

General Description

The ICS1532 is a high-performance, cost-effective, 3-channel, 8-bit analog-to-digital converter with an integrated line-locked clock generator. They are part of a family of chips for high-resolution video applications that use analog inputs, such as LCD monitors, projectors, plasma displays, and HDTVs. Using low-voltage CMOS mixed-signal technology, they are an effective data-capture solution for VGA to UXGA.

The ICS1532 chips offer analog-to-digital data conversion and synchronized pixel-clock generation up to 110 Mega samples per second, (MSPS) or 110 MHz. The Dynamic Phase Adjust (DPA) circuitry allows end-user control over the pixel clock phase, relative to the recovered sync signal and analog pixel data. The ICS1532 provides two 24-bit pixels per clock. An ADCSYNC output pin provides recovered HSYNC in phase with the ADCRCLK output to be used to synchronize horizontal timing.

A clamp signal can be generated internally or provided through the CLAMP pin. An adjustable-gain video amplifier fine tunes the analog signal. The PLL uses an internal programmable feedback divider.

Two additional, independent programmable PLLs, each with spread-spectrum functionality, can support memory and panel clock requirements.

Features

- Triple 8-bit analog-to-digital conversion
- 10 to 110 MHz operation
- Direct connection to analog input data — Internal AC coupling capacitors
- Internal camp circuit and external clamp inputs
- Optional External Phase Detector Enable input
 COAST
- Uses 3.3 and 2.5 VDC

- 5 V tolerant digital inputs

- Integrated Amplifier with Adjustable Gain and Offset
- Dynamic Phase Adjust (DPA)
 - Software adjustable analog sample point
- Low jitter
- Two additional PLLs
 - Programmable spread spectrum
- Automatic Power-On Reset Detection
- Standard I²C 2-wire serial interface
 - Two address sets available via external pin
- Lock detection in both hardware and software
- 144-pin low-profile quad flat pack (LQFP) package

Block Diagram

Table of Contents

<u>Section</u> Title Page Chapter 1 Summary3 **Chapter 2** Pin Diagram and Listings......5 Chapter 3 Functional Blocks Register Set11 Chapter 4 Chapter 5 DPA Operation......18 Chapter 6 OSC Divider & OSCOUT......19 Chapter 7 Loop Filter.....19 Chapter 8 PLL Parameter Settings19 Chapter 9 Chapter 10 Programming......21 AC/DC Operating Conditions......25 Chapter 11 Chapter 12 Chapter 13 Chapter 14

Chapter 1 Summary

The ICS1532 is the ideal device for capturing analog RGB from a personal computer or other sources into the digital domain for display on a digital device such as an LCD panel. Contained inside the ICS1532 device are the following blocks to accomplish this:

- •Main PLL Re-generates required clock for sampling analog input data
- •DPA Adjusts the phase of the sampling clock.
- •Clamps Controls the ADC's zero code value.
- •Amplifiers Controls the ADC's full scale code value.
- •ADC Three ADCs converts the analog input into digital.
- •I2C Standard I²C bus used for controlling the device
- •POR Power on reset for the I2C interface
- •Two Spread Spectrum Utility PLLs For generating any other clocks needed by the system.

1.1 Main Phase-Locked Loop (PLL)

Main PLL- The main PLL is used for re-generating the clocks needed to properly sample the incoming analog signals.

Figure 1-1 Simplified PLL Diagram HSYNC

The heart of the ICS1532 is a voltage controlled oscillator (VCO). The VCO's speed is controlled by the voltage on the loop filter. This voltage will be described later in this section.

1.2 VCO Divider (VCOD)

The VCO's clock output is first passed through the VCO Divider (VCOD). The VCOD allows the VCO to operate at higher speeds than the required output clock.

NOTE: Under normal, locked operation the VCOS has no effect on the speed of the output clocks, just the **VCO frequency.**

1.3 Dynamic Phase Adjust (DPA)

The output of the VCOS is then sent through the Dynamic Phase Adjust (DPA) for phase adjustment and also the 12 bit internal Feedback Divider. The feedback divider controls how many clocks are seen during every cycle of the input reference.

1.4 Feedback Divider (FBD)

The feedback divider output is a 4 CLK wide signal called ADCSYNC. The ADCSYNC signal is aligned with the output clocks and is intended to be used by the system as a replacement for the HSYNC input, which is of indeterminate quality and is not aligned with the output clocks.

1.5 Phase Frequency Detector (PFD)

The Phase Frequency Detector (PFD) then compares ADCSYNC to the selected input HSYNC and controls the filter voltage by enabling and disabling the charge pump. The charge pump has programmable current drive and will source and sink current as appropriate to keep the input HSYNC and the ADCSYNC output aligned.

The PFD's HSYNC input is conditioned by a high-performance Schmitt trigger. This preconditioned HSYNC signal, called REF, is provided as a clean reference signal with a short transition time can be output on pin 112.

1.6 OSC Input

The high-frequency OSC input pin, has a 7-bit user programmable divider can also be selected as the loop input. This selection allows the loop to operate from

any appropriate, single ended source, typically a crystal oscillator.

Either the conditioned HSYNC input or the loop output (recovered HSYNC) is available at the FUNC pin, and is aligned with the output clocks.

1.7 Dynamic Phase Adjust - DPA

The DPA is used for adjusting the phase relationship of the main PLL's re-generated clock to the incoming analog data to assure properly sampled analog data.

The Dynamic Phase Adjust (DPA) allows a programmable clock delay relative to the input HSYNC signal. A delay of up to one clock period is programmable: See Chapter 5, "DPA Operation" for more details.

1.8 Clamps

The ICS1532 contains clamping circuitry to compensate for non zero volt black levels on the incoming video lines. Clamping causes the device to charge internal level shifting capacitors to the complementary voltage level of the analog input. This guarantees that the input is in the proper voltage range to be converted by the ADC and also has the effect of making whatever the analog voltage level on the inputs is during the Clamp interval, equal to approximately a 00 code.

Clamping may be initiated either internally, by the ADCSYNC signal, or externally via the active high CLAMP input pin. Typically, CLAMPing occurs just after the HSYNC signal goes active. However, with the externally input CLAMP signal, any area where the incoming video is at the black level may be used.

1.9 Analog Amplifiers

The ICS1532 contains three independently controlled analog amplifiers that prepare the incoming analog inputs to be converted by the ADC. These amplifiers have programmable gain and are to be adjusted by the system so that the analog output code range is as wide as practically possible.

