AN11010 Single stage Ku band LNA using BFU730F Rev. 1.0 — 11 January 2011

Application note

Document information

Info	Content
Keywords	BFU730F, LNA, Ku band, LNB
Abstract	The document provides circuit, layout, BOM and performance information on Ku band LNA equipped with NXP's BFU730F wide band transistor.

Revision history

Rev	Date	Description
1.0	20110111	Initial document

Contact information

For additional information, please visit: <u>http://www.nxp.com</u>

For sales office addresses, please send an email to: salesaddresses@nxp.com

AN11010

All information provided in this document is subject to legal disclaimers.

1. Introduction

BFU730F is a discrete HBT produced in NXP's SiGeC QuBIC4x BiCmos process. SiGeC is a normal silicon germanium process with the addition of Carbon in the base layer of the NPN transistor. The presence of carbon in the base layer suppresses the boron diffusion during wafer processing. This allows steeper and narrower SiGe HBT base and a heavier doped base. As a result, lower base resistance, lower noise and higher cut off frequency can be achieved.

2. Requirements for Ku band LNA

The typical application for a Ku band LNA consists of amplification stage in the MW preamplifier chain of a satellite LNB.

The noise figure requirements for LNBs may vary from standard to standard, however most of them will set a figure of:

$NF_{LNB} \le 1.2dB$

BFU730F typical values for the minimum noise figure and maximum stable gain at Ku band frequency of 12GHz and bias of 2V / 10mA are:

NFmin = 1.1dB and Gmax = 12.5dB

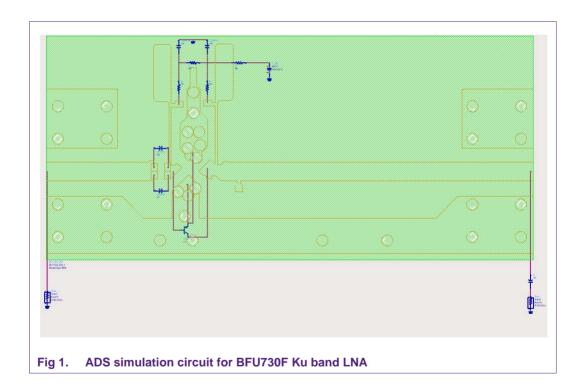
This recommends the device as an alternative solution to replace pHemts in Ku band LNA applications.

IF the target spec for the BFU730F LNA noise and gain is:

NF= 1.4dB and Gain = 11.5dB

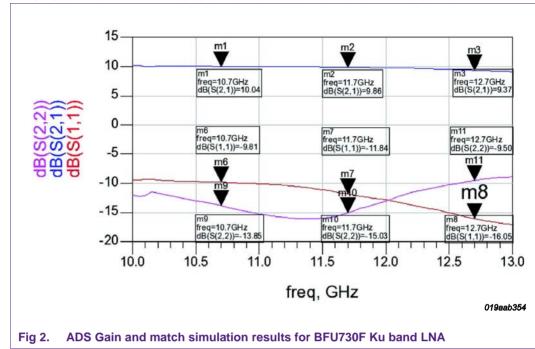
The LNB system performance is as it shows up in Table 1:

Table 1.	BFU730F vs	pHemt NF and Gain	performance comparison
		priorite in una ouri	

