SHEET 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 REV STATUS OF SHEETS REV A A A A A A A A A A A A A A A A A A A									RE	EVISI	ONS										
REV	LTR					DI	ESCR	PTIC	ON			. •		D	ATE	(YR-MO	-DA)		APPR	OVED	
SHEET	A	cor	rect	ions	to i								æ		94-0	6-22			M.A	. Fr	ye
SHEET																					
REV A A A A A A A A A A A A A A A A A A A																					
SHEET 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 REV STATUS OF SHEETS REV A A A A A A A A A A A A A A A A A A A				_		A				A	A	A	A		A	A	A	A	A	T .	A
REV STATUS OF SHEETS REV A A A A A A A A A A A A A A A A A A A		1		 	 	<u> </u>		 	 -	ļ			\vdash	┝		-	 	 	 	\vdash	34
SHEET 1 2 3 4 5 6 7 8 9 10 11 12 13 PMIC N/A PREPARED BY Kenneth Rice STANDARDIZED MILITARY DRAWING THIS DRAWING APPROVED BY Michael A. Frye DRAWING APPROVAL DATE DEPARTMENTS AND AGENCIES OF THE DEPARTMENT OF DEFENSE DRAWING APPROVAL DATE 12 MAY 1990				L.:									 			<u> </u>	A	 	A	A	
PREPARED BY Kenneth Rice DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444 CHECKED BY Charles Reusing DRAWING THIS DRAWING IS AVAILABLE FOR USE BY ALL DEPARTMENTS AND AGENCIES OF THE DEPARTMENT OF DEFENSE PREPARED BY Kenneth Rice DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444 MICROCIRCUIT, MEMORY, DIGITAL, CMOS 4K X 9 PARALLEL SERIAL FIFO, MONOLITHIC SILICON DRAWING APPROVAL DATE 12 MAY 1990									2	1	 			_	8	9	10	11	12	13	14
STANDARDIZED MILITARY DRAWING THIS DRAWING IS AVAILABLE FOR USE BY ALL DEPARTMENTS AND AGENCIES OF THE DEPARTMENT OF DEFENSE CHECKED BY Charles Reusing MICROCIRCUIT, MEMORY, DIGITAL, CMOS 4K X 9 PARALLEL SERIAL FIFO, MONOLITHIC SILICON DRAWING APPROVAL DATE 12 MAY 1990	PMIC N/A				PREP	ARED B		<u> </u>	1		DI	DEFENSE ELECTRONICS SUPPLY CENTER									
THIS DRAWING IS AVAILABLE FOR USE BY ALL DEPARTMENTS AND AGENCIES OF THE DEPARTMENT OF DEFENSE APPROVED BY Michael A. Frye MICHAEL SERIAL FIFO, MONOLITHIC SILICON DRAWING APPROVAL DATE 12 MAY 1990	MII	ITAF	RY	1						•											
AND AGENCIES OF THE DRAWING APPROVAL DATE 12 MAY 1990	THIS DRAWI	NG IS A	VA I LAE								4K	Х 9	PAI	RALI	EL	SER1				CMC	os,
SIZE CAGE CODE 5962-89943	AND AGE	NCIES O	F THE		DRAW								<u> </u>				5 <u>.</u>	962-	8994		
AMSC N/A REVISION LEVEL A A 67268	AMSC N/	A			REVI	SION L	.EVEL	A			1										
SHEET 1 OF 34											SHI	ET		1		OF		34			

 $\underline{\texttt{DISTRIBUTION STATEMENT A}}. \ \textbf{Approved for public release; distribution is unlimited.}$

1. SCOPE

- 1.1 <u>Scope</u>. This drawing describes device requirements for class B microcircuits in accordance with 1.2.1 of MIL-STD-883, "Provisions for the use of MIL-STD-883 in conjunction with compliant non-JAN devices".
 - 1.2 Part or Identifying Number (PIN). The complete PIN shall be as shown in the following example:

1.2.1 Device type(s). The device type(s) shall identify the circuit function as follows:

Device type	Generic number	<u>Circuit function</u>	Access time
01	(see 6.6)	4k X 9-bit parallel-serial FIFO	120 ns
02	(see 6.6)	4k X 9-bit parallel-serial FIFO	8 0 n s
03	(see 6.6)	4k X 9-bit parallel-serial FIFO	65 ns
04	(see 6.6)	4k X 9-bit parallel-serial FIFO	50 ns
05	(see 6.6)	4k X 9-bit parallel-serial FIFO	40 ns

1.2.2 Case outline(s). The case outline(s) shall be as designated in MIL-STD-1835 and as follows:

Outline letter	Descriptive designator	<u>Terminals</u>	<u>Package style</u>
Q	GDIP1-T40 or CDIP2-T40	40	Dual-in-line
X	CQCC1-N44	44	Square leadless chip carrier

1.2.3 <u>Lead finish</u>. The lead finish shall be as specified in MIL-STD-883 (see 3.1 herein). Finish letter "X" shall not be marked on the microcircuit or its packaging. The "X" designation is for use in specifications when lead finishes A, B, and C are considered acceptable and interchangeable without preference.

1.3 Absolute maximum ratings.

1.4 <u>Recommended operating conditions</u>.

- 2. APPLICABLE DOCUMENTS
- 2.1 <u>Government specification, standards, and bulletin</u>. Unless otherwise specified, the following specification, standards, and bulletin of the issue listed in that issue of the Department of Defense Index of Specifications and Standards specified in the solicitation, form a part of this drawing to the extent specified herein.
- $\overline{1/}$ Maximum junction temperature may be increased to +175°C during burn-in and steady-state life. $\overline{2}/$ 1.5 V undershoots are allowed for 10 ns once per cycle.

STANDARDIZED MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER	SIZE A		5962-89943
DAYTON, OHIO 45444		REVISION LEVEL	SHEET 2

DESC FORM 193A JUL 91

9004708 0002154 448

SPECIFICATION

MILITARY

MIL-I-38535 - Integrated Circuits (Microcircuits) Manufacturing, General Specification for.

STANDARDS

MILITARY

MIL-STD-883 - Test Methods and Procedures for Microelectronics.

MIL-STD-1835 - Microcircuit Case Outlines.

BULLETIN

MILITARY

MIL-BUL-103 - List of Standardized Military Drawings (SMD's).

(Copies of the specification, standards, and bulletin required by manufacturers in connection with specific acquisition functions should be obtained from the contracting activity or as directed by the contracting activity.)

2.2 <u>Order of precedence</u>. In the event of a conflict between the text of this drawing and the references cited herein, the text of this drawing shall take precedence.

3. REQUIREMENTS

- 3.1 Item requirements. The individual item requirements shall be in accordance with 1.2.1 of MIL-STD-883, "Provisions for the use of MIL-STD-883 in conjunction with compliant non-JAN devices" and as specified herein. Product built to this drawing that is produced by a Qualified Manufacturer Listing (QML) certified and qualified manufacturer or a manufacturer who has been granted transitional certification to MIL-I-38535 may be processed as QML product in accordance with the manufacturers approved program plan and qualifying activity approval in accordance with MIL-I-38535. This QML flow as documented in the Quality Management (QM) plan may make modifications to the requirements herein. These modifications shall not affect form, fit, or function of the device. These modifications shall not affect the PIN as described herein. A "Q" or "QML" certification mark in accordance with MIL-I-38535 is required to identify when the QML flow option is used.
- 3.2 <u>Design, construction, and physical dimensions</u>. The design, construction, and physical dimensions shall be as specified in MIL-STD-883 (see 3.1 herein) and herein.
 - 3.2.1 <u>Terminal connections</u>. The terminal connections shall be as specified on figure 1.
 - 3.2.2 <u>Truth tables</u>. The truth tables shall be as specified on figure 2.
 - 3.2.3 <u>Case outline(s)</u>. The case outline(s) shall be in accordance with 1.2.2 herein.
- 3.3 <u>Electrical performance characteristics</u>. Unless otherwise specified herein, the electrical performance characteristics are as specified in table I and shall apply over the full case operating temperature range.
- 3.4 <u>Electrical test requirements</u>. The electrical test requirements shall be the subgroups specified in table II. The electrical tests for each subgroup are described in table I.
- 3.5 <u>Marking</u>. Marking shall be in accordance with MIL-STD-883 (see 3.1 herein). The part shall be marked with the PIN listed in 1.2 herein. In addition, the manufacturer's PIN may also be marked as listed in MIL-BUL-103 (see 6.6 herein).
- 3.6 <u>Certificate of compliance</u>. A certificate of compliance shall be required from a manufacturer in order to be listed as an approved source of supply in MIL-BUL-103 (see 6.6 herein). The certificate of compliance submitted to DESC-EC prior to listing as an approved source of supply shall affirm that the manufacturer's product meets the requirements of MIL-STD-883 (see 3.1 herein) and the requirements herein.
- 3.7 <u>Certificate of conformance</u>. A certificate of conformance as required in MIL-STD-883 (see 3.1 herein) shall be provided with each lot of microcircuits delivered to this drawing.