1.10 Digital to Analog Converters

The Clamped output of the ICS1532's Analog Amplifiers is sent to the ADC's to convert the analog input's into digital equivalents.

1.11 I²C Bus Serial Interface

The ICS1532 uses a 5 Volt tolerant, industry-standard I^2 C-bus serial interface that runs at either low speed (100 kHz) or high speed (400 kHz). The interface uses 4 banks of indexed registers: there are write-only, read/write, and read-only registers.

Two ICS1532 devices can be addressed, according to the state of the I2CADR pin. When this pin is low, the read address is 49h, and the write address is 48h. When the pin is high, the read address is 4Bh, and the write address is 4Ah. See Chapter 10, "Programming"

1.12 Digital Inputs

All of the ICS1532's digital inputs are 5 V-tolerant.

1.13 Digital Data Outputs

The ICS1532 uses slew controlled CMOS outputs and are designed to be connected directly to the scaler or data transmitter inputs with no series resistors.

1.14 Automatic Power-On Reset Detection

The ICS1532 has automatic power-on reset detection (POR) circuitry and it resets itself if the supply voltage drops below ~1.8 VDC. No external connection to a reset signal is required and it may be, but a active low RESET# input is also provided and may be held low for ~10ms to reset the ICS1532.

1.15 Two Spread Spectrum Utility PLLs

Besides the Main, pixel clock PLL, the ICS1532 has two other independent PLLs for use as needed. Typically, these PLLs are used to drive memory and panel data clocks. Both of these additional PLLs are tailored for the required frequency ranges. Each supports software-controlled spread-spectrum clock dithering to reduce measured electro-magnetic interference (EMI).

1.16 Programmable Outputs

For general-purpose outputs, the ICS1532 provides programmable pins PSEL3, PSEL2, and PSEL1 (Reg 37:2-0).

Chapter 2 Pin Diagram and Listings

2.0.1 Pin Listing by Functional Grouping

Table 2-1. Pin Listing by Functional Group

Pin Group	Pin Name	Pin Type	Pin Description	Pin #
Clock In	CLAMP	Input	External CLAMP input - Optional	28
Clock In	HSYNC	Input	Horizontal Sync Input	6
Clock In	XIN	Input	Crystal Input - Connect 14.31818 MHz, 20pF, parallel resonance crystal or and external 14.31818-MHz clock source	106
Clock Out	ADCRCLK	Output	 Analog-to-Digital Converter Reference Clock Half-rate pixel clock for latching digital output pixel data. 	54
Clock Out	ADCSYNC	Output	 Analog-to-Digital Converter Sync Recovered HSYNC output. Latch with ADCRCLK. 	55
Clock Out	CLK	Output	Full Rate Pixel Clock to ADC Section Normally not used. See ADRCRCLK	114
Clock Out	MCLK	Output	Memory Clock - Independent user-programmable clock source #1	101
Clock Out	OSCOUT	Output	Oscillator Output - Native Oscillator or Divided Oscillator Output	113
Clock Out	PNLCLK	Output	Panel Clock - Independent user-programmable clock source #2	104
Clock Out	REF	Output	Reference - Various reference line clock sync signals.	112
Clock Out	XOUT	Output	Crystal Output - Connect to the crystal above or leave open	107
Control In	SCL	Input	Serial Clock for I ² C - 5-V tolerant input clock from an I ² C bus	137
Control In	SBADR	Input	 I²C Serial Bus Address Low, address is 49h for reads and 48h for writes High, address is 4Bh for reads and 4Ah for writes 	142
Control In	RESET	Input	RESET Input - Optional – Low - Device held in RESET state – High - Normal Operation -Pull high if unused	142
Control I/O	SDA	I/O	Serial Data - 5-V tolerant pin data pin for an I ² C bus	138
Control Out	PSEL1 - 3	Output	Programmable Outputs See Register 37h.	8, 9, 10
Analog Input	BLUE, GREEN, RED	Input	 Analog Blue, Green and Red Inputs Accepts analog data for the ADCs blue, green, and red converters 	15, 19, 22
Analog Input	ABLUE_R AGREEN_R ARED_R	Input	 Analog Blue, Green and Red Signal Returns These pins provide a return path for the analog input data 	16, 20, 23
Data Output	BA7 – BA0, GA7 – GA0, RA7 – RA0	Output	 Blue 'A' 7–0, Green 'A' 7–0, and Red 'A' 7–0. Output first blue, green, and red digital pixel data, respectively. A7 = MSB 	See Figure 2-1
Data Output	BB7 – BB0, GB7 – GB0, RB7 – RB0	Output	 Blue 'B' 7–0, Green 'B' 7–0, and Red 'B' 7–0. Outputs second blue, green, and red digital pixel data, respectively. A7 = MSB 	See Figure 2-1
Clock In	EXTFIL	Input	External Filter-Optional external filter input between self and XFILRET	144
Clock In	PDEN/COAST	Input +5	Phase-Detector Enable - Can disable the charge pump with Reg 0:1-0	141

Table 2-1.	Pin Listing	by Functiona	al Group (Continued)
------------	-------------	--------------	----------------------