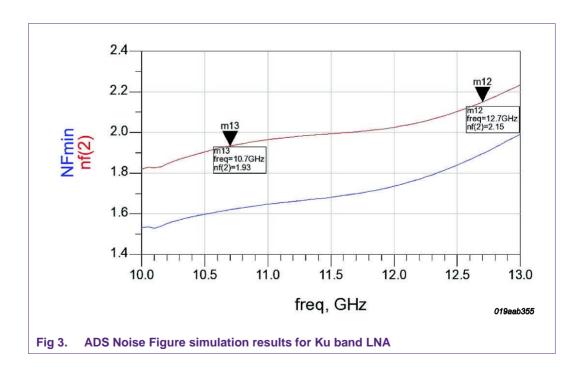

Preamplifier	1 st stage NF/Gain (dB)	2 nd stage NF/Gain (dB)	3 rd stage NF/Gain (dB)	Mixer stage NF/Gain (dB)	LNB NF/Gain (dB)
2 stage	pHemt 0.8 / 12	pHemt 1 / 12	N/U	active 8 / 2	0.93 / 26
	pHemt 0.8 / 12	BFU730F 1.4 / 11.5	N/U	active 8 / 2	0.97 / 25.5
3 stage	pHemt 0.8 / 12	pHemt 1 / 12	pHemt 1 / 12	diode 12 / -12	0.88 / 24
	pHemt 0.8 / 12	pHemt 1 / 12	BFU730F 1.4 / 11.5	diode 12 / -12	0.88 / 23.5
	pHemt 0.8 / 12	BFU730F 1.4 / 11.5	BFU730F 1.4 / 11.5	diode 12 / -12	0.91 / 23

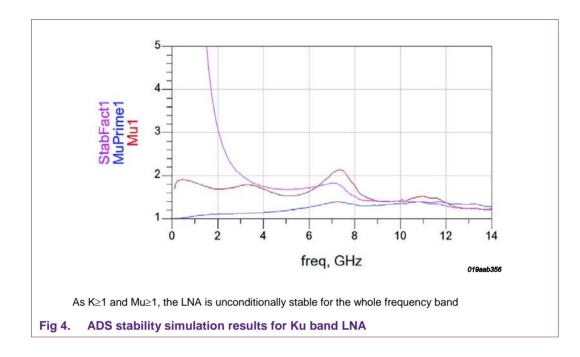
The performance of the stand-alone BFU730F amplifier is slightly worse compare to the pHemt one, however in an LNB chain it gives almost no performance change when used as LNA3, or minor acceptable degradation when used as LNA2.

3. Design

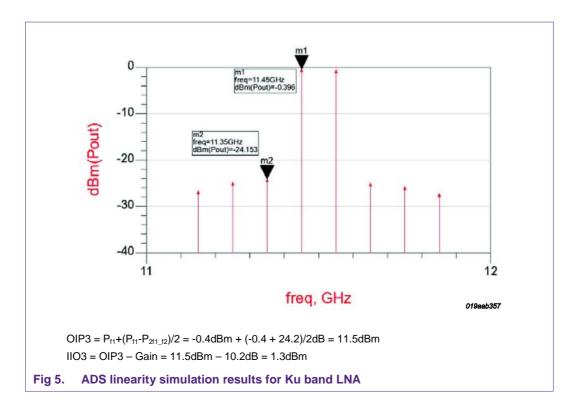

The Ku band LNA consists of one stage BFU730F amplifier. It is aimed to replace more costly pHemt transistors in the second and / or third stage of the LNB preamplifier. These stages have to compensate the higher noise of the following mixer stage, thus their gain has to be as high as possible. The driving designs criteria for the LNA is the maximization of its gain. Secondly the noise figure has to be as good as possible, with a very small compromise on gain. Due to the gain criteria, the input and output match are also optimized. Stability wise the LNA has to be unconditionally stable over very broad frequency range. In terms of linearity, the system analysis does not impose stringent requirements.

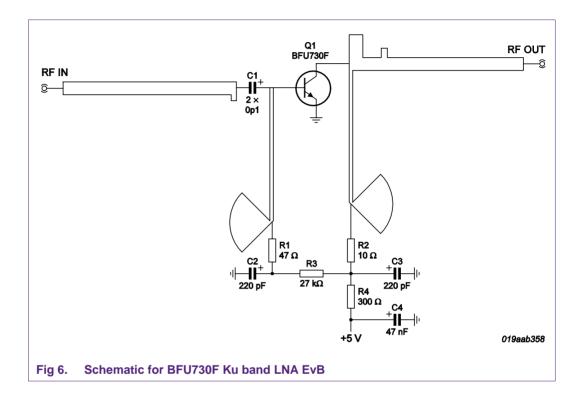
The design has been conducted using Agilent's Advanced Design System (ADS). The 2D EM Momentum tool has been used to design the microwave section and the PCB. The linear and harmonic balanced circuit tools have been used to simulate the gain, noise, match, stability and linearity performances of the LNA.