STANDARDIZED MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER	SIZE A		5962-89943
DAYTON, OHIO 45444		REVISION LEVEL A	SHEET 3

DESC FORM 193A

JUL 91

9004708 0002155 384 📟

Test	Symbol		litions	Device	Group A	Limits		Unit
		-55°C < T V _{SS} = 0 V, 4.5 unless other	C ≤ +125°C V ≤ V _{CC} < 5.5 V Wise specified	type	subgroups	Min	Max	
nput leakage current	LLI	0.4 V < V _{IN} <		All	1,2,3	-10	10	μA
Output leakage current	ILO	0.4 V ≤ V _{OUT} ≤	V _{CC} , R ≥ V _{IH}	All	1,2,3	-10	10	μΑ
Output low voltage	v _{OL}	V _{CC} = 4.5 V, VIL = 0.8 V, VIH = 2.2 V	so, I _{OUT} = 16 mA	All	1,2,3		0.4	v
		VIH = 2.2 V	All other outputs, I _{OUT} = 8.0 mA				0.4	
Output high voltage	v _{OH}	V _{CC} = 4.5 V, V _{IL} = 0.8 V, V _{IH} = 2.2 V	so, 1 _{OUT} = -8.0 mA	ALL	1,2,3	2.4		V
		AIH - 5:5 A	All other outputs, I _{OUT} = -2.0 mA			2.4		
Power supply current	I _{CC1}	f = f _S , output V _{CC} = 5.5 V	s open,	ALL	1,2,3		160	mA
Average standby current	I _{CC2}	R = W = RS = F outputs open	EL/RT = VIH,	All	1,2,3		25	mA
Power down current	I _{CC3}	RS = FL/RT = W V _{CC} - 0.2 V, a V _{CC} - 0.2 V or outputs open	y = R = all other inputs ≥ . ≤ 0.2 V,	All	1,2,3		4.0	mA
Input capacitance <u>1</u> /	CIN	V _I = 0 V, f = T _A = +25°C, se	1.0 MHz, ee 4.3.1c	All	4		10	pF
Output capacitance 1/	COUT	V _O = 0 V, f = T _A = +25°C, se	1.0 MHz, ee 4.3.1c	All	4		12	рF
Functional tests		See 4.3.1d		ALL	7,8A,8B			
Parallel I/O shift frequency	fs	C _L = 30 pF, se	ee figures 3	01	9,10,11		7.0	_ MHz
equatioy				02	-		10	-
				03	-		12.5	_
				04	-		15	
				05	1	L	20	

STANDARDIZED MILITARY DRAWING	SIZE A		5962-89943
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444		REVISION LEVEL A	SHEET

= 9004708 0002156 210 **=**

	Symbol	Conditions		Device	Group A	L	imits	Unit
		-55°C ≤ T _C ≤ +12° V _{SS} = 0 V, 4.5 V ≤ V _C unless otherwise sp	5°C C < 5.5 V ecified	type	subgroups	Min	Max	
Serial-out shift frequency	fsocp	C _L = 30 pF, see figure	es 3 and 4	01	9,10,11		25	MHz
Trequency				02			28	_
				03			33	_
				04			40	_
		_		05		ļ	50	
Serial-in shift	fSICP			01	9,10,11		25	MHz
frequency				02			28	_
				03			33	_
				04			40	_
				05			50	
PARALLEL OUTPUT MODE TI	MINGS							
Access time	t _A	C _L = 30 pF, see figure	es 3	01	9,10,11	 	120	ns
	1	añd 4		02			80	
				03			65	_
				04			50	
				05			40	
Read recovery time	t _{RR}	-		01,02	9,10,11	20		ns
•	KK			03,04		15		
				05	•	10		
Read pulse width		-		01	9,10,11	120		ns
was paroe much	^t RPW			02	,,,,,,,,,,	80		
				03	•	65		_
					•			_
				05		50 40	 	-

9004708 0002157 157

Read cycle time	t _{RC}	$^{-55^{\circ}\text{C}} \le ^{1}\text{C} \le ^{+125^{\circ}}$ $V_{\text{SS}} = 0 \text{ V, } 4.5^{\circ}\text{V} \le ^{\circ}\text{CC}$ unless otherwise spec	C typ	vice pe	Group A subgroups	Min	mits Max	Unit
	["DC		ŧ	 1	9,10,11	140		ns
		C _L = 30 pF, see figures and 4	02			100		
			03			80		
			04	4		65		
			05	5		50		
Write pulse low to data	twLZ		01	1,02	9,10,11	20		ns
bus at low Z 2/	WLZ		03	3,04		15		
			05	5		5		
Read pulse low to data	t _{RLZ}		01	1-04	9,10,11	10		ns
bus at low Z 2/	RL2		05	5		5		
Read pulse high to data	t _{RHZ}			1,02	9,10,11		35	ns
bus at high Z 2/	, Kn2		03	5,04			30	
			05	5			25	
Data valid from read pulse high	t _{DV}		A	l l	9,10,11	5.0		ns
PARALLEL INPUT MODE TIMI	NGS							
Data setup time	t _{DS}	C _L = 30 pF, see figures	3 01	1,02	9,10,11	40		ns
·	Į us	and 4		3,04		30		
			05	 ;		20		
Data hold time	t _{DH}		01	1-03	9,10,11	10		ns
vala nota time	DH		04			5.0		
Data note time						0		<u> </u>
para nota time		_1	; 					
	tuc	-	01	l	9,10.11	140		ns
Write cycle time	twc		01		9,10,11	100		ns
	twc			<u> </u>	9,10,11			ns
	twc		02	3	9,10,11	100		_ ns

■ 9004708 0002158 093 **■**

Write pulse width		Conditions		Device	Group A	L	imits	_ Unit
Write pulse width		$^{-55^{\circ}\text{C}} \le T_{\text{C}} \le ^{+125}$ $V_{\text{SS}} = 0 \text{ V}, 4.5 \text{ V} \le V_{\text{CC}}$ unless otherwise spe	6°C . < 5.5 V ecified	type	subgroups	Min	Max	
	twpw	C ₁ = 30 pF, see figure and 4		01	9,10,11	120		ns
		and 4		02		80	ļ	_
				_03		65		_
				_04	.]	50		_
		-		_05	ļ	40	-	
Write recovery time	twR			01,02	9,10,11	20		ns
				03,04	_	15		_
				05		10		
RESET TIMINGS								
Reset cycle time	t _{RSC}	C _L = 30 pF, see figure	es 3	01	9,10,11	140		ns
·	KSC	and 4		02		100		_
				03		80		
				04		65		
				05		50		
Reset pulse width	t _{RS}			01	9,10,11	120		ins
	KS			02		80		
				03		65		
				04	-	50		
				05	-	40		
Reset setup time		-		01	9,10,11	120		ns
React Setup time	tRSS			02	7,10,11	80		
				03	-	65		
				04	-	50		
				05	-	40		
Reset recovery time	•	-		01,02	9,10,11	20		Ins
Reset recovery time	^t rsr			03,04	- 7,10,11	15		- ''3
	1			05,04	1	10		-

