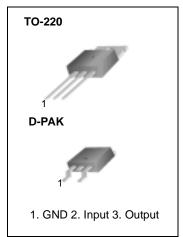
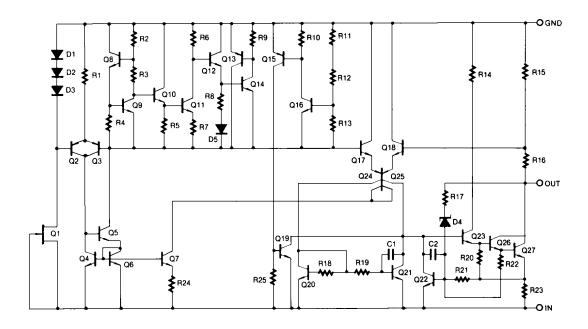


KA79MXX


3-Terminal 0.5A Negative Voltage Regulator

Features


- · No external components required
- Output current in excess of 0.5A
- · Internal thermal overload
- · Internal short circuit current limiting
- Output transistor safe area compensation
- Output voltages of -5V,-6V,-8V, -12V,-15V,-18V,-24V

Description

The KA79MXX series of 3-Terminal medium current negative voltage regulators are monolithic integrated circuits designed as fixed voltage regulators. These regulators employ internal current limiting, thermal shutdown and safe area compensation making them essentially indestructible.

Schematic Diagram

Absolute Maximum Ratings

Parameter	Symbol	Value	Unit
Input Voltage(for V _O = -5V to -18V) (for V _O = -24V)	V _I V _I	-35 -40	V V
Thermal Resistance Junction-Cases	R _θ JC	5	°C /W
Thermal Resistance Junction-Air	RθJA	65	°C /W
Operating Temperature Range	TOPR	0 ~ +125	°C
Storage Temperature Range	TSTG	-65 ~ +125	°C

Electrical Characteristics (KA79M05/KA79M05R)

(Refer to test circuit, 0 °C \leq TJ \leq +125 °C, IO =350mA, VI =-10V,unless otherwise specified, CI =0.33 μ F,CO=0.1 μ F)

Parameter	Symbol	Conditions		Min.	Тур.	Max.	Unit
		TJ= +25 °C		-4.8	-5	-5.2	
Output Voltage	Vo	-	I _O = 5mA to 350mA V _I = -V7 to -25V		-5	-5.25	V
Line Regulation (Note1)	ΔVO	T1-125°C	V _I = -7V to -25V	-	7.0	50	mV
Line Regulation (Note1)	ΔνΟ	T _J =+25°C V _{I=} -8V to -25V	-	2.0	30	IIIV	
Load Regulation (Note1)	ΔVο	I _O = 5mA to 500mA T _J = +25 °C		-	30	100	mV
Quiescent Current	IQ	TJ= +25 °C		-	3.0	6.0	mA
		IO = 5mA to 350mA		-	-	0.4	
Quiescent Current Change	ΔlQ	IO = 200mA VI = -8V to -25	I _O = 200mA V _I = -8V to -25V		-	0.4	mA
Output Voltage Drift	ΔVo/ΔΤ	IO = 5mA		-	-0.2	-	mV/ °C
Output Noise Voltage	VN	f = 10Hz, 100KHz T _A = +25 °C		-	40	-	μV
Ripple Rejection	RR	f = 120Hz V _J = -8Vto -18V		54	60	-	dB
Dropout Voltage	VD	TJ =+25 °C, IO = 500mA		-	1.1	-	V
Short Circuit Current	Isc	TJ= +25 °C, VI = -35V		-	140	-	mA
Peak Current	IPK	TJ= +25 °C		-	650	-	mA

^{1.} Load and line regulation are specified at constant junction temperature. Change in V_O due to heating effects must be taken into account separately. Pulse testing with low duty is used.