3.1 BFU730F Ku LNA - ADS simulation circuit

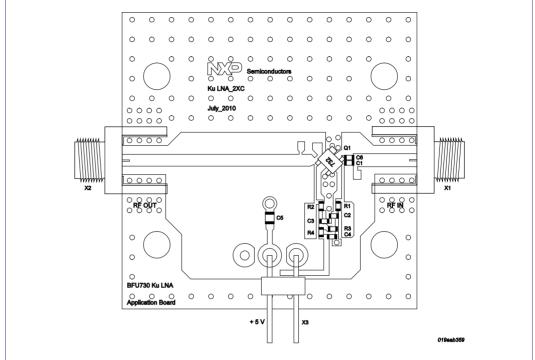

AN11010

3.2 BFU730F Ku LNA - ADS Gain and match simulation results


3.3 BFU730F Ku LNA - ADS NF simulation results


3.4 BFU730F Ku band LNA - ADS stability simulation results

3.5 BFU730F Ku band LNA - ADS linearity simulation results



4. Implementation

4.1 Schematic

AN11010

4.2 Layout and assembly

Fig 7. Layout and assembly information for BFU730F Ku band LNA EvB

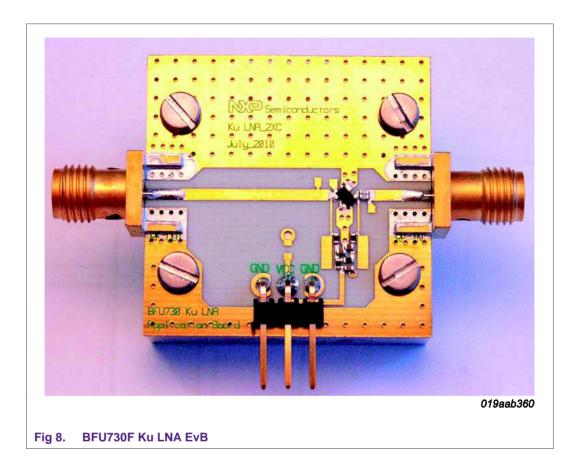
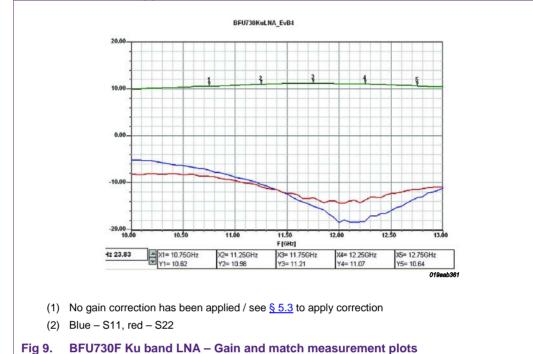
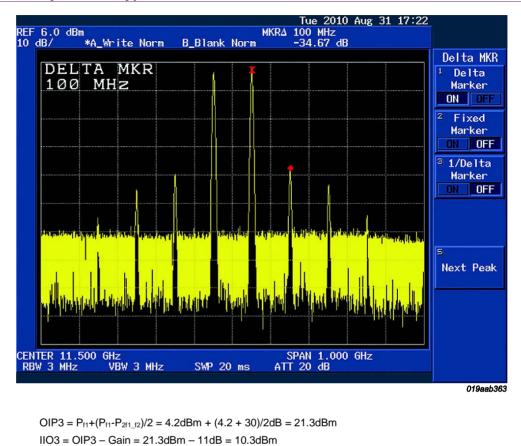