	Symbol	Conditions		Device	Group A	Li	mits	_ Unit
		-55°C ≤ T _C ≤ +1. V _{SS} = 0 V, 4.5 V ≤ V unless otherwise s	cc < 5.5 V pecified	type	subgroups	Min	Nax	
RESET TO FLAGS DELAYS				····	· • · · · · · · · · · · · · · · · · · ·	T		
Reset to EF, AEF, and EF+1 low	t _{RSF1}	C _L = 30 pF, see figure	res 3	01	9,10,11		140	_ ns
EFF (ON		and 4		02	_		100	_
				03	-		80	_
				04	-		65	_
		_		05			50	<u> </u>
Reset to HF, FF, and FF-	1 t _{RSF2}	į		01	9,10,11		140	_ ns
high				02	_		100	_
				_03			80	_
				04	-		65	_
				05			50	
RESET TO TIME DELAYED OUT	PUTS - SER	IAL MODE ONLY		•	1	1	1	
Reset going low to	t _{RSQL}	C ₁ = 30 pF, see figur	res 3	01	9,10,11	105		_ns
Q ₀₋₈ lон		and 4		02		65		_
				03		50		_
				04		35		_
		_		_05		20		
Reset going high to	t _{RSQH}			01	9,10,11	105		ns
₀₋₈ high				02		65		_
				03		_50		_
				04		_35		_
		_		05		20		
Reset going low to	t _{RSDL}			01	9,10,11	105		_ ns
D _{O-8} Low				02		65		_
				03		50		
				04		35		_
				05		20		

= 9004708 0002160 741 =

	Symbol	Conditions		Device	Group A	Li	mits	Unit
		$v_{SS} = 0 \text{ V}, 4.5 \text{ V} \leq v_{CO}$ unless otherwise specification of the second s	5°C < 5.5 V <u>écified</u>	type	subgroups	Min	Max	
RETRANSMIT TIMINGS			***					
Retransmit cycle time	t _{RTC}	C _L = 30 pF, see figure and 4	es 3	01	9,10,11	140		ns
		and 4		02	_	100		_
				03	_}	80		
				_04	-	65		_
	ļ	_		05		50		
Retransmit pulse width	t _{RT}			01	9,10,11	120		ns
				02	_	80		_
				03	_	_65		_
				04	_	50		_
		_		05		40		
Retransmit setup time	t _{RTS}			01	9,10,11	120	ļ	_ ns
				02	_	80		_
				_03	_	65		_
				04	_	50		_
		_		05		40		
Retransmit recovery time	t _{RTR}			01,02	9,10,11	20		ns
				03,04	_	15		_
				05		10		
PARALLEL MODE FLAG PROPAGA	TION DELA	YŞ			<u>.</u>	1		
Read low to EF low	t _{REF}	C ₁ = 30 pF, see figur	es 3	01-03	9,10,11		60	ns
		and 4		_04	_		45	_
		_		05			35	
Read high to FF high	tRFF			01-03	9,10,11		60	ns
				04	_		45	_
			·	05			35	

Test	Symbol	Conditions	Device	Group A	<u>L</u>	imits	Unit
		$-55^{\circ}C \le T_C \le +125^{\circ}C$ $V_{SS} = 0 \text{ V}, 4.5 \text{ V} \le V_{CC} < 5.5 \text{ V}$ unless otherwise specified	type	subgroups	Min	Max	
ead high to transitioning	t _{RF}	C _L = 30 pF, see figures 3 and 4	01	9,10,11	ļ	140	_ns
HF, AEF, and FF-1		diu 7	02	_		100	-
			_03	_		80	-
			04	_		65	-
	-	_	_05		<u> </u>	50	
ead low to <u>tra</u> nsiti <u>onin</u> g	t _{RE}		01	9,10,11		140	_ns
AEF and EF+1			02	_		100	-
			_03	_		80	-
			04	_		65	-
		_	_ 05			45	-
e <u>ad</u> pulse width after EF high	t _{RPE}		01	9,10,11	120		_ns
EF high			02	_	80	 	-
			_03	_	65		_
			04	_	50		_
		_	05		40		
rite high to EF high	t _{WEF}		01-03	9,10,11		60	_ns
			04	_		45	_
		_	05		<u> </u>	35	
rite low to FF low	twee		01-03	9,10,11		60	_ ns
			04	_		45	_
		_	05		<u> </u>	35	
rite low to <u>tr</u> an <u>sit</u> ioning	t _{WF}		_01	9,10,11	ļ	140	ns
HF, AEF, and FF-1			_02	-		100	-
			03	-		80	-
			04	-		65	-

See footnotes at end of table.

STANDARDIZED MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER	SIZE A		5962-89943
DAYTON, OHIO 45444		REVISION LEVEL A	SHEET 10

DESC FORM 193A JUL 91

= 9004708 0002162 514 **=**

Test	Symbol	Conditions		Device	Group A	L	imits	Unit
		-55°C < T _C < +125 V _{SS} = 0 V, 4.5 V < V _{CC} unless otherwise spe	< 5.5 V cified	type	subgroups	Min	Max	
Write high to	twE		es 3	01	9,10,11	 	140	ns
<u>tra</u> nsiti <u>onin</u> g AEF and EF+1		and 4		02			100	_
				03	_		80	_
				04	_		65	_
		_		05			50	
Wr <u>it</u> e pulse width after	 t _{WPF}			01	9,10,11	120	ļ	ns
FF high	""			02	_	80		
				03	_	65		_
				_04	_	50	<u> </u>	_
				05		40		
DEPTH EXPANSION MODE DELA	YS							
Read/write to XO low	t _{XOL}	C ₁ = 30 pF, see figure	es 3	01	9,10,11		120	ns
	AGE.	and 4		02			80	
				03			65	_
				04			50	
				05	<u> </u>		40	
Read/write to XO high	tхон	-		01	9,10,11		120	ns
•	AOH			02			80	
				03			65	
				04			50	
			:	05			40	
XI pulse width	t _{XI}	_		01	9,10,11	120		ns
, , , , , , , , , , , , , , , , , , ,	XI			02		80		
				03	_	65		
				04		50		
				05	-	40		

9004708 0002163 450

	Symbol	Conditions	95°C	Device type	Group A subgroups	Li	mits	_ Unit
		$-55^{\circ}C \le T_C \le +12$ $V_{SS} = 0 \text{ V}, 4.5 \text{ V} \le V_C$ unless otherwise sp	cc < 5.5 V	Туре	subgi oups	Min	Max	
(I recovery time	t _{XIR}	C _L = 30 pF, see figur and 4	es 3	All	9,10,11	10		ns
(I setup time	txis			ALL	9,10,11	15		ns
RIAL INPUT MODE TIMINGS								
Serial data in setup	t _{s2}	C _i = 30 pF, see figur	es 3	01,02	9,10,11	20		_ ns
time to SICP rising edge		and 4		03,04		_15	ļ	_
		_		05		12		
Serial data in hold time	t _{H2}			01,02	9,10,11	5.0		_ ns
from SICP rising edge		_		03-05		0		
SIX setup time to SICP rising edge	t _{S3}			ALL	9,10,11	5.0		ns
setup time to SICP rising edge	t _{S4}	-		ALL	9,10,11	5.0		ns
hold time to SICP	t _{H4}	-		01	9,10,11	15		_ ns
rising edge				02		_12		_
				_03		_10		
		-		04,05		7.0		-
Serial in clock width high/low	tsicw			01,02	9,10,11	_15		_ ns
many tow				03.04		10		_
		-		05		8		
	t _{S5}			01	9,10,11	120	<u> </u>	_ ns
rising cage				02		80		-
				03		_65		-
				04		50		-
)	ı	