Electrical Characteristics (KA79M06)

(Refer to test circuit, 0 $^{\circ}$ C \leq TJ \leq +125 $^{\circ}$ C, IO =350mA, VI = -11V,unless otherwise specified)

Parameter	Symbol	C	Conditions	Min.	Тур.	Max.	Unit
		T _J = +25 °C	T _J = +25 °C - I _O = 5mA to 350mA V _I = -8.0V to -25V -		- 6.0	- 6.25	
Output Voltage	Vo	•			- 6.0	- 6.3	V
Line Regulation (Note1)	ΔVο	TJ =+25°C	VI = -8Vto -25V	-	7.0	60	mV
Line Regulation (Note1)	ΔνΟ	1J = +23 C	V _I = -9V to -19V	-	2.0	40	IIIV
Load Regulation (Note1)	ΔVO	TJ= +25 °C	IO = 5.0mA to 500mA	-	30	120	mV
Quiescent Current	IQ	T _J = +25 °C		-	3	6	mA
Quiescent Current Change	ΔlQ	IO = 5mA to 3	350mA	-	-	0.4	
Quiescent Current Change	ΔiQ	V _I = -8V to -25V		-	-	0.4	mA
Output Voltage Drift	ΔV0/ΔΤ	IO = 5mA		-	0.4	-	mV/°C
Output Noise Voltage	VN	f = 10Hz to 1	00KHz,T _A = +25 °C	-	50	-	μV
Ripple Rejection	RR	f = 120Hz,V _I = -9V to -19V		54	60	-	dB
Dropout Voltage	VD	IO = 500mA, TJ = +25 °C		-	1.1	-	V
Short Circuit Current	Isc	V _I = -35V, T _J = +25 °C		-	140	-	mA
Peak Current	IPK	TJ= +25 °C		-	650	-	mA

^{1.} Load and line regulation are specified at constant junction temperature. Change in VO due to heating effects must be taken into account separately. Pulse testing with low duty is used.

Electrical Characteristics (KA79M08/KA79M08R)

(Refer to test circuit, 0 $^{\circ}$ C \leq TJ \leq +125 $^{\circ}$ C, IO =350mA, VI = -14V,unless otherwise specified)

Parameter	Symbol	C	Conditions	Min.	Тур.	Max.	Unit
		T _J = +25 °C		- 7.7	- 8.0	- 8.3	
Output Voltage	Vo	IO = 5mA to 3 V _I = -10.5V to		- 7.6	- 8.0	- 8.4	V
Line Regulation (Note1)	41/0	T. 125°C	VI = -10.5V to -25V	-	7.0	80	mV
Line Regulation (Note1)	ΔVO	TJ =+25°C	V _I = -11V to -21V	-	2.0	50	IIIV
Load Regulation (Note1)	ΔVο	TJ= +25 °C	IO = 5.0mA to 500mA	-	30	160	mV
Quiescent Current	IQ	T _J = +25 °C		-	3	6	mA
Quiaccont Current Change	Alo	IO = 5mA to 350mA		-	-	0.4	
Quiescent Current Change	ΔlQ	$V_{I} = -8V \text{ to } -25V$		-	-	0.4	mA
Output Voltage Drift	ΔV0/ΔΤ	Io = 5mA		-	-0.6	-	mV/ °C
Output Noise Voltage	VN	f = 10Hz to 1	00KHz,T _A = +25 °C	-	60	-	μV
Ripple Rejection	RR	f = 120Hz,V _I = -9V to -19V		54	59	-	dB
Dropout Voltage	VD	IO = 500mA, TJ = +25 °C		-	1.1	-	V
Short Circuit Current	Isc	V _I = -35V, T _J = +25 °C		•	140	-	mA
Peak Current	IPK	TJ = +25 °C		ı	650	-	mA

^{1.} Load and line regulation are specified at constant junction temperature. Change in VO due to heating effects must be taken into account separately. Pulse testing with low duty is used.

Electrical Characteristics (KA79M12)

(Refer to test circuit, 0 $^{\circ}$ C \leq TJ \leq +125 $^{\circ}$ C, IO =350mA, VI = -19V,unless otherwise specified)

