

LC²MOS 5 Ω R_{on} SPST Switches ADG451/ADG452/ADG453

FEATURES

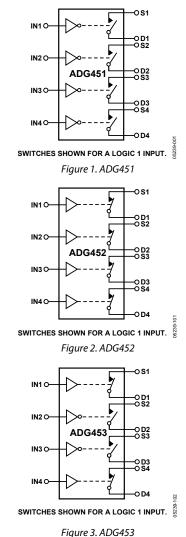
Low on resistance (4 Ω) On resistance flatness (0.2 Ω) 44 V supply maximum ratings ±15 V analog signal range Fully specified at ±5 V, 12 V, ±15 V Ultralow power dissipation (18 μW) ESD 2 kV Continuous current (100 mA) Fast switching times t_{ON} 70 ns t_{OFF} 60 ns TTL-/CMOS-compatible Pin-compatible upgrade for ADG411/ADG412/ADG413 and ADG431/ADG432/ADG433

APPLICATIONS

Relay replacement Audio and video switching Automatic test equipment Precision data acquisition Battery-powered systems Sample-and-hold systems Communication systems PBX, PABX systems Avionics

GENERAL DESCRIPTION

The ADG451/ADG452/ADG453 are monolithic CMOS devices comprising four independently selectable switches. They are designed on an enhanced LC²MOS process that provides low power dissipation yet gives high switching speed and low on resistance.


The on resistance profile is very flat over the full analog input range, ensuring excellent linearity and low distortion when switching audio signals. Fast switching speed, coupled with high signal bandwidth, makes the parts suitable for video signal switching. CMOS construction ensures ultralow power dissipation, making the parts ideally suited for portable and batterypowered instruments.

The ADG451/ADG452/ADG453 contain four independent, single-pole/single-throw (SPST) switches. The ADG451 and ADG452 differ only in that the digital control logic is inverted. The ADG451 switches are turned on with a logic low on the appropriate control input, while a logic high is required for the ADG452.

Rev. C

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

FUNCTIONAL BLOCK DIAGRAMS

The ADG453 has two switches with digital control logic similar to that of the ADG451, while the logic is inverted on the other two switches.

Each switch conducts equally well in both directions when on, and each has an input signal range that extends to the supplies. In the off condition, signal levels up to the supplies are blocked.

The ADG453 exhibits break-before-make switching action for use in multiplexer applications. Inherent in the design is low charge injection for minimum transients when switching the digital inputs.

 One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.

 Tel: 781.329.4700
 www.analog.com

 Fax: 781.461.3113
 ©2006 Analog Devices, Inc. All rights reserved.

TABLE OF CONTENTS

Features 1
Applications1
General Description1
Functional Block Diagrams1
Revision History 2
Product Highlights
Specifications
15 V Dual Supply 4
12 V Single Supply 5
5 V Dual Supply6

Absolute Maximum Ratings7
ESD Caution7
Pin Configuration and Function Descriptions8
Typical Performance Characteristics9
Terminology11
Applications
Test Circuits
Outline Dimensions
Ordering Guide

REVISION HISTORY

10/06—Rev. B to Rev. C	
Changes to Table 4	9
Changes to Ordering Guide	8

12/04—Rev. A to Rev. B

Updated Format	Universal
Changes to Specifications Section	3
Changes to Absolute Maximum Ratings Section	8
Changes to Pin Configuration and Function	
Descriptions Section	9
Updated Outline Dimensions	
Changes to Ordering Guide	17

2/98—Rev. 0 to Rev. A

10/97—Revision 0: Initial Version

PRODUCT HIGHLIGHTS

- 1. Low $R_{\rm ON}$ (5 Ω maximum).
- 2. Ultralow Power Dissipation.
- 3. Extended Signal Range.

The ADG451/ADG452/ADG453 are fabricated on an enhanced LC²MOS process, giving an increased signal range that fully extends to the supply rails.

4. Break-Before-Make Switching.

This prevents channel shorting when the switches are configured as a multiplexer (ADG453 only.)