12

DESC FORM 193A JUL 91

■ 9004708 0002164 397 ■

	Symbol	Conditions $-55^{\circ}C \leq T_{C} \leq +12$ $V_{SS} = 0 \text{ V, } 4.5^{\circ}V \leq V_{C}$ unless otherwise sp	5°C _C < 5.5 V	Device type	Group A subgroups	<u>Li</u> Min	mits Max	_ Unit
ESTAL CUIDUIT MODE TIMINOS	<u> </u>	<u>unless otherwise sp</u>	ēcified			1	<u> </u>	
SERIAL OUTPUT MODE TIMINGS SO/PO setup time to SOCP	t _{S6}	C. = 30 pF. see figur	es 3	01	9,10,11	120		ns
rising edge	20	C _L = 30 pF, see figur and 4		02		80		
				03		65		
	1			04		50		
				05		40		
SOX setup time to SOCP rising edge	t _{\$7}			All	9,10,11	5.0		ns
R setup time to SOCP	t _{S8}	-		All	9,10,11	5.0		ns
R hold time to SOCP	t _{H8}	-		01	9,10,11	15		ns
rising edge	no no			02		12		
				03		10		
				04,05		7.0		
Serial in clock width high/low	tsocw			01,02	9,10,11	15		ns —
				03.04		10		_
				05		8		
SERIAL MODE RECOVERY TIMING	GS				1	_	 	
Re <u>co</u> very time SOCP after EF goes high	tREFSO	C _L = 30 pF, see figur and 4	es 3	01	9,10,11	120	ļ	_ ns
Er goes nigh		and 4		02		80	<u> </u>	_
	1			03	-	65		_
				04		_50		_
	-	-		.05	-	40		
Recovery time SICP after	tRFFSI			01,02	9,10,11	20	<u> </u>	ns
FF goes high	Ì			03-05		15]	ı

■ 9004708 0002165 223 **■**

SOCP rising edge (bit 0 - first word) to EF low SOCP rising edge	DN DELAYS	$-55^{\circ}\text{C} \le \text{T}_{\text{C}} \le +12^{\circ}$ $V_{\text{SS}} = 0 \text{ V}, 4.5^{\circ}\text{V} \le \text{V}$ unless otherwise specification of the second of				Min	Limits		
to EF low SOCP rising edge							Max		
(bit 0 - first word) to EF low SOCP rising edge	tSOCEF	C _L = 30 pF, see figure		,	T				
to EF low SOCP rising edge	ļ		res 3	01-03	9,10,11		30	ns	
SOCP rising edge		-		04,05			25		
(bi <u>t </u> 0 - first word)	tsocff			01,02	9,10,11		60	ns	
to FF high				03			50	_	
				04			40	_	
		-		05			35		
SOCP rising edge (bit 0 - second word)	tSOCF			01,02	9,10,11		60	ns	
to FF-1, HF, AEF, EF+1 high				_03			50	_	
E I III MII				04	,		40	_	
		-		05			35		
SICP rising edge (bit_0 - first word)	tSICEF			01-03	9,10,11		80	_ns	
to EF high				04			65	_	
		_		05			50		
SICP rising edge (bit_0 - first word)	tsicff			01,02	9,10,11		60	_ ns	
to FF low				03			50	_	
				04			40	_	
		-		05			35		
SICP rising edge (bi <u>t 0</u> - <u>se</u> co <u>nd</u> word)	tsicf			01-03	9,10,11		80	_ ns	
to EF+1, HF, AEF, FF-1 high				04			65	-	
ri i iigii				05			50	1	
SERIAL INPUT MODE DELAYS	1				<u> </u>			1	
SICP rising edge to D $\underline{2}$ /	t _{PD1}	C ₁ = 30 pF, see figur and 4	es 3	01	9,10,11	5.0	35	_ ns	
		and 4		02		5.0	30	_	
				03		5.0	25	_	
	1	1		04		5.0	20	_	
				1			1		

■ 9004708 0002166 16T **■**

Test	Symbol	Conditions	Devi		Group A subgroups	Lin	nits	Unit
		$V_{SS} = 0 \text{ V}, 4.5 \text{ V} \leq V_{CC}$ unless otherwise spec	< 5.5 V		0403.00	Min	Max	
ERIAL OUTPUT MODE DELAYS	1	1		· · · · · · · · · · · · · · · · · · ·				
SOCP rising edge to Q 2/	t _{PD2}	$C_L = 30 \text{ pF, see figures}$ and 4	3 01	.02	9,10,11	5.0	30	_ ns
		dim 4	03		-	5.0	25	-
			04			5.0	20	-
	<u> </u>	_	05		ļ <u></u>	5.0	17	1
SOCP rising edge to SO	t _{SOHZ}		_01		9,10,11	5.0	30	_ ns
at high-Z <u>2</u> /			02		-	5.0	25	-
			_03	<u> </u>	-	5.0	20	-
		_	04	.05		5.0	16	
SOCP rising edge to SO	tsolz		01	L	9,10,11	5.0	35	_ ns
at low-Z <u>2</u> /			02		_	5.0	30	_
		_	_03	3-0 <u>5</u>		5.0	22	
SOCP rising edge to	tSOPD		0.	1	9,10,11	l	35	_ ns
valid data on SO	30,0		07	2	_		30	
			0	3	_		22	_
			04	4,05			18	
OUTPUT ENABLE/DISABLE DELA	YS						1	
Output enable to high-Z	t _{OEHZ}	C _L = 30 pF, see figure	s 3	1	9,10,11	\	30	ns
(disable) <u>2</u> /	OENZ	and 4	02		_		25	_
	1	·	0	3	_		20	_
			0	4,05			16	
Output enable to low-Z (enable) 2/	t _{OELZ}		A	11	9,10,11	5.0		ns
	1.)1	9,10,11		35	ns
Output enable to data valid (0 ₀₋₈)	TAOE)2			30	
)3	_		25	
				04	_		22	
			-)5	_		20	
1/ Shall be tested initi shall be guaranteed t 2/ May not be tested, bu	o the lim	after any design or proc its specified in table I we guaranteed to the limi				s parame		
MILIT	NDARDIZ ARY DRA	WING	SIZE A				59	62-89943
DEFENSE ELECTR	CONTCE	SUPPLY CENTER 45444		1	EVISION I		SHE	

■ 9004708 0002167 OT6 **■**

		 ı
Device types	AL	ι
Case outlines	Q	x
Terminal number	Terminal	symbol
1 2 3 4 5 6 7 8 9 10 11 12	SO AEF FF-1 FF QO 1 Q 3 4 D R Q 5 6 O	D4 D3 D2 D1 GND D0 XI SO/PO SOX SOCP SO AEF
14 15	Q ₈	<u>FF</u> -1
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36	NO HF EF OE SI / PI SICP SICP SICP D8 D7 D6 D5 CC D4 D6 D7 D6 D7 D7 D7 D8 D7 D8 D7 D7	Q GND Q 1 Q 2 Q 3 Q D Q 6 Q 7 Q D D F F S I C P S
38 39 40 41 42 43 44	SO/PO SOX SOCP	FL/RT GND D8 D7 D6 D5 VCC

FIGURE 1. Terminal connections.

STANDARDIZED MILITARY DRAWING	SIZE A		5962-89943
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444		REVISION LEVEL A	SHEET 16

■ 9004708 0002168 T32 ■

Reset and retransmit Single device configuration/width expansion mode

Mode	Inputs			Internal		Outputs	.	
FIOGE	RS	FL	ΧI	Read pointer	Write pointer	<u>AE</u> F, <u>EF,</u> EF+1	FF. FF-1	HF
Reset Retransmit Read/Write	0 1 1	X 0 1	0 0	Location zero Location zero Increment <u>1</u> /	Location zero Unchanged Increment <u>1</u> /	0 X X	1 X X	1 X X

^{1/} Pointer will increment if flag is high.

Reset and first load Depth expansion/compound expansion mode

Mode	Inputs			Internal status			outs
Hode	RS	FL	XI	Read pointer	Write pointer	ĒF	FF
Reset first	0	0	1/	Location zero	Location zero	0	1
device Reset all other	0	1	1/	Location zero	Location zero	0	1
devices Read/Write	1	х	1/	×	x	×	x

 $^{1/\}overline{XI}$ is connected to \overline{XO} of previous device.