Parameter	Symbol	C	Conditions	Min.	Тур.	Max.	Unit		
		T _J = +25 °C		T _J = +25 °C		-11.5	-12	-12.5	
Output Voltage	Vo	IO = 5mA to 3					V		
		$V_{I} = -14.5V \text{ to}$	o -30V	-11.4	-12	-12.6			
Line Regulation (Note1)	ΔVο	TJ =+25°C	V _I = -14.5V to -30V	-	8.0	80	mV		
Line Regulation (Note I)	ΔνΟ	1) =+25 0	V _I = -15V to -25V	-	3.0	50	IIIV		
Load Regulation (Note1)	ΔVO	TJ= +25 °C	IO = 5.0mA to 500mA	-	30	240	mV		
Quiescent Current	IQ	T _J = +25 °C		-	3	6	mA		
Quiescent Current Change	A.I.o.	ΔI_Q IO = 5mA to 350mA V _I = -14.5V to -30V		-	-	0.4			
Quiescent Current Change	ΔiQ			-	-	0.4	mA		
Output Voltage Drift	ΔV0/ΔΤ	IO = 5mA		-	-0.8	-	mV/°C		
Output Noise Voltage	VN	f = 10Hz to 1	00KHz,T _A =+25 °C	-	75	-	μV		
Ripple Rejection	RR	f = 120Hz,V _I = -15V to -25V		54	60	-	dB		
Dropout Voltage	VD	IO = 500mA, TJ = +25 °C		-	1.1	-	V		
Short Circuit Current	Isc	V _I = -35V, T _J = +25 °C		-	140	-	mA		
Peak Current	IPK	TJ= +25 °C		-	650	-	mA		

^{1.} Load and line regulation are specified at constant junction temperature. Change in VO due to heating effects must be taken into account separately. Pulse testing with low duty is used.

Electrical Characteristics (KA79M15)

(Refer to test circuit, $0 \, ^{\circ}\text{C} \leq \text{TJ} \leq +125 \, ^{\circ}\text{C}$, $\text{IO} = 350 \, \text{mA}$, $\text{VI} = -23 \, \text{V}$, unless otherwise specified)

Parameter	Symbol	C	Conditions	Min.	Тур.	Max.	Unit		
		T _J = +25 °C -		T _J = +25 °C		- 14.4	- 15	- 15.6	
Output Voltage	Vo		IO = 5mA to 350mA VI = -17.5V to -30V		- 15	-15.75	V		
Line Regulation (Note1)	ΔVο	T _J =+25°C	V _I = -17.5Vto -30V	-	9.0	80	mV		
Line Regulation (Note I)	ΔνΟ	1J =+25°C =	V _I = -18V to -28V	-	5.0	50	IIIV		
Load Regulation (Note1)	ΔVο	TJ= +25 °C	IO = 5.0mA to 500mA	-	30	240	mV		
Quiescent Current	lQ	T _J = +25 °C	T _J = +25 °C		3	6	mA		
Quiocoont Current Change	ΔlQ	IO = 5mA to 3	IO = 5mA to 350mA		IO = 5mA to $350mA$		-	0.4	
Quiescent Current Change		V _I = -17.5V to	o -28V	-	-	0.4	mA		
Output Voltage Drift	ΔV0/ΔΤ	IO = 5mA		-	-1.0	-	mV/ °C		
Output Noise Voltage	VN	f = 10Hz to 1	00KHz,T _A = +25 °C	-	90	-	μV		
Ripple Rejection	RR	f = 120Hz,V _I = -18.5V to -28.5V		54	59	-	dB		
Dropout Voltage	VD	IO = 500mA, TJ = +25 °C		-	1.1	-	V		
Short Circuit Current	Isc	V _I = -35V, T _J = +25 °C		-	140	-	mA		
Peak Current	IPK	TJ= +25 °C		•	650	-	mA		

^{1.} Load and line regulation are specified at constant junction temperature. Change in VO due to heating effects must be taken into account separately. Pulse testing with low duty is used.

Electrical Characteristics (KA79M18)

(Refer to test circuit, 0 $^{\circ}$ C \leq TJ \leq +125 $^{\circ}$ C, IO =350mA, VI = -27V,unless otherwise specified)