Pin Group	Pin Name	Pin Type	Pin Description	Pin #
Clock In	STATUS#	Output	Status - Active-low when locked pin works with Reg 2C:1-0	111
Clock In	XFILRET	Input	External Filter Return External filter input between self and EXTFIL	143
Ground	AVSS	Ground	Main Analog Ground - Connect to the common ground plane	14, 18, 21
Ground	VSS	Ground	Main PLL Ground - Connect to the common ground plane	1 & 5
Ground	VSSA	Ground	Main PLL Analog Ground - Connect to the common ground plane	135
Ground	VSSAADC(2.5)	Ground	 Analog ADC Ground - Ground for 2.5 volt analog portions of the ADC Connect to the common ground plane 	25 & 26
Ground	VSSD	Ground	Digital Ground - Connect to the common ground plane	139
Ground	VSSDADC(2.5)	Ground	 Digital ADC Ground - Ground for 2.5 volt digital portions of the ADC Connect to the common ground plane 	3, 52
Ground	VSSMCLK	Ground	MCLK PLL Ground - Connect to the common ground plane	99
Ground	VSSPCLK	Ground	PNLCLK PLL Ground - Connect to the common ground plane	102
Ground	VSSQ	Ground	Main PLL Output Ground - Connect to the common ground plane	110
Ground	VSSQADC	Ground	 Pixel Data Output Driver Ground Connect to the common ground plane 	36, 44, 56, 64, 72, 80, 88, 96
Ground	VSSSUB	Ground	Ground for Substrate - Connect to the common ground plane	7, 116
Ground	VSSTEST2 VSSTEST1	Ground	Ground or Test Outputs - Connect to the common ground plane	12, 13
Ground	VSSXTL	Ground	Crystal Oscillator Ground - Connect to the common ground plane	105
Power	VDDA	3.3	(3.3 V) Supply for Analog Pixel PLL Circuitry	134
Power	VDDAADC(2.5)	2.5	(2.5 V) Supply for Analog ADC Circuitry	24 & 27
Power	VDDD	3.3	(3.3 V) Supply for Main PLL and I ² C Bus	140
Power	VDDDADC(2.5)	2.5	(2.5 V) Supply for Digital ADC Circuitry	4, 53
Power	VDDMCLK	3.3	(3.3 V) Supply for MCLK	100
Power	VDDPCLK	3.3	(3.3 V) Supply for PNLCLK	103
Power	VDDQ	3.3	(3.3 V) Supply for Output Drivers	109
Power	VDDQADC	3.3	(3.3 V) Supply for Pixel Data Output Drivers	29, 37, 45, 57, 65, 73, 81, 89
Power	VDDXTL	3.3	(3.3V) Supply for Crystal Oscillator	108
NC	No Connect	NC	No Connect - Do not connect these pins.	11, 17, 117 - 133, 136
Reserved	Reserved	RES.	Reserved - Do not connect these pins.	97, 98

Chapter 3 Functional Blocks

D

Figure 3-1. Pixel PLL Block Diagram

() IDT.

Chapter 4 Register Set

The tables in this chapter detail the functionality of the ICS1532 Register Set bits. The tables include the register locations, the bit positions, names, and definitions, along with their read/write access, reset values, and any special functions or capabilities.

4.1 Reserved Bits

The ICS1532 has a number of reserved bits throughout the Register Set. These bits provide enhanced test functions (intended for use only by ICS manufacturing) and calibration functions (intended for use in production environments).

Important: The customer must not change the value of reserved bits. If the customer changes the default values of these reserved bits, normal operation of the ICS1532 can be affected.

4.2 Register Set Conventions

Register Set conventions include the following:

- An "#" on the end if a register bit or pin name indicates active low. (Low = True, High = False)
- Bits are listed in the order of most-significant bit (MSB) to least-significant bit (LSB).
- Unless otherwise indicated, bit settings are listed in terms of digital (and not hexadecimal) values.
- When a bit definition includes word(s) in parentheses, the word in parenthesis is not part of the bit name, but is given to explain the origin of the bit's name.

4.3 Register Set Abbreviations and Acronyms

Table 4-1 lists and defines abbreviations and acronyms used specifically in this chapter.

Table 4-1.	Register	Set Abbreviations	and Acronyms
------------	----------	-------------------	--------------

Abbreviation or Acronym	Definition
D-DPA	Double-Buffered / Dynamic Phase Adjust. Indicates double-buffered registers for which working registers load during a software Dynamic Phase Adjust reset. (RegA = xAh)
D-MK	Double-Buffered / Memory Clock. Indicates double-buffered registers for which working registers load during a software MCLK reset. (Reg2D = 5xh)
D-PK	Double-Buffered / Panel Clock. Indicates double-buffered registers for which working registers load during a software PNLCLK reset. (Reg2D = xAh)
D-PLL	Double-Buffered / Phase-Locked Loop. Indicates double-buffered registers for which working registers load during a software pixel PLL reset. (RegA = 5xh)
IN-A	Increment All. Indicates a value that increments with each all-layer revision of the ICS1532.
Reg	Register
R/W	Read/Write

() IDT.

4.4 Complete Register Set

Table 4-2. New Register Set Outline

Register	Register Name	e Register	Bit #	Bit Name	Brief Description	Reset
OOh	Input Control	Access	7.6		Solast HSVNC Input Throshold for Main DL	value
UUN	Input Control	R/W	7-6	HSYNC_Sei	 Select HSYNC input Threshold for Main PLL See Chapter 11-3, "Pin Specific I/O AC 	0
					Parameters"	
			5	In_Sel	Select Main PLL Phase Detector Input	1
					 0 = HSYNC source selected by Reg0:7-6 	
					 1 = Input is the OSC pin 	
			4	Fdbk Div Load	Select load for Feedback Divider	0
					 0 = New values loaded on a pixel PLL 	
					reset(Normal Operation)	
					 1 = New values loaded on the HSYNC without a 	
					PLL reset - Only usable for small changes	
			3	Fdbk_Pol	Select feedback polarity for Phase/Frequency Detector	0
					-0 = Main/Pixel PLL uses the rising edge	
			_		-1 = Main/Pixel PLL uses the falling edge	
			2	Ref_Pol	Select polarity of external reference	0
					- U = Rising HSYNC Edge Selected	
			4		-1 = Falling HSTNC Edge Selected	0
			1	CP_POI	Select polarity of COAST input if Regute=1	0
					 0 = Charge Pump enabled if COAST pin high 1 = Charge Pump enabled if COAST pin low 	
			0	CP En	Charge Pump (CP) Enable	1
			0		- 0 - CP enabled by Reg0.1 and COAST	1
					 – 0 – CF enabled by Reg0.1 and COAST – 1 – CP always Enabled - Normal Operation 	
01h	Loop Control	R/W. D-PLL.	7-6	Reserved	Reserved	0
			5-4	VCOS	Select VCO Scaler Value	0
					VCO frequency = (Output frequency) * VCOS(d)	-
					-00 = 2:1	
					- 01 = 4:1	
					- 10 = 8:1	
					- 11 = 16:1	
			3	Reserved	Reserved	0
			2-0	ICP	ICP - Charge Pump Current	0
					$- 000 = -2 \mu\text{A}$	
					$- 001 = -4\mu A$	
					$-010 = -8\mu A$ (Typical with Internal Filter)	
					$-0.011 = -1.0\mu$ A.	
					$-100 = -32\mu A$	
					$-101 = -64\mu A$	
					$-110 = ~120\mu$ A.	
					$-111 = ~130\mu$ A	
02h	Edbk Div 0	R/W D-PU	7-0	EDBK [7-0]	Feedback Divider LSB's bits 7-0 - See Reg3 for MSB's	N/A
0211		IOW. DI LE.	10		 Controls the number of CLK outputs per HSYNC 	1.1/7
					- Actual # of CLK's = $8 + (\text{Reg3} + \text{Reg2})d$	
	ļ		1	ļ		
03h	Fdbk Div 1	R/W. D-PLL.	7-4	Reserved	Reserved	-
	•	•	3-0	FDBK [11-8]	Feedback Divider MSB's bits 11-8 - See Reg2	N/A
		-				
04h	DPA Offset	R/W	7-6	Reserved	Reserved	0
			5-0	DPA_OS	Dynamic Phase Adjust (DPA) Offset	0
					- See Chapter 5, "DPA Operation"	
					The value programmed here must be less than the	
					DPA Resolution controlled by Reg5:1-0	

