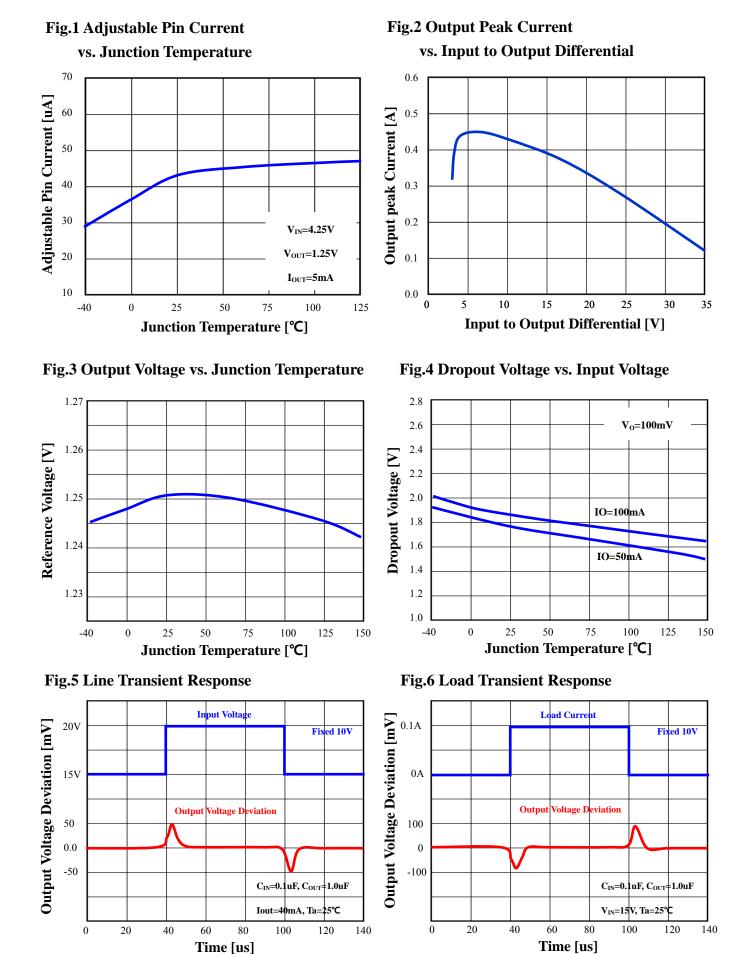
the junction-to-ambient thermal resistance, θ_{JA} , and the ambient temperature, TA.

The maximum allowable power dissipation at any ambient temperature is calculated using:

 $PD(max) = (T_{J(max)} - T_A) \div \theta_{JA}$. Exceeding the maximum allowable power dissipation will result in excessive die temperature, and the regulator will go into thermal shutdown.