Parameter	Symbol	C	Conditions	Min.	Тур.	Max.	Unit
		T _J = +25 °C -		- 17.3	- 18	- 18.7	
Output Voltage	Vo	•	IO = 5mA to 350mA VI = -21V to -33V		- 18	- 18.9	V
Line Regulation (Note1)	ΔVο	TJ =+25°C	V _I = -21V to -33V	-	9.0	80	mV
Line Regulation (Note 1)	ΔνΟ	V	V _I = -24V to -30V	-	5.0	80	IIIV
Load Regulation (Note1)	ΔVο	TJ= +25 °C	IO = 5.0mA to 500mA	-	30	360	mV
Quiescent Current	lQ	T _J = +25 °C		-	3	6	mA
Quiescent Current Change	A.I.o.	IO = 5mA to 350mA		-	-	0.4	
Quiescent Current Change	ΔlQ	$V_I = -21V \text{ to } -33V$		-	-	0.4	mA
Output Voltage Drift	ΔV0/ΔΤ	Io = 5mA		-	-1.0	-	mV/ °C
Output Noise Voltage	VN	f = 10Hz to 1	00KHz,T _A = +25 °C	-	110	-	μV
Ripple Rejection	RR	f = 120Hz,V _I = -22V to -32V		54	59	-	dB
Dropout Voltage	VD	IO = 500mA, TJ = +25 °C		-	1.1	-	V
Short Circuit Current	Isc	V _I = -35V, T _J = +25 °C		-	140	-	mA
Peak Current	IPK	TJ= +25 °C		•	650	-	mA

Note;

^{1.} Load and line regulation are specified at constant junction temperature. Change in VO due to heating effects must be taken into account separately. Pulse testing with low duty is used.

Electrical Characteristics (KA79M24)

(Refer to test circuit, 0 $^{\circ}$ C \leq TJ \leq +125 $^{\circ}$ C, IO =350mA, VI = -33V,unless otherwise specified)

Parameter	Symbol	C	Conditions	Min.	Тур.	Max.	Unit		
		IO - 5mA to 350mA		T _J = +25 °C		- 23	- 24	- 25	
Output Voltage	Vo			- 22.8	- 24	- 25.2	V		
Line Regulation (Note1)	ΔVΩ	T1-+25°C	V _I = -27V to -38V	-	9.0	80	mV		
Line Regulation (Note1)	ΔνΟ	T _J =+25°C	V _I = -30V to -36V	-	5.0	70	IIIV		
Load Regulation (Note1)	ΔVO	TJ= +25 °C	IO = 5.0mA to 500mA	-	30	300	mV		
Quiescent Current	IQ	T _J = +25 °C		-	3	6	mA		
Quiaccont Current Change	IO = 5mA to 350mA		Ala	350mA	-	-	0.4		
Quiescent Current Change	ΔlQ	$V_{I} = -27V \text{ to } -38V$		-	-	0.4	mA		
Output Voltage Drift	ΔV0/ΔΤ	Io = 5mA		-	-1.0	-	mV/ °C		
Output Noise Voltage	VN	f = 10Hz to 1	00KHz,T _A = +25 °C	-	180	-	μV		
Ripple Rejection	RR	f = 120Hz,V _I = -28V to -38V		54	58	-	dB		
Dropout Voltage	VD	IO = 500mA, TJ = +25 °C		-	1.1	-	V		
Short Circuit Current	Isc	V _I = -35V, T _J = +25 °C		-	140	-	mA		
Peak Current	IPK	TJ= +25 °C		-	650	-	mA		

^{1.} Load and line regulation are specified at constant junction temperature. Change in VO due to heating effects must be taken into account separately. Pulse testing with low duty is used.

Typical Applications

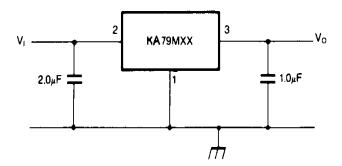


Figure 1. Fixed Output Regulator

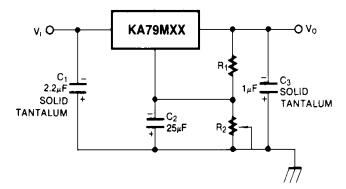
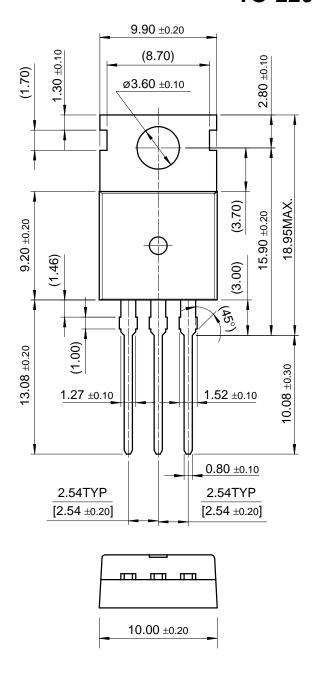
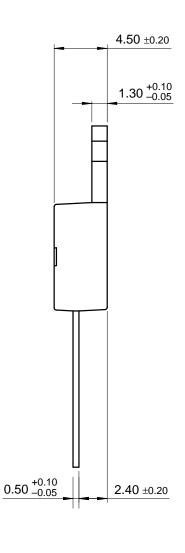