Register Index	Register Name	Register Access	Bit #	Bit Name	Brief Description	Reset Value
05h	DPA Control	R/W. D-DPA	7-2	Reserved	Reserved	_
		1.0	1-0	DPA_Res	DPA resolution (Number of available Delay Elements) See Chapter 5, "DPA Operation" - 00 = 16 elements - supports 55 to 110 MHz - 01 = 32 elements - supports 27 to 110 MHz - 10 = Reserved - 11 = 64 elements - supports 14 to 64 MHz	N/A
OCh	Output Enghlag	DAM	7	Deserved	Deserved	0
060		R/W	6	OE_TCLK	Enable CLK output to ADC and CLK pin 1 = MUST be Enabled for Normal Operation	0
			5	OE_ADCRCLK	Enable ADCRCLK clock output	0
			4	OE_ADCSYNC	Enable output for ADCSYNC	0
			3	FUNC_Sel	Select signal source for ADC_FUNC signal 0 = Output of the Feedback Divider - Normal Operation 1 = ADC_FUNC output is REF	0
			2	FUNC_Delay	Additional one CLK delay for ADC_FUNC signal	0
			1 0	Reserved Reserved	Reserved Reserved	0
07h	OSC Divider	R/W	7-0	OSC_Div	Oscillator divider value - 00000000 = Reserved. - 00000001 = (OSC / 2) - 00000010 = (OSC / 2) / 2 - 00000011 = (OSC / 2) / 3, and so forth. 1 2 3 - OSC Period - OSC Period	0
08h	Internal Filter	R/W	7	Shunt_Sel	Select additional Cp capacitor	1
		Values?	6-4	Res_Sel	Select additional Rs resistance	7
		values?	0	Fil_Sel	Select additional Cs capacitance Selects Loop Filter Select 1 = Internal (Typical) 0=External	1
09h	Reserved					N/A
0Ah	Pixel PLL/ DPA Resets	Write	7-4	Pixel PLL Reset	Writing 5xh resets pixel PLL and loads working Regs 1h through 3h	N/A
			3-0	DPA Reset	Writing xAh resets DPA and loads working Reg 5h	N/A
0Bh-0Fh	Reserved					N/A
10h	Chip Ver	Read	7-0	Chip Ver	Read chip version 32 decimal (20h) as in 1532	20
11h	Chip Rev	Read. IN-A.	7-4	Chip Major Rev	Value increments with major chip revision.	01

Table 4-2. New Register Set Outline (Continued)

Register Index	Register Name	Register Access	Bit #	Bit Name	Brief Description	Reset Value
			3-0	Chip Minor Rev	Value increments with minor chip revision.	00
12h	Rd Rea	Read	7-4	Reserved	Reserved	N/A
<u></u>			3	PLL Lock	Pixel PLL lock status - 1 = Locked, 0 = Unlocked	N/A
			2	MCLK_Lock	Memory MCLK lock status - 1 = Locked, 0 = Unlocked	N/A
			1	PCLK_Lock	Panel PLL lock status - 1 = Locked, 0 = Unlocked	N/A
			0	Reserved	Reserved	N/A
13h-1Fh	Reserved					N/A
0.01						
20h	PNLCLK-M	R/W. D-PK.	7-0	PNLCLK_M	Select value for PNLCLK M Reference Divider	0
21h	PNLCLK-N	R/W. D-PK.	7-0	PNLCLK_N	Select value for PNLCLK N Feedback Divider F _{PNLCLK} = (OSC x (N + 8) / (M+2)	0
22h	PNLCLK-SS0	R/W. D-PK.	7-0	PNLCLK_SS0	Value for PNLCLK spread-spectrum counter LSB's bits 7-0 - Controls amount of frequency spread Allowed Values = $(288 * N / M) \pm 8$	0
22h			74	B oonryod	Percented	0
230	PINLULK-331	K/W. D-PK.	2.0		Keselveu	0
			3-0	FINECER_331	11-8 See Reg22	0
24h	PNLCLK-SSOE	R/W. D-PK.	7-6	PNLCLK_SS	Select PNLCLK spread-spectrum gain - 0 = The gain is 1 - 1 = The gain is 2 - 2 = The gain is 4 - 3 = The gain is 8	0
			5	Reserved	Reserved	0
			4-2	PNLCLK_PFD	PNLCLK Phase/Frequency Detector gain - 000 = Gain is 1 - 001 = Gain is 2 - 010= Gain is 4 - 011 = Gain is 8, and so forth - 111 = Gain is 128	0
			1-0	PNLCLK_OSD	PNLCLK Output Scaler Divider - 00 = Divide by 1 - 01 = Divide by 2 - 10= Divide by 4 - 11 = Divide by 8	0
25h	PNI CLK-OF	R/W	7-3	Reserved	Reserved	11100
			2	CLK_SEL	Select input for PNLCLK PLL - 0 = PNLCLK PLL input is from the crystal input - 1 = Input is from ADC CLK, divided by 16	0
			1	PNLCLK_SSENB	Enable PNLCLK spread-spectrum	0
			0	PNLCLK_OE	Enable PNLCLK output	0
26h	MCLK-M	R/W. D-MK.	7-0	MCLK_M	Value for MCLK M Feedback Divider	0
27h	MCLK-N	R/W. D-MK.	7-0	MCLK_N	Value for MCLK N (Numerator) Feedback Divider F _{MCLK} = (OSC x (N + 8)) / (M+2)	0

Table 4-2. New Register Set Outline (Continued)