5. Single-Supply Operation.

For applications in which the analog signal is unipolar, the ADG451/ADG452/ADG453 can be operated from a single rail power supply. The parts are fully specified with a single 12 V power supply and remain functional with single supplies as low as 5.0 V.

6. Dual-Supply Operation.

For applications where the analog signal is bipolar, the ADG451/ADG452/ADG453 can be operated from a dual power supply ranging from ± 4.5 V to ± 20 V.

SPECIFICATIONS

15 V DUAL SUPPLY

 V_{DD} = 15 V, V_{SS} = -15 V, V_L = 5 V, GND = 0 V. All specifications T_{MIN} to T_{MAX} , unless otherwise noted. **Table 1.**

		lersion ¹		
Parameter	25°C	T _{MIN} to T _{MAX}	Unit	Test Conditions/Comments
ANALOG SWITCH				
Analog Signal Range		$V_{\text{SS}} to V_{\text{DD}}$	V	
On Resistance (R _{ON})	4		Ωtyp	$V_D = -10 V$ to $+10 V$, $I_S = -10 mA$
	5	7	Ωmax	
On Resistance Match Between Channels (ΔR_{ON})	0.1		Ωtyp	$V_D = \pm 10 V$, $I_S = -10 mA$
	0.5	0.5	Ωmax	
On Resistance Flatness (R _{FLAT(ON)})	0.2		Ωtyp	$V_D = -5 V$, 0 V, +5 V, $I_S = -10 mA$
	0.5	0.5	Ωmax	
LEAKAGE CURRENTS ²				
Source Off Leakage, Is (OFF)	±0.02		nA typ	$V_D = \pm 10 V$, $V_S = \pm 10 V$; see Figure 17
	±0.5	±2.5	nA max	
Drain Off Leakage, I _D (OFF)	±0.02		nA typ	$V_D = \pm 10 V$, $V_S = \pm 10 V$; see Figure 17
	±0.5	±2.5	nA max	
Channel On Leakage, I _D , I _s (ON)	±0.04		nA typ	$V_D = V_S = \pm 10 V$; see Figure 18
	±1	±5	nA max	
DIGITAL INPUTS				
Input High Voltage, V _{INH}		2.4	V min	
Input Low Voltage, V _{INL}		0.8	V max	
Input Current, I _{INL} or I _{INH}	0.005		μA typ	$V_{IN} = V_{INL}$ or V_{INH} ; all others = 2.4 V or 0.8 V, respectively
		±0.5	µA max	
DYNAMIC CHARACTERISTICS ³				
t _{on}	70		ns typ	R_L = 300 $\Omega,$ C_L = 35 pF, V_S = ±10 V; see Figure 19
	180	220	ns max	
t _{OFF}	60		ns typ	R_L = 300 $\Omega,$ C_L = 35 pF, V_S = ± 10 V; see Figure 19
	140	180	ns max	
Break-Before-Make Time Delay, t_D (ADG453 Only)	15		ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$, $V_{S1} = V_{S2} = +10 V$; see Figure 20
	5	5	ns min	
Charge Injection	20		pC typ	$V_s = 0 V$, $R_s = 0 \Omega$, $C_L = 1.0 nF$; see Figure 21
	30		pC max	
Off Isolation	65		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 22
Channel-to-Channel Crosstalk	-90		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 23
Cs (OFF)	37		pF typ	f = 1 MHz
C _D (OFF)	37		pF typ	f = 1 MHz
C _D , C _S (ON)	140		pF typ	f = 1 MHz
POWER REQUIREMENTS				$V_{DD} = 16.5 \text{ V}, V_{SS} = -16.5 \text{ V}; \text{ digital inputs} = 0 \text{ V or } 5 \text{ V}$
ldd	0.0001		μA typ	
	0.5	5	µA max	
lss	0.0001		μA typ	
	0.5	5	µA max	
l	0.0001		μA typ	
	0.5	5	µA max	
	0.0001		μA typ	
	0.5	5	μA max	

¹ Temperature range for B version is -40° C to $+85^{\circ}$ C.