NOTE: \overline{RS} = Reset input, $\overline{FL/RT}$ = First load/retransmit, \overline{EF} = Empty flag output, FF = Full flag output, FF = Empty flag output, FF = Full flag output, FF = Full flag output

0 = Low level voltage
1 = High level voltage

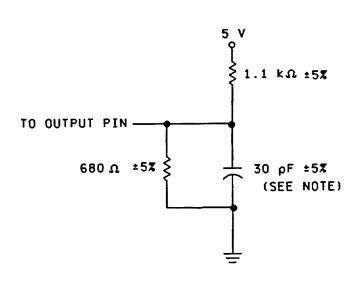

X = Don't care

FIGURE 2. <u>Truth tables</u>.

STANDARDIZED MILITARY DRAWING	SIZE A		5962-89943
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444		REVISION LEVEL	SHEET 17

DESC FORM 193A JUL 91

9004708 0002169 979

NOTE: \mathbf{C}_{L} includes scope and jig capacitance.

AC test conditions

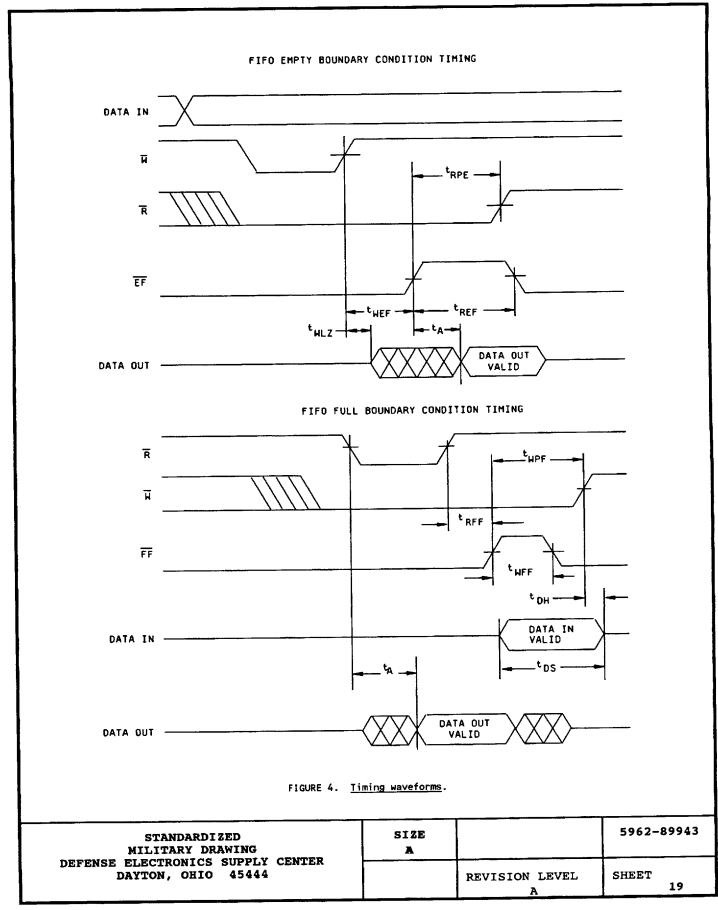
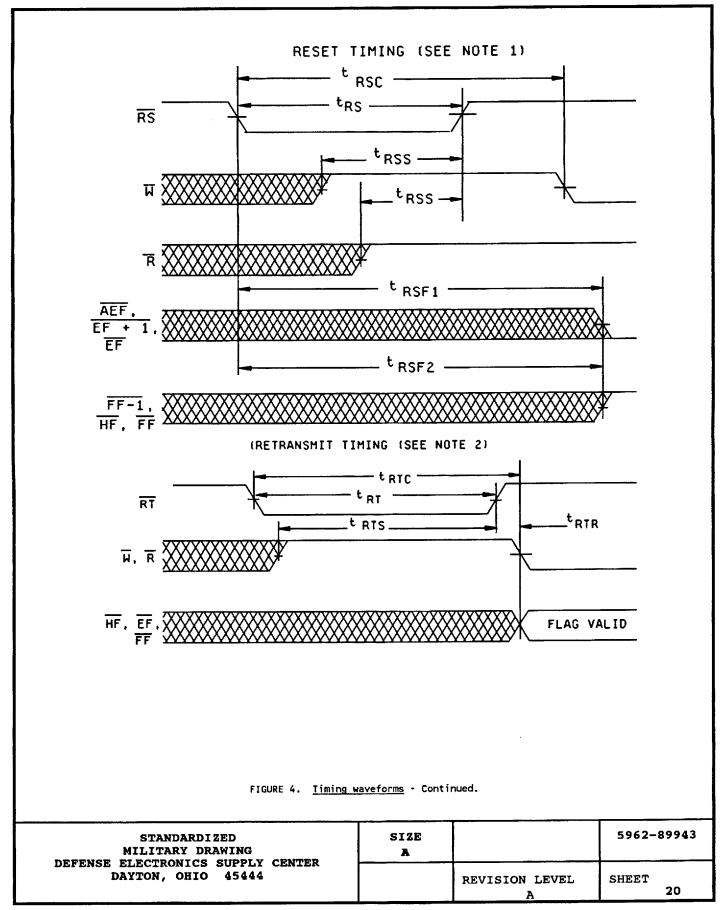
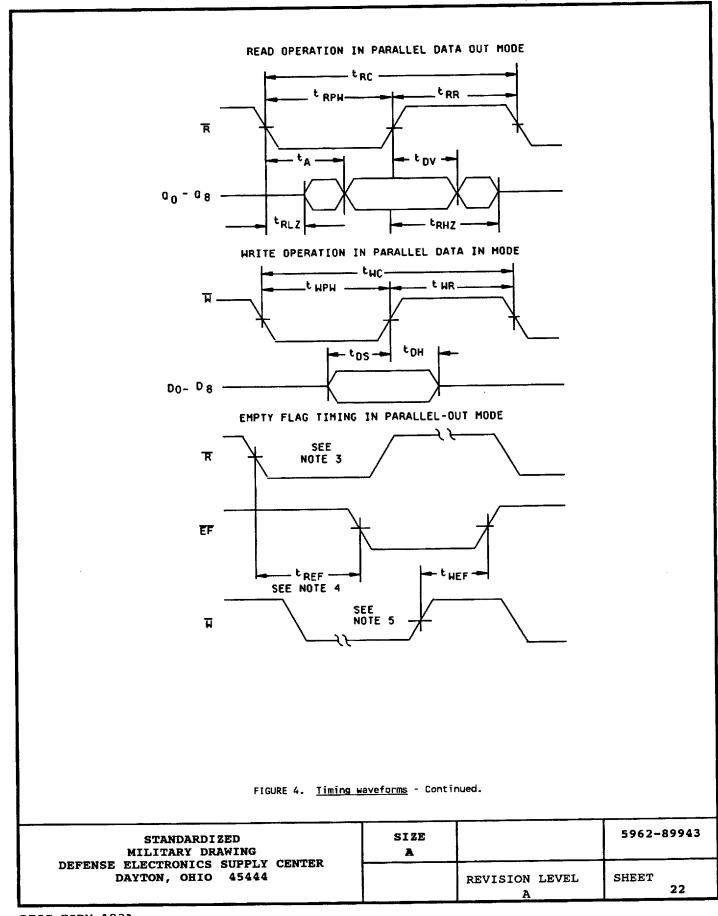

Input pulse levels Input rise and fall times Input timing reference levels Output reference levels	GND to 3.0 V 3.0 ns 1.5 V 1.5 V
--	--