Register	Register Name	Register	Bit #	Bit Name	Brief Description	Reset
28h	MCLK-SS0	R/W. D-MK.	7-0	MCLK_SS0	Select MCLK spread-spectrum counter LSB's bits 7-0	0 0
					See Reg29 - Controls amount of frequency spread Allowed Values = (288 *N / M) <u>+</u> 8	
20h			7-4	Reserved	Reserved	1010
2011	MOLICOOT	TOW. DIWIN.	3-0	MCLK SS1	Select MCLK spread-spectrum counter MSBs bits 11-8	0
			3-0	MOLIN_001	See Reg28	0
2Ah	MCLK-SSOE	R/W. D-MK.	7-6	MCLK_SS	Select MCLK spread-spectrum gain	0
					– 00 = The gain is 1	
					– 01 = The gain is 2	
					– 10 = The gain is 4	
					– 11 = The gain is 8	
			5	Reserved	Reserved	0
			4-2	MCLK_PFD	Select MCLK Phase/Frequency Detector gain	0
					– 000 = Gain is 1	
					– 001 = Gain is 2	
					– 010 = Gain is 4	
					– 011 = Gain is 8	
					– 100 = Gain is 16, and so forth	
			1-0	MCLK_OSD	Select value for MCLK Output Scaler Divider	0
					-00 = Divide by 1	
					-01 = Divide by 2	
					-10 = Divide by 4	
					-11 = Divide by 8	
2Bh	MCLK-OF	R/W	7-2	Reserved	Reserved	010000
			1	MCLK SSENB	Enable MCI K spread-spectrum (1 = Enabled)	0
			0	MCLK OF	Enable MCLK output (1 = Enabled)	0
			Ŭ	moen_oe		Ŭ
2Ch	OUTPUT MUX	R/W	7	High_Drive#	Disable high drive for ADC pixel data output pins	0
		-H	6	OE_OSC	Enable OSCOUT output pin (1 = Enabled)	1
			5-4	OSC_Sel	Select OSCOUT Output	0
					 00 = OSCOUT source is OSC. 	
					 - 01 = OSCOUT source is OSCDIVIDER (Reg7) 	
					 10 = OSCOUT source is OSC/2. 	
					– 11 = Reserved	
			3	Reserved	Reserved	0
			2	REFSEL	Select REF status	0
			1-0	LCKSEL#	Select active low output for STATUS (pin 111)	1
					Low when selection below is properly locked, else high	
					– 00 = Main Pixel PLL	
			1	1		

Table 4-2. New Register Set Outline (Continued)

					 10 = Reserved 11 = PNLCLK: Panel Clock 	
2Dh	PLL Reset	Write	7-4	MCLK Reset	Writing 5xh resets MCLK PLL & loads Regs 26h~2Bh	N/A
<u>I</u>			3-0	PNLCLK_Reset	Writing xAh resets PNLCLK PLL & loads Regs 20~25h	N/A

- 01 = MCLK: Memory Clock

30h	ADC CTRL	R/W	7	ADC_OE	Enable ADC output (1 = Enabled)	0
		??????	6	ADC_Inv	Invert ADCRCLK signal (1=Latch data on rising edge)	0
			5	Force_ADC	Force ADC Outputs to state of Reg30:3	1

2Eh-2Fh Reserved

N/A

Register Index	Register Name	Register Access	Bit #	Bit Name	Brief Description	Reset Value
<u>, </u>		??????	4	ADC_Clock_D	ADC clock state delay (1 = ?????)	0
			3	ADC_Inv	Invert ADC Outputs (1- White = FF, 0 - White = 00)	0
			2	CLAMP_Sel	Clamp Select	0
					 00 = External CLAMP (pin 28) 	
					 10 = Internal CLAMP (same as FUNC) 	
			1	Reserved	Reserved	0
			0	CLAMP_Pol	Polarity of Clamping Control Signal	0
					0 = Active High Clamp (Normal operation)	
					1 = Active Low Clamp	
31h	R_Control	R/W	7	R_VIN_Range	Red Input Voltage Range (0=700mv, 1=1V)	1
			6	Reserved	Reserved	0
		????	5	R_CLAMP_T3	Red Clamp Time Constant (0= Nom., 1=0.3 Nom.)	0
		????	4	R_CLAMP_Type	Soft/Xhard Clamp Function	1
		????	3	R_CLAMP_T5	Red Clamp Time Constant (0= Nom., 1=0.5 Nom.)	0
			2-1	Reserved	Reserved	1
			0	XPD_R#	Power Down Red Channel (0=Powered Down)	1
32h	G_Control	R/W	7	G_Fixed_Gain	Green Gain Adjust. (0=100%, 1=140%)	1
			6	Reserved	Reserved	0
		????	5	G_CLAMP_T3	Green Clamp Time Constant (0= Nominal, 1=0.3 Nom.)	0
		????	4	G_CLAMP_Type	Green Soft/Xhard Clamp Function	1
		????	3	G_CLAMP_T5	Green Clamp Time Constant (0= Nominal,1=0.5 Nom.)	0
			2	Reserved	Reserved	1
			1	SOG	Sync On Green	0
			0	XPD_G#	Power Down Green Channel (0=Powered Down)	1
33h	B Control	R/W	7	B Fixed Gain	Blue Gain Adjust. (0=100%, 1=140%)	1
oon	B_control		6	Reserved	Reserved	0
		2222	5	B CLAMP T3	Blue Clamp Time Constant (0= Nominal, 1=0.3 Nom.)	0
		????	4	B CLAMP Type	Blue Soft/Xhard Clamp Function	1
		????	3	B CLAMP T5	Blue Clamp Time Constant (0= Nominal.1=0.5 Nom.)	0
			2-1	Reserved	Reserved	0
			0	XPD_B#	Power Down Blue Channel (0=Powered Down)	1
34h	R Gain	P/M	7-3	R PGA Gain	Fine adjust red channel ADC ladder voltage	00100
5411	IX_Oall		2-0	R_ICA_Cain	Adjust Video Amp Gain for red channel of ADC	00100
			2-0	N_ADC_Gain	Adjust video Amp Gain for red channel of ADC	000
35h	G Gain	R/W	7-3	G PGA Gain	Fine adjust green channel ADC ladder voltage	00100
	_		2-0	 G_ADC_Gain	Adjust Video Amp Gain for green channel of ADC	000
					1	1
36h	B_Gain	R/W	7-3	B_PGA_Gain	Fine adjust blue channel ADC ladder voltage	00100
			2-0	B_ADC_Gain	Adjust Video Amp Gain for blue channel of ADC	000
27h		DAM	74	BC CAL	Rand Cap Calibration (0-Normal Operation)	0
5/11	FUL	N/ W	2	VBC PD#	Band Gap Calibration (0=Normal Operation)	1
			2	PSEL3	State of PSEL3 (pin 10)	0
				I JLLJ		0
			1	PSEL2	State of PSEL2 (pin 9)	0
			1	PSEL2 PSEL1	State of PSEL2 (pin 9) State of PSEL1 (pin 8)	0
			1 0	PSEL2 PSEL1	State of PSEL2 (pin 9) State of PSEL1 (pin 8)	0
38h	R_Offset		1 0 7-0	PSEL2 PSEL1 R_Offset	State of PSEL2 (pin 9) State of PSEL1 (pin 8) Red channel offset (00=minimum offset)	0 0 80h