 $^{2} T_{MAX} = 70^{\circ}C.$

³ Guaranteed by design, not subject to production test.

12 V SINGLE SUPPLY

 V_{DD} = 12 V, V_{SS} = 0 V, V_L = 5 V, GND = 0 V. All specifications T_{MIN} to T_{MAX} , unless otherwise noted.

Table 2.

B Version ¹						
Parameter	25°C	T _{MIN} to T _{MAX}	Unit	Test Conditions/Comments		
ANALOG SWITCH						
Analog Signal Range		$0 V to V_{DD}$	V			
On Resistance (R _{ON})	6		Ωtyp	$V_D = 0 V to +10 V$, $I_S = -10 mA$		
	8	10	Ωmax			
On Resistance Match Between Channels (ΔR_{ON})	0.1		Ωtyp	$V_D = 10 V$, $I_S = -10 mA$		
	0.5	0.5	Ωmax			
On Resistance Flatness (R _{FLAT(ON)})	1.0	1.0	Ωtyp	$V_D = 0 V, 5 V, I_S = -10 mA$		
LEAKAGE CURRENTS ^{2, 3}						
Source Off Leakage, Is (OFF)	±0.02		nA typ	$V_D = 0 V$, 10 V, $V_S = 0 V$, 10 V; see Figure 17		
	±0.5	±2.5	nA max			
Drain Off Leakage, I _D (OFF)	±0.02		nA typ	$V_D = 0 V$, 10 V, $V_s = 0 V$, 10 V; see Figure 17		
	±0.5	±2.5	nA max			
Channel On Leakage, I _D , I _s (ON)	±0.04		nA typ	$V_D = V_S = 0 V$, 10 V; see Figure 18		
	±1	±5	nA max			
DIGITAL INPUTS						
Input High Voltage, V _{INH}		2.4	V min			
Input Low Voltage, V _{INL}		0.8	V max			
Input Current, I _{INL} or I _{INH}	0.005		μA typ	$V_{IN} = V_{INL}$ or V_{INH}		
		±0.5	µA max			
DYNAMIC CHARACTERISTICS ⁴						
t _{on}	100		ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$, $V_S = 8 V$; see Figure 19		
	220	260	ns max			
t _{OFF}	80		ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$, $V_S = 8 V$; see Figure 19		
	160	200	ns max			
Break-Before-Make Time Delay, t _D (ADG453 Only)	15		ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$, $V_{S1} = V_{S2} = 8 V$;		
				see Figure 20		
	10	10	ns min			
Charge Injection	10		pC typ	$V_s = 6 V$, $R_s = 0 \Omega$, $C_L = 1.0 nF$; see Figure 21		
Channel-to-Channel Crosstalk	-90		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 23		
Cs (OFF)	60		pF typ	f = 1 MHz		
C _D (OFF)	60		pF typ	f = 1 MHz		
C _D , C _s (ON)	100		pF typ	f = 1 MHz		
POWER REQUIREMENTS				$V_{DD} = 13.2 \text{ V}$; digital inputs = 0 V or 5 V		
I _{DD}	0.0001		μA typ			
	0.5	5	μA max			
ΙL	0.0001		μA typ			
	0.5	5	μA max	$V_L = 5.5 V$		
I _{GND} ⁴	0.0001		μA typ			
	0.5	5	μA max	$V_L = 5.5 V$		

¹ Temperature range for B version is -40° C to $+85^{\circ}$ C.

 2 T_{MAX} = 70°C.

³ Tested with dual supplies. ⁴ Guaranteed by design, not subject to production test.

5 V DUAL SUPPLY

 V_{DD} = +5 V, V_{SS} = -5 V, V_L = +5 V, GND = 0 V. All specifications T_{MIN} to T_{MAX} , unless otherwise noted.

Table 3.