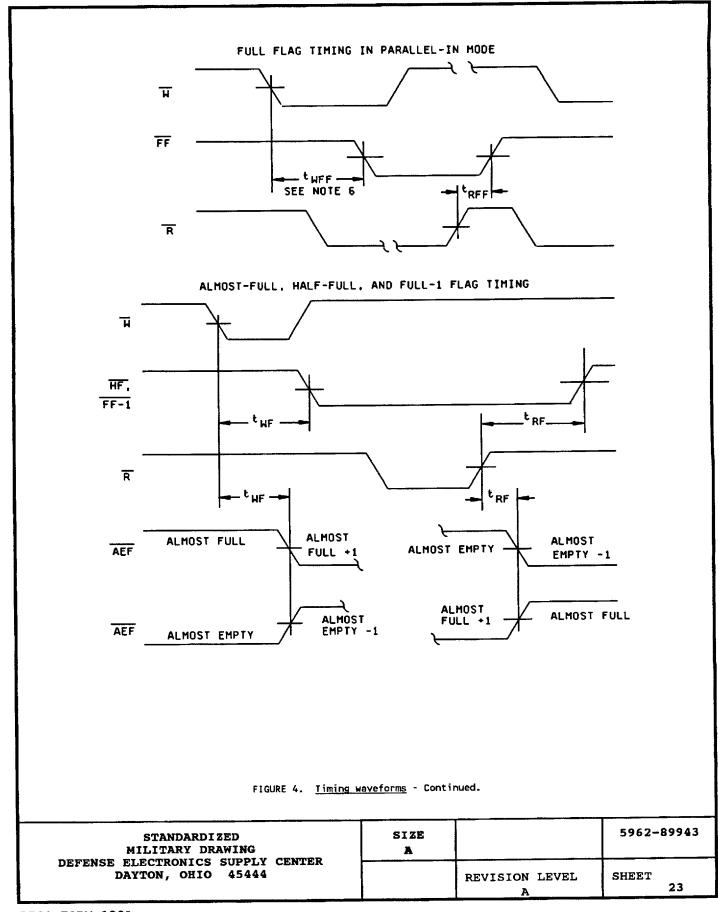
FIGURE 3. Output load circuit and ac test conditions.