Table 4-2. New Register Set Outline (Continued)

Register Index	Register Name	Register Access	Bit #	Bit Name	Brief Description	Reset Value
3Ah	B_Offset		7-0	B_Offset	Blue channel offset (00=minimum offset)	07h
3Bh	IBias		7-6	IBias_Buf	ADC Buffer Bias Adjustment	10
	J		5-4	IBias_VA	Video Amp Bias Adjustment	10
			3-0	IBias_ADC	ADC Bias Adjustment	1010
3Ch	Test_Mux		7-3	СТМ	Channel Test Mux	1010
			2-0	BGTM	Band Gap Test Mux	1010

Table 4-2. New Register Set Outline (Continued)

Chapter 5 DPA Operation

Table 5-1.DPA Control

Reg 0)5:1-0	1. Number of Delay	2. Reg 04:5-0	3. Pixel Clock Range
Bit 1	Bit 0	Element Units (Decimal)	Max. Value (Hex)	(MHz)
0	0	16	0F	55 110
0	1	32	1F	27 110
1	0	Reserved	Reserved	
1	1	64	3F	14 64

Chapter 6 OSC Divider & OSCOUT

The ICS1532 accepts either a crystal across XIN and XOUT or a single ended clock on the XIN input (with XOUT left open). See Table 11-4 for crystal requirements. This input (OSC) may be output to the OSCOUT pin at the same input frequency, half the input frequency, or divided by >2. This translates to OSC, OSC/2 and the OSC Divider and is selected by Register2C:5~4.

The OSC Divider works as follows, The period of the OSC input becomes the high time of the OSC_OUT signal and the low time is controlled by Register 7.

Table 6-1 OSC Divider Functionality

Parameter	Value
OSC Divider Frequency	(Input Osc Frequency) * [(Register 7: 6~0) + 2]
OSC High Time	Input OSC Period
OSC Low Time	[Reg7 + 1] * Input OSC Period
Minimum OSC Divider	3 (Reg7:6~0 = 0000001)
Maximum OSC Divider	257 (Reg7 = 1111 1111)
RESERVED OSC Divider	0 (Reg7 = 0000 0000)

Chapter 7 Loop Filter

The ICS1532 contains an internal loop filter and also supports the use of an external loop filter configured as in Figure 7-1. Selection between these two filters is controlled by Register 8:7. A 0 selects the external, a 1 selects the internal filter.

While the internal loop filter works well for most applications, IDT still recommends the implementation of an external filter network on all designs. Implementing the external loop filter gives the system engineer flexibility to add external filter functionality if without having to alter the PCB.

Chapter 8 PLL Parameter Settings

Settings for all standard VESA video modes are provided by IDT as a starting point for the systems engineer. These files are in human readable text files (*.ics files) and come bundled within the ICS1532 Register Editor Tool.

This tool directly drives the ICS1532EB Evaluation Board and can be downloaded from www.idt.com.

Chapter 9 Input Termination

The ICS1532 is a high speed Analog to Digital converter capable of operating at 110 MSPS. Since VGA/VESA video is comprised of 700 mV vpp waveforms potentially toggling high speed, care needs to be taken to preserve the quality of these analog input signals from reflections and coupled noise all the way to the input pins of the ICS1532.

The R, G and B video inputs and their dedicated return signals must be...

- Routed as a clean, minimal length traces to minimize loading and pickup
- 75 Ohm characteristic impedance to eliminate reflections
- Appropriate signal pairs being located as close as possible to each other and far from noise sources
- Properly terminated as shown in Figure 9-1 with termination resistors placed as close to the ICS1532 as possible.

Figure 9-1. Recommended Termination

Chapter 10 Programming

10.1 I2C Serial Bus: Data Format

Figure 10-1. ICS1532 Data Format for I2C Serial Bus

Write Procedure for Sing	le Register			
MSB LSB				
S 0 1 0 0 1 0 X W .	A	A A Sto	p	
Slave address	Regsiter Index	Data		
Read Procedure for Singl	e Register			
MSB LSB		MSB LSB		
S 0 1 0 0 1 0 X W .	A	A S 0 1 0 0 1 0 X R A	A	Stop
Slave address	Regsiter Index	Slave address Repeat STA RT	Data	NO Acknow ledge
Write Procedure for Mult	iple Registers (Note 1)			
MSB LSB				
S 0 1 0 0 1 0 X W	A	A	A	A Stop
Slave address	Regsiter Index	Data	Data	
Read Procedure for Multi	ple Registers (Note 1)			
MSB LSB	,	MSB LSB		
S 0 1 0 0 1 0 X W	A	A S 0 1 0 0 1 0 X R A	A	A Stop
Slave address	Regsiter Index	Slave address	Data	Data
		Repeat START		NO Acknow ledge 📕
Legend				
All values are se	ent with the most-sid	unificant bit (MSB) first and leas	t-significant bit (LSB)	last
R = Read = 1		,	· • ·g····· ··· ()	
W = W rite = 0				
S = Start (SDA	goes low when SCI	was high then SCL goes low to	0)	
A = ACK = Ack	nowledge = 0		- /	
$\overline{A} = NAK = NO$	Acknowlege = 1			
X = Bit value th	at equals logic state	of SBADR pin.		
= (Dashed	Line) Multiple transa	ctions		
Bus Master d	rives signal to ICS15	32 ICS1532 (Slave De	vice) drives signal to	Bus Master
			, e e g. e e	