B Version ¹						
Parameter	25°C	T _{MIN} to T _{MAX}	Unit	Test Conditions/Comments		
ANALOG SWITCH						
Analog Signal Range		V_{SS} to V_{DD}	V			
On Resistance (Ron)	7		Ωtyp	$V_D = -3.5$ V to $+3.5$ V, $I_S = -10$ mA		
	12	15	Ωmax			
On Resistance Match Between Channels (ΔR_{ON})	0.3		Ωtyp	$V_D = 3.5 \text{ V}, \text{ Is} = -10 \text{ mA}$		
	0.5	0.5	Ωmax			
LEAKAGE CURRENTS ^{2, 3}						
Source Off Leakage, Is (OFF)	±0.02		nA typ	$V_D = \pm 4.5$, $V_S = \pm 4.5$; see Figure 17		
	±0.5	±2.5	nA max			
Drain Off Leakage, I _D (OFF)	±0.02		nA typ	$V_D = 0 V$, 5 V, $V_S = 0 V$, 5 V; see Figure 17		
	±0.5	±2.5	nA max			
Channel On Leakage, I _D , Is (ON)	±0.04		nA typ	$V_D = V_S = 0 V$, 5 V; see Figure 18		
	±1	±5	nA max			
DIGITAL INPUTS						
Input High Voltage, V _{INH}		2.4	V min			
Input Low Voltage, VINL		0.8	V max			
Input Current, I _{INL} or I _{INH}	0.005		μA typ	$V_{IN} = V_{INL} \text{ or } V_{INH}$		
		±0.5	µA max			
DYNAMIC CHARACTERISTICS ⁴						
ton	160		ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$, $V_S = 3 V$; see Figure 19		
	220	300	ns max			
toff	60		ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$, $V_S = 3 V$; see Figure 19		
	140	180	ns max			
Break-Before-Make Time Delay, t _D (ADG453 Only)	50		ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$, $V_{S1} = V_{S2} = 3 V$; see Figure 20		
	5	5	ns min			
Charge Injection	10		pC typ	$V_s = 0 V, R_s = 0 \Omega, C_L = 1.0 nF$; see Figure 21		
Off Isolation	65		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 22		
Channel-to-Channel Crosstalk	-76		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 23		
Cs (OFF)	48		pF typ	f = 1 MHz		
C _D (OFF)	48		pF typ	f = 1 MHz		
C _D , C _S (ON)	148		pF typ	f = 1 MHz		
POWER REQUIREMENTS				$V_{DD} = 5.5 \text{ V}$; digital inputs = 0 V or 5 V		
lod	0.0001		μA typ			
	0.5	5	µA max			
lss	0.0001		μA typ			
	0.5	5	µA max			
lı.	0.0001		μA typ			
	0.5	5	µA max	$V_{L} = 5.5 V$		
	0.0001		μA typ			
	0.5	5	µA max	$V_{L} = 5.5 V$		

¹ Temperature range for B version is -40° C to $+85^{\circ}$ C. ² T_{MAX} = 70° C. ³ Tested with dual supplies. ⁴ Guaranteed by design, not subject to production test.

ABSOLUTE MAXIMUM RATINGS

 $T_A = 25^{\circ}C$, unless otherwise noted.

Table 4.

Parameters	Ratings
V _{DD} to V _{SS}	44 V
V _{DD} to GND	-0.3 V to +32 V
Vss to GND	+0.3 V to -32 V
V ₁ to GND	-0.3 V to V _{DD} + 0.3 V
Analog, Digital Inputs ¹	$V_{SS} - 2V$ to $V_{DD} + 2V$ or 30 mA, whichever occurs first
Continuous Current, S or D	100 mA
Peak Current, S or D (pulsed at 1 ms, 10% duty cycle maximum)	300 mA
Operating Temperature Range	
Industrial (B Version)	-40°C to +85°C
Storage Temperature Range	–65°C to +150°C
Junction Temperature	150°C
Plastic DIP Package, Power Dissipation	470 mW
θ_{JA} Thermal Impedance	117°C/W
Lead Temperature, Soldering (10 sec)	260°C
SOIC Package, Power Dissipation	600 mW
θ_{JA} Thermal Impedance	77°C/W
TSSOP Package, Power Dissipation	450 mW
θ_{JA} Thermal Impedance	115°C/W
θ_{JC} Thermal Impedance	35°C/W
Lead Temperature, Soldering	
Vapor Phase (60 sec)	215°C
Infrared (15 sec)	220°C
ESD	2 kV

¹ Overvoltages at IN, S, or D are clamped by internal diodes. Current should be limited to the maximum ratings given.