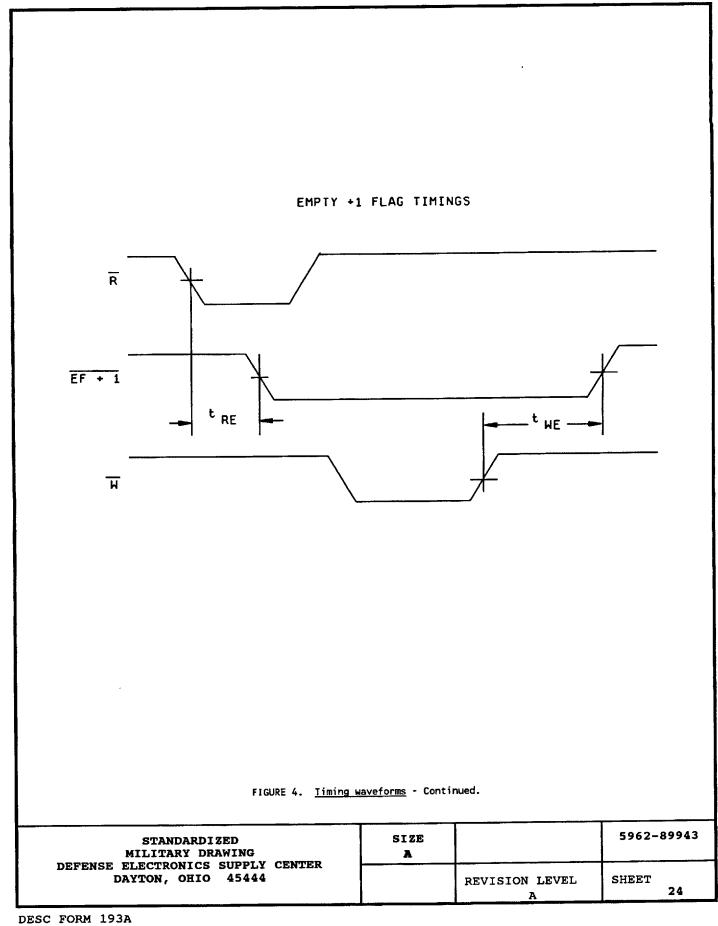

STANDARDIZED MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444	SIZE A		5962-89943
		REVISION LEVEL	SHEET 18

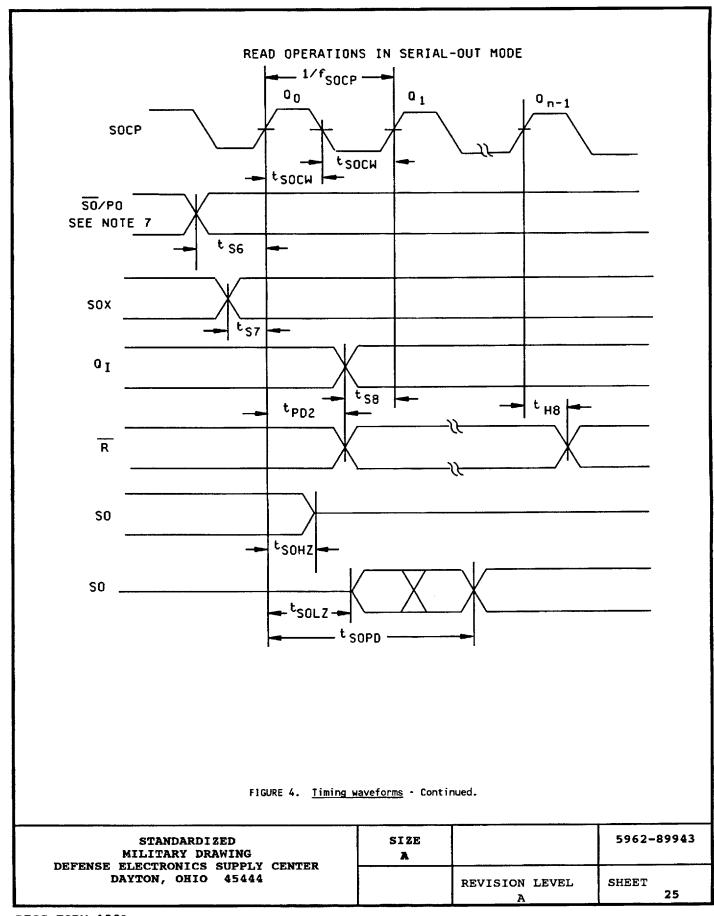
DESC FORM 193A JUL 91

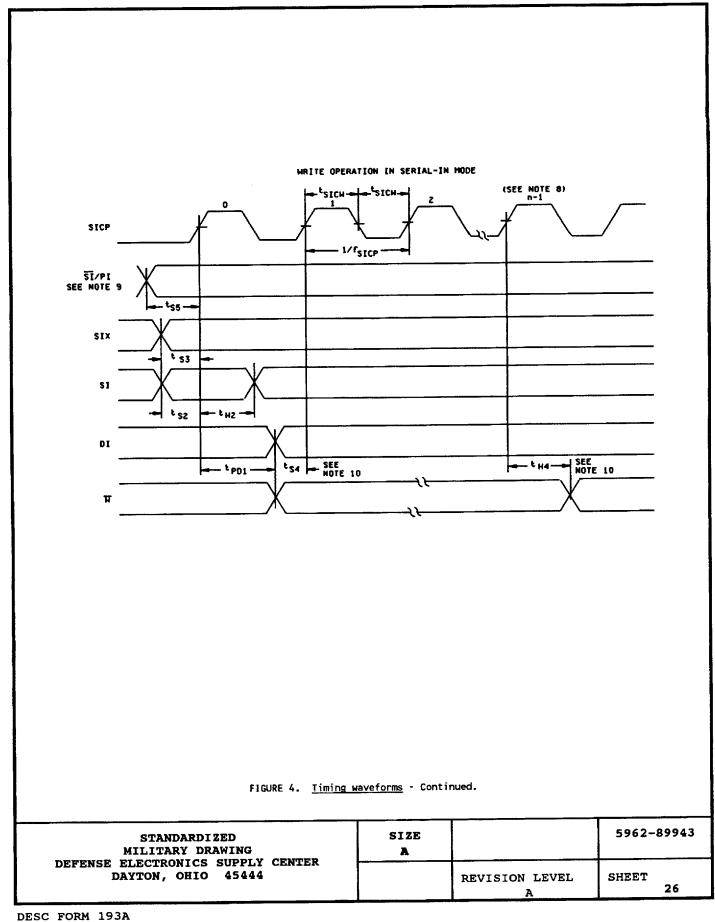
3004708 0002170 690

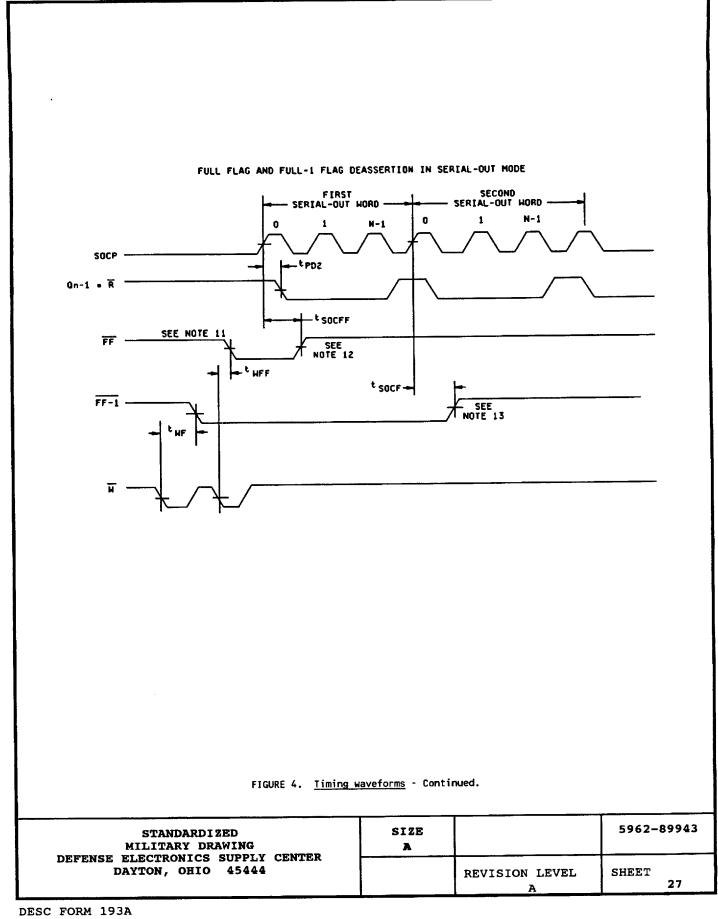

- 9004708 0002171 527


9004708 0002172 463


■ 9004708 0002173 3TT ■


- 9004708 0002174 236


- 9004708 0002175 172 **-**


■ 9004708 0002176 009 ■

■ 9004708 B002177 T45 ■

■ 9004708 0002178 981 **■**

9004708 0002179 818 **8**

EMPTY FLAG AND EMPTY + 1 FLAG ASSERTATION IN THE SERIAL MODE. FIFO BEING EMPTIED

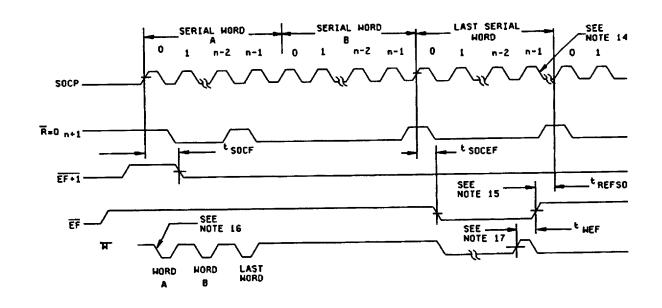
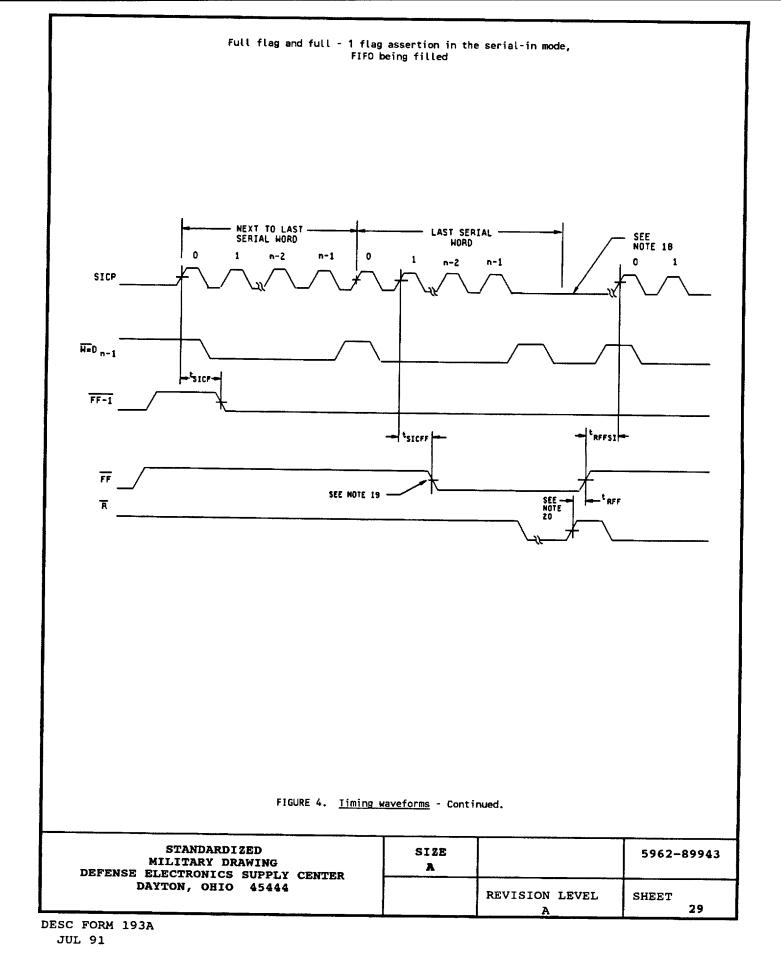
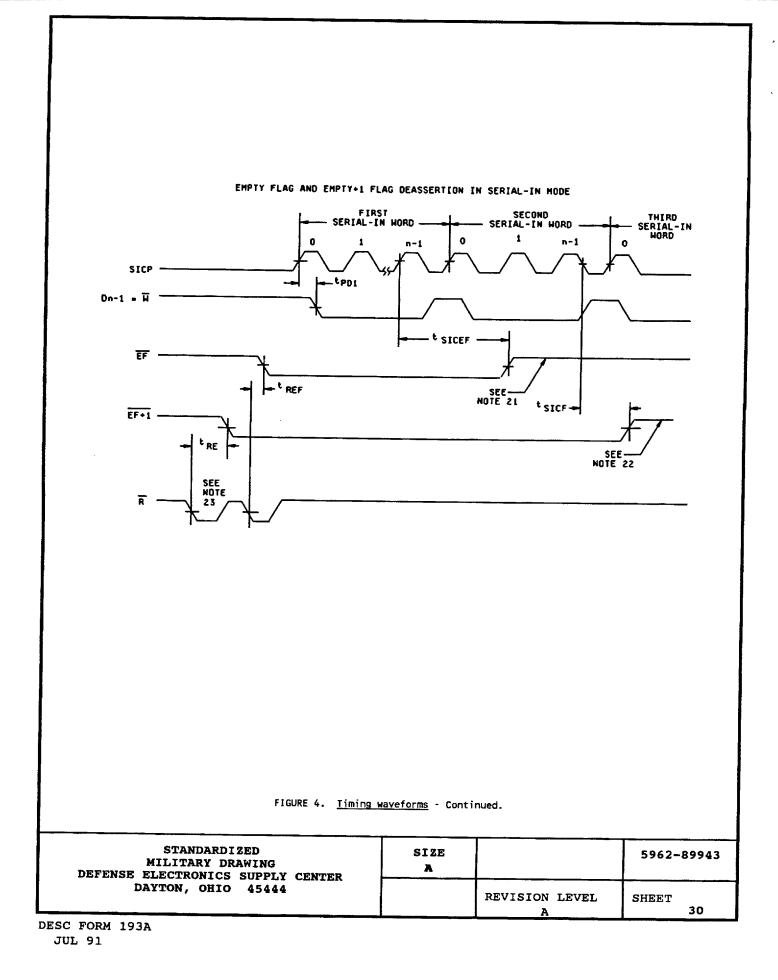
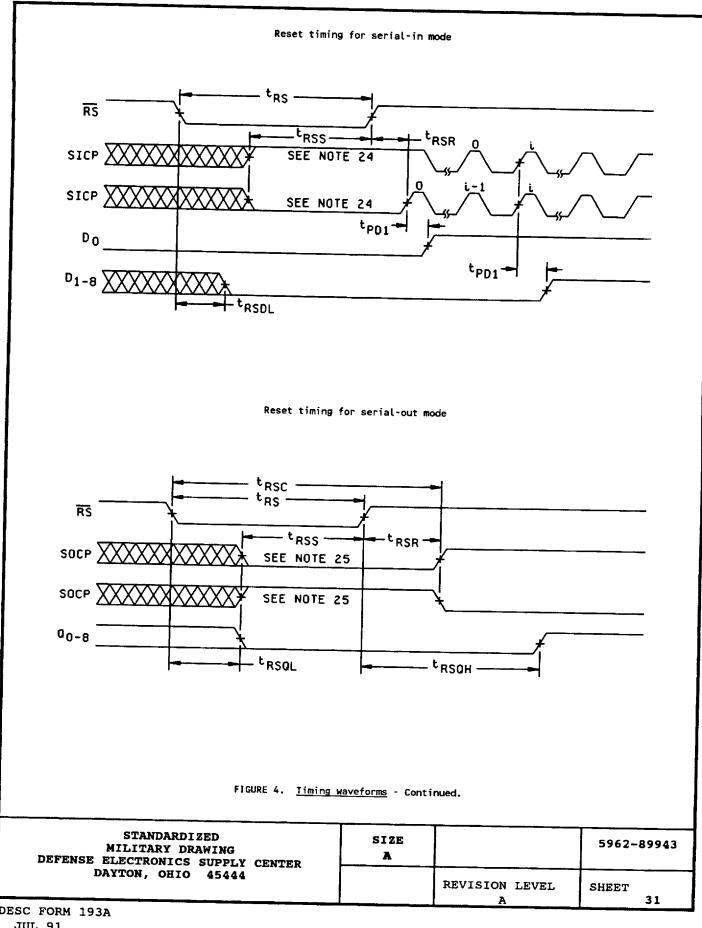



