UNISONIC TECHNOLOGIES CO., LTD

UT5504 **Power MOSFET**

P-CHANNEL LOGIC LEVEL **ENHANCEMENT MODE FIELD EFFECT TRANSISTOR**

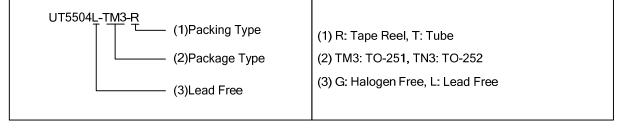
DESCRIPTION

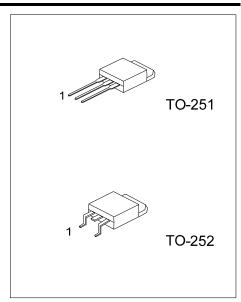
The UTC UT5504 is a P-channel enhancement mode power MOSFET, providing customers fast switching, ruggedized device design, low on-resistance and cost-effectiveness by UTC's advanced technology.

The UTC UT5504 can be used in applications such as DC/DC converters, all commercial-industrial surface mount and low voltage devices.

FEATURES

- * Low On-Resistance
- * Simple Drive Requirement
- * Fast Switching Speed


SYMBOL



ORDERING INFORMATION

Ordering Number		Dookogo	Pin Assignment			Dooking	
Lead Free	Halogen Free	Package	1	2	3	Packing	
UT5504L-TM3-T	UT5504G-TM3-T	TO-251	G	D	S	Tube	
UT5504L-TN3-R	UT5504G-TN3-R	TO-252	G	D	S	Tape Reel	
UT5504L-TN3-T	UT5504G-TN3-T	TO-252	G	D	S	Tube	

Note: Pin Assignment: G: Gate, D: Drain, S: Source

■ **ABSOLUTE MAXIMUM RATINGS** (T_C = 25°C, unless otherwise specified)

PARAMETER		SYMBOL	RATINGS	UNIT
Drain-Source Voltage		V_{DS}	-40	V
Gate-Source Voltage		V_{GS}	±20	V
Continuous Drain Current	T _C =25°C	l _D	-8	^
	T _C =70°C		-6	Α
Pulsed Drain Current		I _{DM}	-32	Α
Power Dissipation		P_{D}	41	W
Junction Temperature		T_J	+150	°C
Storage Temperature		T _{STG}	-55 ~ +150	°C

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ THERMAL DATA

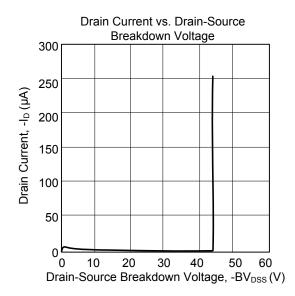
PARAMETER	SYMBOL	RATINGS	UNIT
Junction to Ambient	θ_{JA}	75	°C/W
Junction to Case	$ heta_{ extsf{JC}}$	3	°C/W

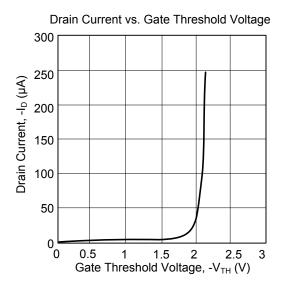
Notes: 1. Pulse width limited by maximum junction temperature.

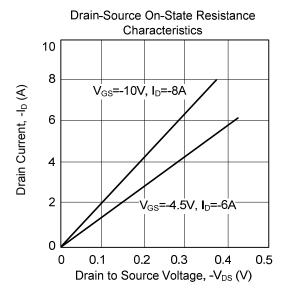
■ **ELECTRICAL CHARACTERISTICS** (T_C =25°C, unless otherwise specified)

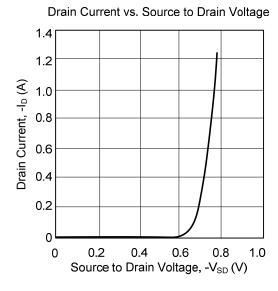
DADAMETED	0)/1/10/01	TEGT COMPLETIONS		T) (D				
PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNII		
OFF CHARACTERISTICS								
Drain-Source Breakdown Voltage	BV _{DSS}	I _D =-250μA, V _{GS} =0V	-40			V		
Drain-Source Leakage Current	I _{DSS}	V _{DS} =-32V, V _{GS} =0V			1			
		V _{DS} =-30V, V _{GS} =0V, T _J =125°C			10	μA		
Gate- Source Leakage Current	I _{GSS}	V _{DS} =0V, V _{GS} =±20V			±250	nA		
On-State Drain Current (Note 1)	$I_{D(ON)}$	V _{DS} =-5V, V _{GS} =-10V	-32			Α		
ON CHARACTERISTICS								
Gate Threshold Voltage	$V_{GS(TH)}$	$V_{DS}=V_{GS}$, $I_D=-250\mu A$	-1	-1.5	-2.5	V		
Static Drain-Source On-State	В	V _{GS} =-4.5V, I _D =-6A		65	94	mΩ		
Resistance (Note 1)	R _{DS(ON)}	V _{GS} =-10V, I _D =-8A		38	55	11122		
Forward Transconductance (Note 1)	g FS	V _{DS} =-10V, I _D =-8A		11		S		
DYNAMIC PARAMETERS								
Input Capacitance	C_{ISS}	V _{GS} =0V, V _{DS} =-25V, f=1MHz		690		pF		
Output Capacitance	Coss			310		pF		
Reverse Transfer Capacitance	C_{RSS}			75		pF		
SWITCHING PARAMETERS (Note 2)								
Total Gate Charge	Q_G			14		nC		
Gate to Source Charge	Q_GS	V _{GS} =-10V, V _{DS} =0.5BV _{DSS} , I _D =-8A		2.2		nC		
Gate to Drain Charge	Q_GD			1.9		nC		
Turn-ON Delay Time	$t_{D(ON)}$			6.7	13.4	ns		
Rise Time	t_R	V_{GS} =-10V, V_{DS} =-20V, I_{D} = -1A, R_{GS} =6 Ω , R_{L} =1 Ω		9.7	19.4	ns		
Turn-OFF Delay Time	t _{D(OFF)}			19.8	35.6	ns		
Fall-Time	$t_{\scriptscriptstyle{F}}$			12.3	22.2	ns		

^{2.} Duty cycle ≤ 1%


■ ELECTRICAL CHARACTERISTICS (CONT.)


PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT		
SOURCE- DRAIN DIODE RATINGS AND CHARACTERISTICS								
Drain-Source Diode Forward Voltage (Note 1)	V_{SD}	I _F =I _S , V _{GS} =0V			-1	٧		
Reverse Recovery Time	t _{RR}	L = EA dl /dt=100A/up		15.5		ns		
Reverse Recovery Charge	Q_{RR}	I _F =-5A, dI _F /dt=100A/µs		7.9		nC		
Continuous Current	I _S				-8	Α		
Pulsed Current (Note 3)	I _{SM}				-32	Α		


Note: 1. Pulse test: Pulse Width ≤ 300µsec, Duty Cycle ≤ 2%.


- 2. Independent of operating temperature.
- 3. Pulse width limited by maximum junction temperature.

■ TYPICAL CHARACTERISTICS

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.