Note: In general, the:

- Lower nibble of the I²C register automatically increments after each successive data byte is written to or read from the ICS1532.
- Upper nibble of the I²C register does not automatically increment, and the software must explicitly re-address the ICS1532. As a result, to write or read all the ICS1532 registers, the software:
 - Must NOT index 0 and then do 64 one-byte transactions.
 - Must break the transactions into at least four separate bus transactions:
 - (1) 00 to 0F (2) 10 to 1F (3) 20 to 2F (4) 30 to 3F

Programming Flow for Modifying PLL and DPA Settings 10.2

Figure 10-2. ICS1532 Flow for Capture/Input Clock PLL

10.2.1 Programming Flow for Modifying Settings for Spread Spectrum

10.2.2 Programming Flow for Calibrating

Chapter 11 AC/DC Operating Conditions

11.1 Absolute Maximum Ratings

Table 11-1 lists absolute maximum ratings for the ICS1532. Stresses above these ratings can cause permanent damage to the ICS1532. These ratings, which are standard values for ICS commercially rated parts, are stress ratings only. Functional operation of the ICS1532 at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods can affect product reliability. Electrical parameters are guaranteed only over the recommended operating temperature range.

During normal operation, the supply voltages for the ICS1532 must remain within the recommended operating conditions.

Item	Rating	Notes
VDD, VDDQ (See Note)	4.3 V	Measured with respect to VSS
VDDxADC (See Note)	3.6 V	Measured with respect to VSS
Digital Inputs	VSS -0.3 V to +5.5 V	
Digital Outputs	VSSQ -0.3 V to VDDQ +0.3 V	
Analog Inputs	VSS -0.3 V to +5.5 V	
Analog Outputs	VSSA -0.3 V to VDDA +0.3 V	
Storage Temperature	-65 to +150° C	
Junction Temperature	125° C	
Soldering Temperature	260° C	20 seconds max

Table 11-1. ICS1532 Absolute Maximum Ratings

NOTE: Electrostatic-sensitive device. Do not open or handle except in a static-free workstation.)

11.2 Recommended Operating Conditions

 Table 11-2.
 Environmental Conditions

Parameter	Minimum	Typical	Maximum	Units
Ambient Operating Temperature	0		+70	°C
3.3 Power Supply Voltage	+3.15	+3.3	+3.45	V
2.5 Volt Power Supply Voltage	+2.35	+2.5	+2.65	V

11.3 AC Operating Characteristics

 Table 11-3
 Pin Specific I/O AC Parameters

Parameter	Symbol	Min.	Тур.	Max.	Units	Notes
AC Inputs				4		
HSYNC Input Frequency	f _{HSYNC}	12		120	kHz	
COAST Input Frequency	f _{PDEN}	30		120	Hz	
Analog Input (HSYNC)						
Input High Voltage	V _{IH}		1.8	5.5	V	Reg0:7~6 = 00
Input Low Voltage	V _{IL}	VSS - 0.3	1.1		V	Reg0:7~6 = 00
Input High Voltage	V _{IH}		2.3	5.5	V	Reg0:7~6 = 01
Input Low Voltage	V _{IL}	VSS - 0.3	1.1		V	Reg0:7~6 = 01
Input High Voltage	V _{IH}		1.9	5.5	V	Reg0:7~6 = 10
Input Low Voltage	V _{IL}	VSS - 0.3	1.3		V	Reg0:7~6 = 10
Digital Inputs (SDA, SCL	Digital Inputs (SDA, SCL, EXTFB, OSC, I ² CADDR)					
Input High Voltage	V _{IH}	2		5.5	V	
Input Low Voltage	V _{IL}	VSS - 0.3		0.8	V	
Input Hysteresis		0.2		0.6	V	
POR Threshold		VSS	1.8		V	Voltage that resets register values
SDA Digital Output						
SDA Output Low Voltage	V _{OL}			0.4	V	IOUT = 3 ma
SDA Output High Voltage	V _{OH}			6.0	V	Set by external Rset resistor
Pixel Data Outputs	1			1		
Output Impedance	R _O		65		Ω	1 V < V _O < 2 V
Skew from ADCRCLK	Tsk		4ns		1	
LVCMOS Outputs (ADCF	RCLK, AD	SYNC, LO	CK/REF)			
Output Impedance	R _O	45	65	85	Ω	1 V < V _O < 2 V
ADCRCLK Output Frequency	F _s MAX/2			50	MHz	VDDD = 3.3 V
Duty Cycle	S _{DC}	45		55	%	3

Note 1- V_{OL} must not fall below the level given so that the correct value for IOUT can be maintained.

Note 2- Measured at 135 MHz, 3.6 VDC, 0°C, 20 pF, Unterminated

Parameter	Symbol	Min.	Тур.	Max.	Units	Notes
ADC Resolution			8	8	Bits	
DC Accuracy						
Differential Nonlinearity	DNL		+1.2/-1	+2.75/-1	LSB	
Integral Nonlinearity	INL			±2.5	LSB	
No Missing Codes						By Design
Analog Inputs						
ADC Input Voltage Range	V _{IA}	0.5	0.7	1.2	Vpp	
Input Capacitance	۱ _C			2	pF	
Input Resistance	I _R	1			MΩ	
Switching Performance						
Analog Conversion Rate		10		110	MHz	
I2C Bus Speed		100		4,000	KHz	
VCO Frequency		150		1,000	MHz	
Sampling Clock Frequency		10		110	MHz	
Clock Jitter			1		ns	
Digital Inputs						
Input High Voltage	V _{IH}	2		5.5	V	5.5
Input Low Voltage	V _{IL}	VSS-0.3		0.8	V	
Input High Current	IIH			-1	uA	
Input Low Current	IIL			1	uA	
Input Capacitance	I _c			3	pF	
Digital Outputs						
Output High Voltage	V _{OH}	VDD-0.1			V	
Output Low Voltage	V _{OL}			0.1	V	
Pixel Data Output Impedance	R _O		65		Ω	1 V < V _O < 2 V
ADCRCLK to Pixel Data Skew	Tsk		±5		ns	
ADCRCLK Duty Cycle		45	50	55	%	Note 2
Output Coding			Binary			By Design
Power Requirements						
3.3 V Digital Supply Voltage	IDDD	+3.15	+3.3	+3.45	V	
3.3 V Analog Supply Voltage	IDDA	+3.15	+3.3	+3.45	V	
2.5 V Supply Voltage	IDDA2.5	+2.35	+2.5	+2.65	V	
3.3 V Digital Supply Current				135	mA	110 MHz
3.3 V Analog Supply Current				125	mA	110 MHz
2.5 V Supply Current				125	mA	110 MHz