Figure 2. Variable Output

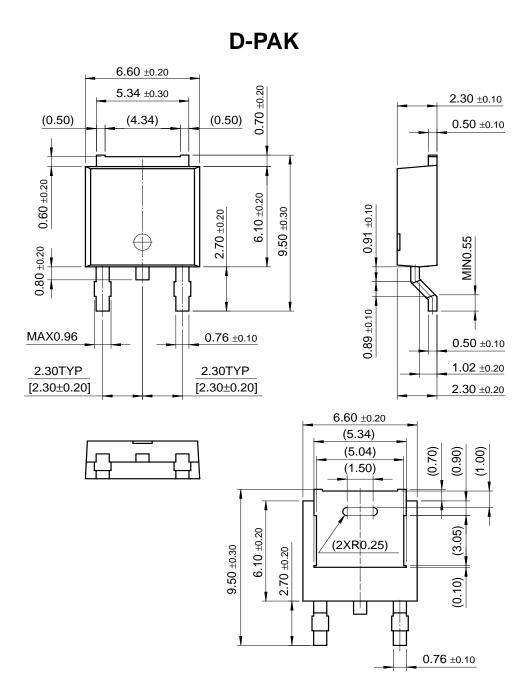

- 1. Required for stability. For value given, capacitor must be solid tantalum. 25μF aluminum electrolytic may be substituted.
- 2. C_2 improves transient response and ripple rejection. Do not increase beyond $50\mu F$.


Mechanical Dimensions

Package

Dimensions in millimeters

TO-220



Mechanical Dimensions (Continued)

Package

Dimensions in millimeters

Ordering Information

Product Number	Package	Operating Temperature
KA79M05		
KA79M06		
KA79M08		
KA79M12	TO-220	
KA79M15		0 ~ + 125°C
KA79M18		0~+125 C
KA79M24		
KA79M05R		
KA79M08R	D-PAK	
KA79M12R		

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com

Signal

Discrete

Interface

_Logic

Microcontrollers

Non-Volatile

Memory

Optoelectronics

Markets and

applications

New products

Product selection and

parametric search

Cross-reference

search

technical information

buy products

technical support

my Fairchild

company

Contents

General description | Features | Product status/pricing/packaging

PDF

General description

The KA79MXX series of 3-Terminal medium current negative voltage regulators are monolithic integrated circuits designed as fixed voltage regulators. These regulators employ internal current limiting, thermal shutdown and safe-area compensation making them essentially in destructible.

Datasheet

Download this datasheet

e-mail this datasheet

This pagePrint version

Dotted line

How to order products

Product Change Notices

(PCNs)

Dotted line

Support

Distributor and field sales

representatives

Dotted line

Quality and reliability

Design tools

back to top

Features

- No external components required
- Output current in excess of 0.5A
- Internal thermal-overload
- Internal short circuit current limiting
- Output transistor safe-area compensation
- Output Voltages of -5V, -6V,-8V,-12V,-15V,-18V, -24V

back to top

Product status/pricing/packaging

Product	Product status	Package type	Leads	Packing method
KA79M05TSTU	Full Production	TO-220	3	RAIL
KA79M05RTM	Full Production	TO-252(DPAK)	2	TAPE REEL
KA79M05TU	Full Production	TO-220	3	RAIL
KA79M05	Full Production	TO-220	3	BULK

file:///E|/new/html/KA79M05.html

KA79M05RTF	Full Production	TO-252(DPAK)	2	TAPE REEL

back to top

<u>Home</u> | <u>Find products</u> | <u>Technical information</u> | <u>Buy products</u> | <u>Support</u> | <u>Company</u> | <u>Contact us</u> | <u>Site index</u> | <u>Privacy policy</u>

© Copyright 2002 Fairchild Semiconductor