PCB30X30mmC1, C6Capacitor04022X 0.1pF 0.2pFMurata GRM1555C1HR10BA01 GRM1555C1HR20BA01Input matchC2, C3Capacitor0402220pFDecouplingC4Capacitor040247nFDecouplingR1Resistor040247RStabilityR2Resistor040210RStabilityR3Resistor040227kStabilityR4Resistor0402300RBiasX1, X2SMA RF connectorStabilityStape connector		on or materials				
PCB30X30mmC1, C6Capacitor04022X 0.1pF 0.2pF)Murata GRM1555C1HR10BA01 GRM1555C1HR20BA01Input matchC2, C3Capacitor0402220pFDecouplingC4Capacitor040247nFDecouplingR1Resistor040247RStabilityR2Resistor040210RStabilityR3Resistor040227kBiasR4Resistor0402300RBiasX1, X2SMA RF connectorSMA RF connectorKapacitorRF connector	Designator	Description	Size	Value	Туре	Note
C1, C6Capacitor04022X 0.1pF (0.2pF)Murata GRM1555C1HR10BA01 GRM1555C1HR20BA01Input matchC2, C3Capacitor0402220pFDecouplingC4Capacitor040247nFDecouplingR1Resistor040247RStabilityR2Resistor040210RStabilityR3Resistor040227kBiasR4Resistor0402300RBiasX1, X2SMA RF connectorSMA RFFGiga Lane PSF-S01RF connector	Q1	BFU730F	2X2mm		NXP Semiconductors	HBT
0.1pF (0.2pF)GRM1555C1HR10BA01 GRM1555C1HR20BA01DecouplingC2, C3Capacitor0402220pFDecouplingC4Capacitor040247nFDecouplingR1Resistor040247RStabilityR2Resistor040210RStabilityR3Resistor040227kBiasR4Resistor0402300RBiasX1, X2SMA RF connectorSMA RF connectorFGiga Lane PSF-S01RF connector	PCB		30X30mm			
C4Capacitor040247nFDecouplingR1Resistor040247RStabilityR2Resistor040210RStabilityR3Resistor040227kBiasR4Resistor0402300RBiasX1, X2SMA RF connectorGiga Lane PSF-S01RF connector	C1, C6	Capacitor	0402	0.1pF	GRM1555C1HR10BA01	Input match
R1Resistor040247RStabilityR2Resistor040210RStabilityR3Resistor040227kBiasR4Resistor0402300RBiasX1, X2SMA RF connectorGiga Lane PSF-S01RF connector	C2, C3	Capacitor	0402	220pF		Decoupling
R2Resistor040210RStabilityR3Resistor040227kBiasR4Resistor0402300RBiasX1, X2SMA RF connectorGiga Lane PSF-S01RF connector	C4	Capacitor	0402	47nF		Decoupling
R3Resistor040227kBiasR4Resistor0402300RBiasX1, X2SMA RF connectorGiga Lane PSF-S01RF connector	R1	Resistor	0402	47R		Stability
R4Resistor0402300RBiasX1, X2SMA RF connectorGiga Lane PSF-S01RF connector	R2	Resistor	0402	10R		Stability
X1, X2 SMA RF Giga Lane PSF-S01 RF connector connector	R3	Resistor	0402	27k		Bias
connector connector	R4	Resistor	0402	300R		Bias
X3 DC connector Molex, PCB header 2way Bias	X1, X2				Giga Lane PSF-S01	
	X3	DC connector			Molex, PCB header 2way	Bias

Table 2. Bill of materials


4.3 Printed Circuit Board details

The PCB material used for this LNA Evaluation Board is Rogers RO4003. The PC board consists of: 0.35um top metal layer, 0.5mm thickness low loss dielectric layer with ε_R = 3.38 and TanD=0.0024 and 0.35um bottom metal layer

4.4 LNA view


4.5 Measurement results

4.5.1 Gain and match – typical values

4.5.3 Linearity / OIP3 – typical values

Fig 11. BFU730F Ku band LNA – Linearity measurement plot

4.5.4 Gain, NF, Current vs temperature

BFU730F Ku LNA exhibits less than 1dB gain variation for temperature varying in the range of: -40°C to +85°C

Table 3.Gain / NF vs Temp

BFU730F EvB4 tested for Gain and NF variation over temperature^[1]

Temperature (°C)	lcc (mA)	NF (dB)	Gain (dB)
+25	11.6	1.45	10.7
+50	11.4	1.6	10.65
+70	11.1	1.75	10.6
+85	11.0	1.8	10.55
-10	11.8	1.2	11.2
-25	11.9	1.15	11.2
-40	12	1.1	11.25

[1] Measurements have been focused on relative variation of the Gain and NF vs. temperature, however the absolute numbers might not be accurate. NF and Gain plots are available by request.