Table 11-4	AC Operating Characteristics	(VDDx = 3.3 Volts,	VDDx(2.5) = 2.5 Volts,	Temperature = 25°C
------------	------------------------------	--------------------	------------------------	--------------------

Table 11-4	AC Operating Characteristics	(VDDx = 3.3 Volts,	VDDx(2.5) = 2.5 Volts,	Temperature = 25°C
------------	------------------------------	--------------------	------------------------	--------------------

Parameter	Symbol	Min.	Тур.	Max.	Units	Notes
Total Power Dissipation			900	1200	mW	110 MHz
Crystal Requirements						
Frequency - Parallel Resonance		10	14.3 18	20	MHz	
Load Capacitance		-	20	-	pF	
Zero frequency error by design When using spread spectrum f	when the to unctionality,	tal on-chip + 14.318 MHz	stray capaci	itance is eo D.	qual to 20p	þF.
Dynamic Performance						
Analog Input Bandwidth			450		MHz	
Signal-to-Noise Ratio	SNR	32	44		dB	108 MHz Internal PLL
Crosstalk			50		dBc	
Thermal Characteristics						
Junction to Case Thermal Resistance			9		°C/W	
Junction to Ambient Thermal Resistance			32		°C/W	Flow = 0 m/s

Chapter 12 Timing Diagrams

12.1 AC Timing Diagrams

12.1.1 Phase-Locked-Loop Timing for Digital Setup and Hold

The input HSYNC signal is used to generate the REF output signal. In the Phase/Frequency Detector, the REF signal is compared with ADCSYNC (which provides the recovered HSYNC signal). Table 12-1 gives the timing for these signals, and Figure 12-1 shows timing characteristics.

Time Period	Timing Description	Min	Тур	Мах	Units
t1	Input HSYNC Rise Time to REF Rise Time	TBD	7	TBD	ns
Тр	ADCRCLK Period		Tp = Input HSYNC Frequency (Reg 03 and 02) + 8		ns
Td	ADCRCLK Duty Cycle	45-55	50-50	55-45	%
t2	ADCSYNC Active Time		4 x Tp		ns

Figure 12-1. Timing for Phase-Locked Loop

DT

12.1.2 Digital Output Data Timing

Time Period	Timing Description	Min	Тур	Max	Units
Tp, Td	CLK Period, CLK Duty Cycle		See Table 12-1.		ns
t1	CLK Rise Time to ADCRCLK Rise Time		2.6		ns
t2	ACDRCLK Period		t2 = 2 x Tp		ns
t3	Digital Data Skew from ADCRCLK				ns

Table 12-2. Timing for 2-Pixels-per-Clock Mode

Figure 12-3. AC Timing for 2-Pixels-per-Clock Mode

12.1.3 ADCRCLK v.s. ADCSYNC Edge Relationships and Invalid Data

12.2 Resetting the ICS1532 to a known state

Below is shown the two ways to reset the ICS1532 to a known state.

12.2.1 Reset Pin Input

Momentarily bring the active high RESET# input pin low to cause the part to reset to a known state.

12.2.2 Power-On Reset (POR) Timing

The ICS1532 incorporates special internal power-on reset circuitry that requires no external reset signal.

To use the POR circuitry:

- Reduce the level of the all supply voltages to the ICS1532 (and the voltage seen on all ICS1532 pins) so that it is below the threshold voltage (VDD_{th}) of the POR circuit for the period t1 shown below
- Keep the supply voltage below that threshold voltage for time t1, such that power-conditioning capacitors for the printed circuit board are drained and the proper reset state is latched.
- A successful power-on reset results in all the ICS1532 registers having the appropriate reset values as stated in the tables in Chapter 4, "Register Set".

Symbol	Timing Description	Min	Тур	Max	Units
VDD	Supply Voltage ('On' State)	3.15	3.3	3.45	V
VDD _{th}	Threshold Supply Voltage		1.8		V
t ₁	Hold Time for Reset State		10		ms

Table 12-3. ICS1532 POR Transition Times

Figure 12-5. Power-On Reset Condition for ICS1532

Chapter 13 Package Dimensions

This section gives the physical dimensions for the package for the ICS1532, which is a 144-pin LQFP.

- The lead count (N) for the package is 144 leads.
- The nominal footprint (that is the body) for the package is 20 mm \times 20 mm \times 1.4 mm.

Note:

- 1. For full mechanical specifications, see JEDEC drawing number MS-026 Rev A.
- 2. Table 13-1 lists the ICS1532 physical dimensions. These dimensions are:
 - a. For planning purposes only.
 - b. Subject to change.
 - c. Shown in Figure 13-1.

Table 13-1. Physical Dimensions for ICS1532

Symbol	Description	Min.	Nominal	Max.	Unit
A	Full Package Height			1.60	mm
A1	Package Body Standoff (the distance from the seating plane to the base plane of the package body)	0.05		0.15	mm
A2	Package Body Thickness	1.35	1.40	1.45	mm
b	Lead Width	0.17	0.22	0.27	mm
С	Lead Thickness	0.09		0.20	mm
D	Tip-to-Tip Dimension		22.0		mm
D1	Package Body Dimension		20.0		mm
е	Lead Pitch		0.50		mm
E	Tip-to-Tip Dimension		22.0		mm
E1	Package Body Dimension		20.0		mm
L	Lead Tip Length	0.45	0.60	0.75	mm
L1	Lead Length, Entire Length		1.0		mm
Q	Lead Tip Angle	0	3.5	7	degrees

Chapter 14 Ordering Information

Figure	14-1	ICS1532	Ordering	Information
Iguie	1 1	1001332	ordening	mormation

Part / Order Number	Marking	Package	Shipping
1532A	ICS1532A	144-pin LQFP	Trays

While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology, Incorporated (IDT) assumes no responsibility for either its use or for infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial applications. Any other applications such as those requiring extended temperature range, high reliability, or other extraordinary environmental requirements are not recommended without additional processing by IDT. IDT reserves the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any IDT product for use in life support devices or critical medical instruments.