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Only one absolute maximum rating may be applied at any one time.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

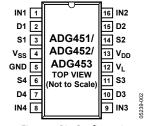


Figure 4. Pin Configuration

Table 5. Pin Function Descriptions

Pin No.	Mnemonic	Description
1	IN1	Logic Control Input.
2	D1	Drain Terminal. Can be an input or an output.
3	S1	Source Terminal. Can be an input or an output.
4	Vss	Most Negative Power Supply Potential in Dual Supplies. In single-supply applications, it can be connected to GND.
5	GND	Ground (0 V) Reference.
6	S4	Source Terminal. Can be an input or an output.
7	D4	Drain Terminal. Can be an input or an output.
8	IN4	Logic Control Input.
9	IN3	Logic Control Input.
10	D3	Drain Terminal. Can be an input or an output.
11	S3	Source Terminal. Can be an input or an output.
12	VL	Logic Power Supply (5 V).
13	V _{DD}	Most Positive Power Supply Potential.
14	S2	Source Terminal. Can be an input or an output.
15	D2	Drain Terminal. Can be an input or an output.
16	IN2	Logic Control Input.

Table 6. Truth Table (ADG451/ADG452)

Table 7. Truth Table (ADG453)

ADG451 In	ADG452 In	Switch Condition	Logic	Switch 1, Switch 4	Switch 2, Switch 3
0	1	On	0	Off	On
1	0	Off	1	On	Off

TYPICAL PERFORMANCE CHARACTERISTICS

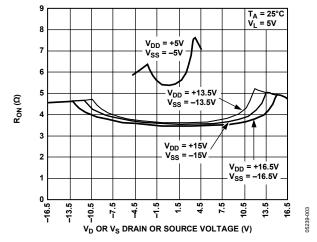


Figure 5. On Resistance as a Function of V_D (V_S) for Various Dual Supplies

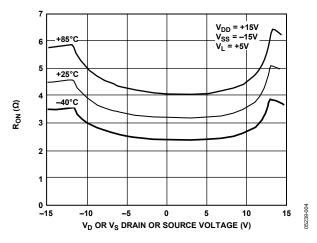


Figure 6. On Resistance as a Function of $V_D(V_S)$ for Different Temperatures with Dual Supplies