4.5.5 Summary

Measurements results averaged over nine EvBs are presented in Table 4

Table 4.Typical results measured on the BFU730F Ku band LNA Evaluation BoardsOperating frequency is f=11.5GHz unless otherwise specified; Temp = 25 $^{\circ}$ C

Parameter		Symbol	Min	Тур	Мах	Unit
Supply Voltage		V _{CC}	4.75	5	5.25	v
Supply Current		I _{CC}	10.8	11.5	12.1	mA
	10.75GHz			10.55		dB
	11.25GHz			10.9		dB
Power gain	11.75GHz	G _p ^{[2] [3]}		11.15		dB
	12.25GHz			11		dB
	12.75GHz			10.4		dB
	10.75GHz	NF ^{[4] [5]}		1.4		dB
	11.25GHz			1.25		dB
Noise Figure	11.75GHz			1.2		dB
	12.25GHz			1.2		dB
	12.75GHz			1.35		dB
Input Return Loss		RL _{in}		12		dB
Output Return Loss		RL _{out}		12		dB
Input 1dB Gain Compression		P _i 1dB		0.5		dBm
Input third order inter	cept point	IP3 _i		10		dBm

[2] No gain correction has been applied. To apply gain correction see § 5.3

[3] Average Gain = 10.85dB

[4] NF correction applied, see § 5.3

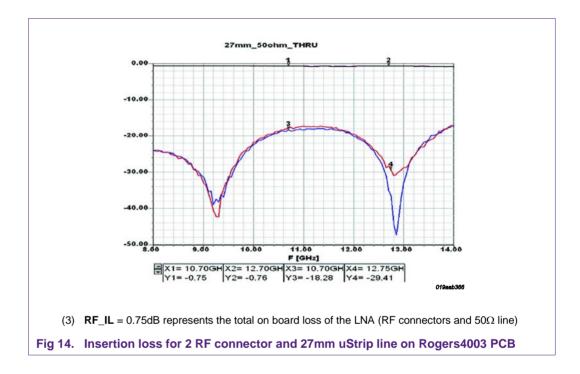
[5] Average NF = 1.3dB

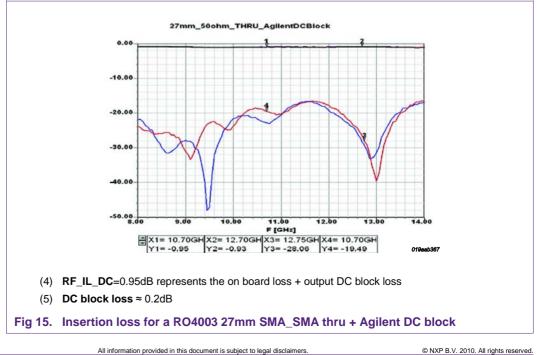
5. NF and Gain measurement corrections

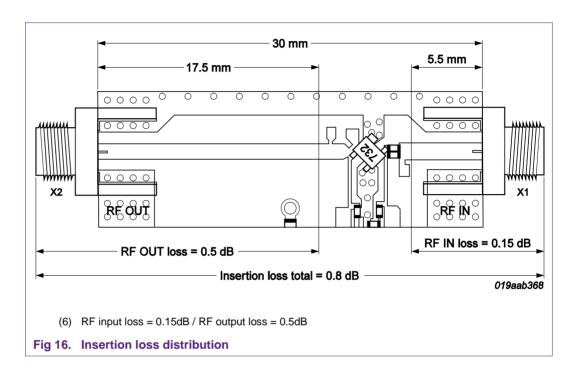
There are two types of errors and losses that have been taken into account to correct the NF and Gain measurement results: (1) Own system error for NF measurement and (2) insertion losses accounted to RF IN and RF OUT connectors, microstrip feed lines and the DC block used at the output of the LNA in NF measurements.