SN317Lx

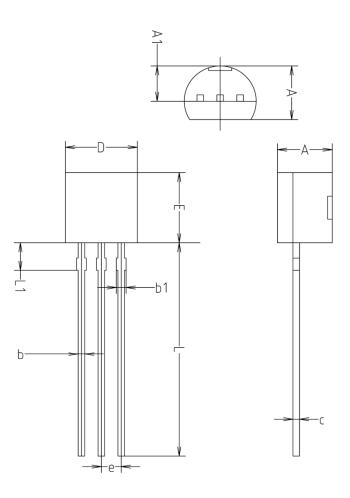
Electrical characteristics


	Group al	Test Condition*		SN317Lx			T
Characteristic	Symbol			Min.	Тур.	Max.	Unit
	$\Delta V_{O(Line)}$	$3.0V \le V_{I} - V_{O} \le 40V$	T _A =+25 ℃	-	0.01	0.04	% / V
Line Regulation *		$3.0V \le V_1 - V_0 \le 40V$	T _A =0∼+125℃	-	0.02	0.07	
	$\Delta V_{O(Load)}$	$10mA \le I_O \le 100mA$ T _A =+25 °C	$V_{O} < 5V$ $V_{O} \ge 5V$	-	5.0 0.1	25.0 0.5	mV % / V _O
Load Regulation *		$10mA \le I_O \le 100mA$ $T_A=0 \sim +125 ^{\circ}C$	$V_{O} < 5V$ $V_{O} \ge 5V$	-	20.0 0.3	70.0 1.5	mV % / V _O
Adjustable Pin Current	I _{ADJ}	-	-		50	100	uA
Adjustable Pin Current Change	ΔI_{ADJ}	$\begin{array}{l} 3.0V \leq V_{I} \text{-} V_{O} \leq 40V \\ 10mA \leq I_{O} \leq 100mA, \ P_{D} \leq P_{DMAX} \end{array}$		-	2.0	5.0	uA
Reference Voltage	V _{REF}	$\begin{array}{l} 3.0V \leq V_{I} \text{-} V_{O} \leq 40V \\ 10mA \leq I_{O} \leq I_{MAX} \text{ , } P_{D} \leq P_{DMAX} \end{array}$		1.20	1.25	1.30	V
Temperature Stability	ST _T	$0{}^\circ\!\mathrm{C} \leq T_j {\leq} 125{}^\circ\!\mathrm{C}$		-	1.0	-	% / V _O
Ripple Rejection	ממ	V_0 =10V, f=120Hz without C_{ADJ}		-	65.0	-	dB
Кірріе кејесной	RR V ₀ =10V, f=120Hz, 0		_{DJ} = 10uF **		80.0	-	ав
Output Noise Voltage	V _{NO}	$10Hz \le f \le 100 kHz$	T _A =25°C	-	0.003	-	%
Minimum Load Current to Maintain Regulation	I _{L(MIN)}	$V_{I}-V_{O} = 40V$		-	3.5	10.0	mA
Maximum Output Current	I _{O(MAX)}	$V_{I}-V_{O} \le 15V, P_{D} \le P_{MAX}$	T -25°0	100	200	-	mA
		$V_{I}-V_{O} \le 40V, P_{D} \le P_{MAX}$	T _A =25°C	25	50	-	
Long-Term Stability	ST	$T_A = +25$ °C for end point measurements, 1000HR		-	0.3	-	%

* Load and line regulation are specified at constant temperature. Change in V₀ due to heating effects must be taken into account separately.

** C_{ADJ} is connected between the adjustable pin and ground.

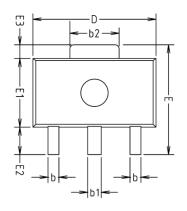
SN317Lx

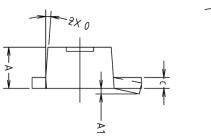

KSD-15B009-000

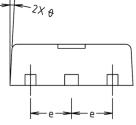
December, 2010 REV. 00

SN317Lx

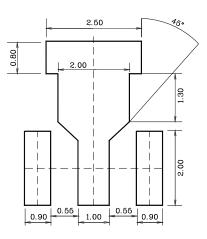
TO-92 Outline Dimension (Unit : mm)

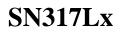

	MILLMETERS(mm)			
SYMBOL	MINIMUM	NOMINAL	MAXIMUM	
A	3.40	3.50	3.66	
A1	2.46	2.51	2.59	
b	0.39	0.44	0.53	
b1	0.39	-	0.63	
С	0.35	0.42	0.47	
D	4.48	4.60	4.70	
E	4.48	4.60	4.70	
е	1.17	1.27	1.37	
L	13.70	14.00	14.77	
L1	1.55	1.70	2.15	


KSD-I5B009-000


SN317Lx

SOT-89 Outline Dimension (Unit : mm)





	MILLIMETERS			
SYMBOL	MINIMUM	NOMINAL	MAXIMUM	NOTE
А	1.40	1.50	1.60	
A1	0.00	-	0.10	
b	0.38	0.42	0.48	
b1	0.48	0.52	0.58	
b2	1.79	1.82	1.87	
С	0.40	0.42	0.46	
D	4.40	4.50	4.70	
Е	3.70	4.00	4.30	
E1	2.40	2.50	2.70	
E2	0.80	1.00	1.20	
E3	0.40	0.50	0.60	
е		1.50 TYP.		
θ		4° TYP.		

* Recommend PCB solder land [Unit: mm]

The AUK Corp. products are intended for the use as components in general electronic equipment (Office and communication equipment, measuring equipment, home appliance, etc.).

Please make sure that you consult with us before you use these AUK Corp. products in equipments which require high quality and / or reliability, and in equipments which could have major impact to the welfare of human life(atomic energy control, airplane, spaceship, transportation, combustion control, all types of safety device, etc.). AUK Corp. cannot accept liability to any damage which may occur in case these AUK Corp. products were used in the mentioned equipments without prior consultation with AUK Corp..

Specifications mentioned in this publication are subject to change without notice.