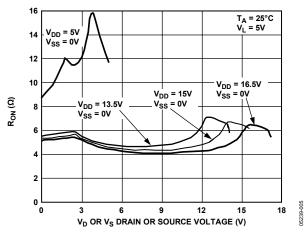


Figure 7. On Resistance as a Function of V_D (V_s) for Various Single Supplies

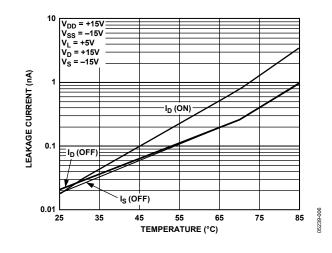


Figure 8. Leakage Currents as a Function of Temperature

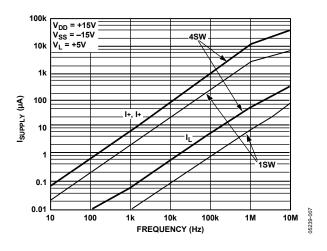


Figure 9. Supply Current vs. Input Switching Frequency

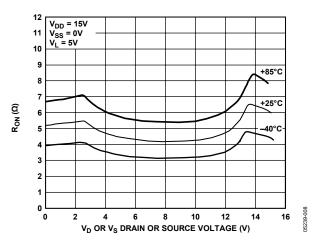
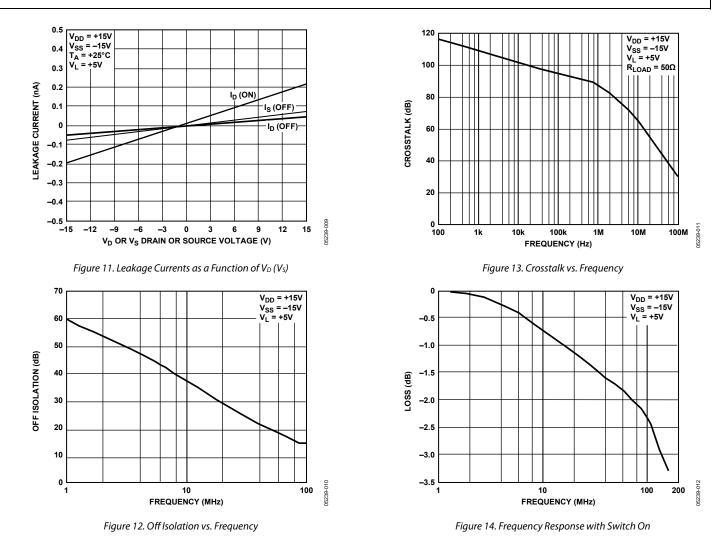



Figure 10. On Resistance as a Function of V_D (V_S) for Different Temperatures with Single Supplies

Rev. C | Page 10 of 16

TERMINOLOGY

Ron

Ohmic resistance between D and S.

ΔR_{ON}

On resistance match between any two channels, that is, $R_{\rm ON}$ maximum minus $R_{\rm ON}$ minimum.

RFLAT(ON)

Flatness is defined as the difference between the maximum and minimum value of on resistance, as measured over the specified analog signal range.

Is (OFF) Source leakage current with the switch off.

I_D (OFF) Drain leakage current with the switch off.

I_D, I_s (ON) Channel leakage current with the switch on.

 \mathbf{V}_{D} (Vs) Analog voltage on Terminal D and Terminal S.

Cs (OFF) Off switch source capacitance.

 C_D (OFF) Off switch drain capacitance.

C_D (ON), C_s (ON) On switch capacitance.

ton

Delay between applying the digital control input and the output switching on. See Figure 19.

toff

Delay between applying the digital control input and the output switching off.

\mathbf{t}_{D}

Off time or on time measured between the 90% points of both switches, when switching from one address state to another. See Figure 20.

Crosstalk

A measure of unwanted signal coupled through from one channel to another as a result of parasitic capacitance.

Off Isolation A measure of unwanted signal coupling through an off switch.

Charge Injection

A measure of the glitch impulse transferred from the digital input to the analog output during switching.

APPLICATIONS

Figure 15 illustrates a precise, fast, sample-and-hold circuit. An AD845 is used as the input buffer, and the output operational amplifier is an AD711. During track mode, SW1 is closed, and the output, V_{OUT} , follows the input signal, V_{IN} . In hold mode, SW1 is opened, and the signal is held by the hold capacitor, C_{H} .