5.1 NF measurement system error

A Miteq professional amplifier, rated as NF=1dB, Gain=24dB, has been used as reference for NF measurement system correction. Its manufacturer data is in Fig 12:


Miteq 062 amplifier measured with the NF setup used to qualify the BFU730F Ku band LNA has the NF performances listed in Fig 13. The system correction factor, NFsys, is the difference between the measured NF and the 1dB reference value from the catalog


			SF & GAIN		CALIBRATED
RBW:	1 MH2	RF Atton.	O dB	2 nd Stage Corr.	On
A verage:	3	Auto Ref Level	On	Image Rejection	
RF:	10.011	ENR	most Vialue	INF.	1.47 dB
LO:	10 GH2	Loss In	5.29 dB 0 dB	Noise Temp.	1.47 05 116.84 K
LO: (F:		Loss Out	0 dB	Gain	23.46 dB
		2000 044	0.00	0.001	20110 00
		Erequen	y List Result		
	RF	NF	N	oise Temp	Gain
	10.000 GHz	1.470	dB	116.045 K	23.464 dB
	10.250 GHz	1.500	dB	1 19.623 K	23.809 dB
	10.500 GHz	1.510	dB	120.626 K	24.469 d8
52	10.750 GHz	1.539	dB	123.332 K	24.663 dB
	11.000 GHz	1.540	dB	123.445 K	24.427 dB
	11.250 GHz	1.557	dB	125.018 K	24.138 dB
	11.500 GHz	1.535	dB	122.928 K	24.126 dB
	11.750 GHz	1.552	dB	124.553 K	24.437 dB
	12.000 GH2	1.570		126.271 K	24.902 dB
	12.250 GHz	1.538	dB	123.270 K	24.992 d8
	12.500 GHz	1.572	dB	126.448 K	24.500 dB
	12.750 GHz	1.535	dB	122.929 K	23.952 dß
	13.000 GHz	1.570	dB	126.280 K	23.682 d8


5.2 Insertion losses

The losses that have to be taken into account are: (1) RF connectors and micro strip lines for Gain-match measurement and RF connectors and microstrip lines plus output DC block for the NF-Gain measurement.

Fig 14 and Fig 15 below plot the two losses:

Fig 16 shows the on board loss spitted between the input and the output:

5.3 Correction factors for Gain-match and NF-Gain measurements

Measurement type	Correction on	Corrected for	Correction value	Correction applied
Gain-match on Network Analyzer	Gain	RFin + RFout total loss	RF_IL=RFin + RFout = 0.75dB	Ν
NF-Gain on	NF	NF System error + RFin loss	NFsys+RFin = 0.5dB+0.15dB ≈0.65dB	Y
NF Analyzer	Gain	RFout loss + DC block loss	RF_IL_DC -NFsys-RFin=0.95dB-0.65dB = 0.3dB	Y

type	on	
Gain-match on	Gain	REin + REo

6. Abbreviations / explanations

Table 6. List of abbreviation within	n text
Abbreviation	Stands for
LNA	Low Noise Amplifier
LNB	Low Noise Block
Ku band LNB	LNB in the frequency band of 10.7 ~ 12.75GHz
NF	Noise Figure
PCB	Printed Circuit Board
BOM	Bill of materials
ABS-S LNB	LNB for China Satellite System
MW	Microwave
EM	Electromagnetic

Ku band LNA using BFU730F

7. Legal information

7.1 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

7.2 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from national authorities.

Evaluation products — This product is provided on an "as is" and "with all faults" basis for evaluation purposes only. NXP Semiconductors, its affiliates and their suppliers expressly disclaim all warranties, whether express, implied or statutory, including but not limited to the implied warranties of non-infringement, merchantability and fitness for a particular purpose. The entire risk as to the quality, or arising out of the use or performance, of this product remains with customer.

In no event shall NXP Semiconductors, its affiliates or their suppliers be liable to customer for any special, indirect, consequential, punitive or incidental damages (including without limitation damages for loss of business, business interruption, loss of use, loss of data or information, and the like) arising out the use of or inability to use the product, whether or not based on tort (including negligence), strict liability, breach of contract, breach of warranty or any other theory, even if advised of the possibility of such damages.

Notwithstanding any damages that customer might incur for any reason whatsoever (including without limitation, all damages referenced above and all direct or general damages), the entire liability of NXP Semiconductors, its affiliates and their suppliers and customer's exclusive remedy for all of the foregoing shall be limited to actual damages incurred by customer based on reasonable reliance up to the greater of the amount actually paid by customer for the product or five dollars (US\$5.00). The foregoing limitations, exclusions and disclaimers shall apply to the maximum extent permitted by applicable law, even if any remedy fails of its essential purpose.

7.3 Trademarks

Notice: All referenced brands, product names, service names and trademarks are property of their respective owners.

<Name> — is a trademark of NXP B.V.

8. List of figures

Fig 1.	ADS simulation circuit for BFU730F Ku band LNA4
Fig 2.	ADS Gain and match simulation results for BFU730F Ku band LNA5
Fig 3.	ADS Noise Figure simulation results for Ku band LNA5
Fig 4.	ADS stability simulation results for Ku band LNA
Fig 5.	ADS linearity simulation results for Ku band LNA
Fig 6.	Schematic for BFU730F Ku band LNA EvB7
Fig 7.	Layout and assembly information for BFU730F Ku band LNA EvB8
Fig 8.	BFU730F Ku LNA EvB9
Fig 9.	BFU730F Ku band LNA – Gain and match measurement plots10
Fig 10.	BFU730F Ku band LNA – NF and Gain measurement plots10
Fig 11.	BFU730F Ku band LNA – Linearity measurement plot11
Fig 12.	Miteq amp 06213
Fig 13.	Miteq 062 amplifier NF and Gain13
Fig 14.	Insertion loss for 2 RF connector and 27mm uStrip line on Rogers4003 PCB14
Fig 15.	Insertion loss for a RO4003 27mm SMA_SMA thru + Agilent DC block
Fig 16.	Insertion loss distribution15

9. List of tables

Table 1.	BFU730F vs pHemt NF and Gain performance	
	comparison	3
Table 2.	Bill of materials	8
Table 3.	Gain / NF vs Temp	11
Table 4.	Typical results measured on the BFU730F Ku	
	band LNA Evaluation Boards	12
Table 5.	Correction factors / values	15
Table 6.	List of abbreviation within text	16

10. Contents

1.	Introduction3
2.	Requirements for Ku band LNA3
3.	Design4
3.1	BFU730F Ku LNA - ADS simulation circuit4
3.2	BFU730F Ku LNA - ADS Gain and match
	simulation results5
3.3	BFU730F Ku LNA - ADS NF simulation results5
3.4	BFU730F Ku band LNA - ADS stability simulation
	results
3.5	BFU730F Ku band LNA - ADS linearity simulation results
4.	Implementation
4.1 4.2	Schematic
4.2 4.3	Layout and assembly
4.3	LNA view
4.5	Measurement results
4.5.1	Gain and match – typical values10
4.5.2	NF and Gain – typical values
4.5.3	Linearity / OIP3 – typical values11
4.5.4	Gain, NF, Current vs temperature11
4.5.5	Summary12
5.	NF and Gain measurement corrections13
5.1	NF measurement system error13
5.2	Insertion losses
5.3	Correction factors for Gain-match and NF-Gain
	measurements15
6.	Abbreviations / explanations16
7.	Legal information17
7.1	Definitions17
7.2	Disclaimers17
7.3	Trademarks17
8.	List of figures18
9.	List of tables19
10.	Contents20

Please be aware that important notices concerning this document and the product(s) described herein, have been included in the section 'Legal information'.

© NXP B.V. 2010.

All rights reserved.

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com

> Date of release: 11 January 2011 Document identifier: AN11010