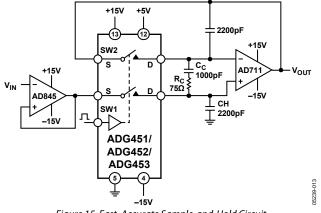
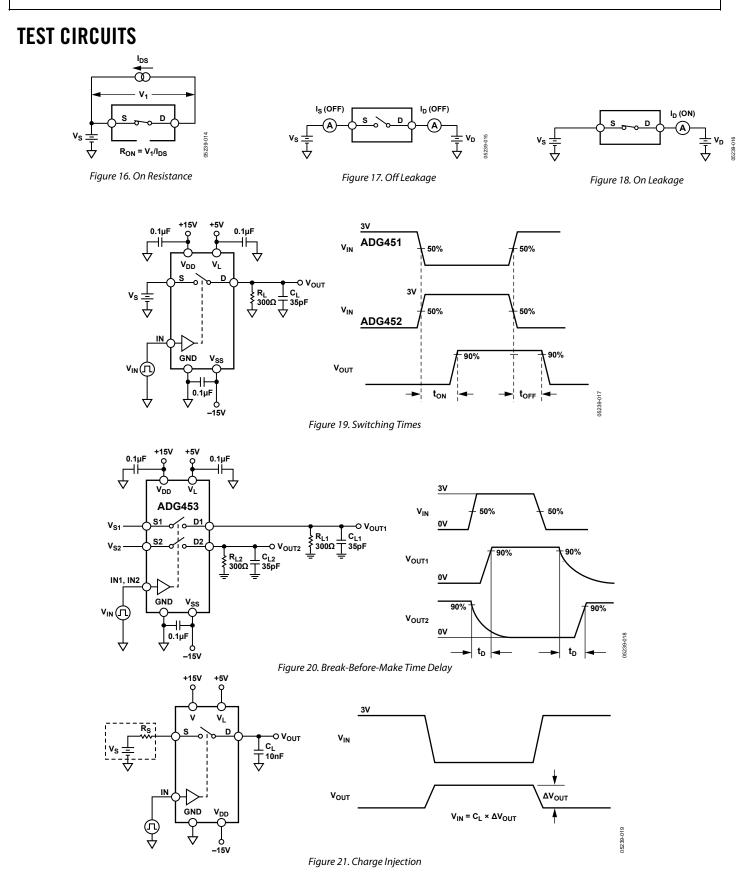
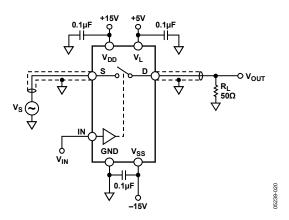




Figure 15. Fast, Accurate Sample-and-Hold Circuit

Due to switch and capacitor leakage, the voltage on the hold capacitor decreases with time. The ADG451/ADG452/ADG453 minimize this droop due to their low leakage specifications. The droop rate is further minimized by the use of a polystyrene hold capacitor. The droop rate for the circuit shown is typically 30 $\mu V/\mu s.$

A second switch, SW2, which operates in parallel with SW1, is included in this circuit to reduce pedestal error. Because both switches are at the same potential, they have a differential effect on the op amp, AD711, which minimizes charge injection effects. Pedestal error is also reduced by the compensation network, R_c and C_c . This compensation network reduces the hold time glitch while optimizing the acquisition time. Using the illustrated op amps and component values, the pedestal error has a maximum value of 5 mV over the ±10 V input range. Both the acquisition and settling times are 850 ns.

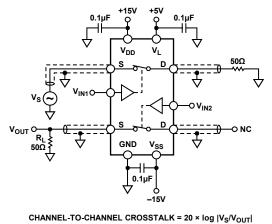
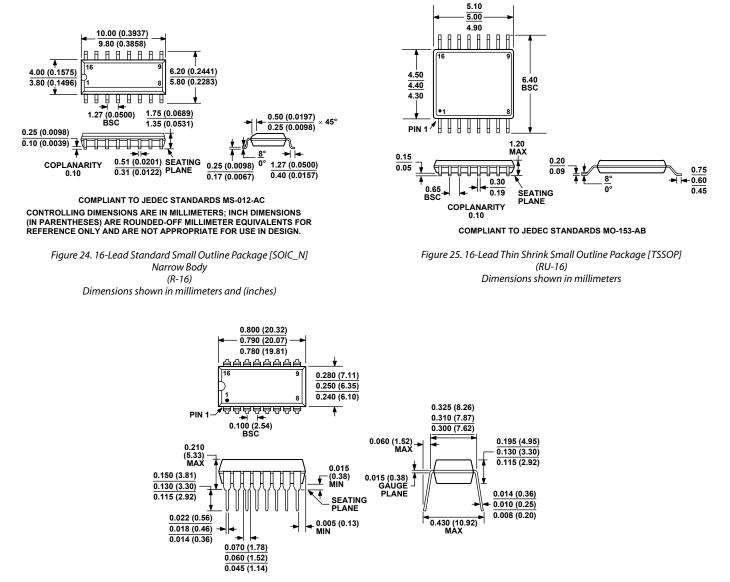



Figure 22. Off Isolation

Figure 23. Channel-to-Channel Crosstalk

05239-021

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MS-001-AB CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN. CORNER LEADS MAY BE CONFIGURED AS WHOLE OR HALF LEADS.

Figure 26. 16-Lead Plastic Dual In-Line Package [PDIP] Narrow Body (N-16) Dimensions shown in inches and (millimeters)

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option
ADG451BN	-40°C to +85°C	16-Lead Plastic Dual In-Line Package [PDIP]	N-16
ADG451BNZ ¹	-40°C to +85°C	16-Lead Plastic Dual In-Line Package [PDIP]	N-16
ADG451BR	-40°C to +85°C	16-Lead Standard Small Outline Package [SOIC_N]	R-16
ADG451BR-REEL	-40°C to +85°C	16-Lead Standard Small Outline Package [SOIC_N]	R-16
ADG451BR-REEL7	-40°C to +85°C	16-Lead Standard Small Outline Package [SOIC_N]	R-16
ADG451BRZ ¹	-40°C to +85°C	16-Lead Standard Small Outline Package [SOIC_N]	R-16
ADG451BRZ-REEL ¹	-40°C to +85°C	16-Lead Standard Small Outline Package [SOIC_N]	R-16
ADG451BRZ-REEL71	-40°C to +85°C	16-Lead Standard Small Outline Package [SOIC_N]	R-16
ADG451BRUZ ¹	-40°C to +85°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG451BRUZ- REEL ¹	-40°C to +85°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG451BRUZ- REEL71	-40°C to +85°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG451BCHIPS		DIE	
ADG452BN	-40°C to +85°C	16-Lead Plastic Dual In-Line Package [PDIP]	N-16
ADG452BNZ ¹	-40°C to +85°C	16-Lead Plastic Dual In-Line Package [PDIP]	N-16
ADG452BR	-40°C to +85°C	16-Lead Standard Small Outline Package [SOIC_N]	R-16
ADG452BR-REEL	-40°C to +85°C	16-Lead Standard Small Outline Package [SOIC_N]	R-16
ADG452BR-REEL7	-40°C to +85°C	16-Lead Standard Small Outline Package [SOIC_N]	R-16
ADG452BRZ ¹	-40°C to +85°C	16-Lead Standard Small Outline Package [SOIC_N]	R-16
ADG452BRZ-REEL ¹	-40°C to +85°C	16-Lead Standard Small Outline Package [SOIC_N]	R-16
ADG452BRZ-REEL71	-40°C to +85°C	16-Lead Standard Small Outline Package [SOIC_N]	R-16
ADG452BRUZ ¹	-40°C to +85°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG452BRUZ-REEL ¹	-40°C to +85°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG452BRUZ-REEL71	-40°C to +85°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG453BN	-40°C to +85°C	16-Lead Plastic Dual In-Line Package [PDIP]	N-16
ADG453BNZ ¹	-40°C to +85°C	16-Lead Plastic Dual In-Line Package [PDIP]	N-16
ADG453BR	-40°C to +85°C	16-Lead Standard Small Outline Package [SOIC_N]	R-16
ADG453BR-REEL	-40°C to +85°C	16-Lead Standard Small Outline Package [SOIC_N]	R-16
ADG453BR-REEL7	-40°C to +85°C	16-Lead Standard Small Outline Package [SOIC_N]	R-16
ADG453BRZ ¹	-40°C to +85°C	16-Lead Standard Small Outline Package [SOIC_N]	R-16
ADG453BRZ-REEL ¹	-40°C to +85°C	16-Lead Standard Small Outline Package [SOIC_N]	R-16
ADG453BRZ-REEL71	-40°C to +85°C	16-Lead Standard Small Outline Package [SOIC_N]	R-16
ADG453BRUZ ¹	-40°C to +85°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG453BRUZ-REEL ¹	-40°C to +85°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG453BRUZ-REEL7 ¹	–40°C to +85°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16

 1 Z = Pb-free part.

©2006 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. C05239-0-10/06(C)

www.analog.com

Rev. C | Page 16 of 16