FIGURE 4. Timing waveforms - Continued.


STANDARDIZED MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444	SIZE A		5962-89943
		REVISION LEVEL A	SHEET 28

DESC FORM 193A JUL 91


■ 9004708 0002180 53T ■

9004708 0002181 476

■ 9004708 0002182 302 **■**

9004708 0002183 249 🚥

NOTES:

EF, FF and HF may change status during reset, but flags will be valid at t_{RSC}.
 EF, FF and HF, AEF, FF-1, and EF+1 may change status during retransmit, but flags will be valid at t_{RTC}.

Data is valid on this edge.

4. The empty flag is asserted by R in the parallel-out mode and is specified by t_{REF}. The EF flag is deasserted by the rising edge of W.

5. First rising edge of write after EF is set.

- 6. For the assertion time, tweet is used when data is written in the parallel mode. The FF is deasserted by the rising_edge of R.
- 7. After SO/PO has been setup, it cannot be dynamically changed; it can only be changed after a reset operation.

8. For the stand alone mode, $n \ge 4$ and the input bits are numbered 0 to n-1.

- 9. After SI/PI has been setup, it cannot be dynamically changed; it can only be changed after a reset operation.
- 10. For the recommended interconnections, D_I is to be directly tied to \overline{W} and the t_{S4} and t_{H4} requirements will be satisfied. For users that modify W externally, $t_{\rm S4}$ and $t_{\rm H4}$ have to be met.

11. The FIFO is full and a new read sequence is starting.

- 12. On the first rising edge of SOCP, the FF is deasserted. In the serial-in mode, a new write operation can begin after t_{RFFS1} after FF goes HIGH. In the parallel-in mode, a new write operation can occur immediately after FF flag goes HIGH.
- 13. The FF-1 flag is deasserted after the first SOCP of the second serial word.

14. SOCP should not be clocked until EF goes HIGH.

- The empty flag is asserted in the serial-out mode by using the t_{SOCEF} parameter. This <u>parameter</u> is measured in the worst case from the rising edge of the SOCP used to clock data bit 0. Whenever EF goes LOW, there is only one word to be shifted out. In the parallel-in mode, the $\overline{\text{EF}}$ flag is deasserted by the rising edge of $\overline{\text{W}}$. In the serial-in mode, the EF flag is deasserted by the rising edge of W.
- Parallel write shown for reference only. Can also use serial input mode.
 First write rising edge after EF is set.

18. SICP should not be clocked until \overline{FF} goes HIGH.

19. The full flag is asserted in the serial-in mode by using the t_{SICFF} parameter. This parameter is measured in the worst case from the rising edge of SICP followed by a $(t_{PD1} + t_{WFF})$ delay from the first rising edge of SICP of the last word.

20. First read rising edge after FF is set.

- 21. The empty flag is deasserted when an entire word has been loaded into the internal RAM. It can occur after the first rising edge of SICP of the second serial-in word. In the serial-out mode, a new read operation can begin treese after EF goes HIGH. In the parallel-out mode, a new read operation can occur immediately after FF goes HIGH.
- 22. The EF+1 flag is deasserted after the N-1 rising edge of SICP of the third serial-in word.

23. Parallel read shown for reference only. Can also use serial output mode.

24. SICP should be steady low or high during t_{RSS} . The first low to high or high to low transition can begin

after t_{RSR} . 25. SOCP should be steady low or high during t_{RSS} . The first low to high or high to low transition can begin efter t_{RSR}.

FIGURE 4. Timing waveforms - Continued.

STANDARDIZED MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444	SIZE A		5962-89943
		REVISION LEVEL A	SHEET 32

DESC FORM 193A JUL 91

9004708 0002184 185

TABLE II. Electrical test requirements.

MIL-STD-883 test requirements	Subgroups (per method 5005, table I)
Interim electrical parameters (method 5004)	
Final electrical test parameters (method 5004)	1*,2,3,7*,8A, 8B,9,10,11
Group A test requirements (method 5005)	1,2,3,4**,7,8A, 8B,9,10,11
Groups C and D end-point electrical parameters (method 5005)	2,3,7,8A,8B

- * PDA applies to subgroups 1 and 7.
- ** See 4.3.1c
- 3.8 <u>Notification of change</u>. Notification of change to DESC-EC shall be required in accordance with MIL-STD-883 (see 3.1 herein).
- 3.9 <u>Verification and review</u>. DESC, DESC's agent, and the acquiring activity retain the option to review the manufacturer's facility and applicable required documentation. Offshore documentation shall be made available onshore at the option of the reviewer.
 - 4. QUALITY ASSURANCE PROVISIONS
- 4.1 <u>Sampling and inspection</u>. Sampling and inspection procedures shall be in accordance with MIL-STD-883 (see 3.1 herein).
- 4.2 <u>Screening</u>. Screening shall be in accordance with method 5004 of MIL-STD-883, and shall be conducted on all devices prior to quality conformance inspection. The following additional criteria shall apply:
 - a. Burn-in test, method 1015 of MIL-STD-883.
 - (1) Test condition C or D. The test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to the preparing or acquiring activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1015 of MIL-STD-883.
 - (2) $T_A = +125$ °C, minimum.
 - b. Interim and final electrical test parameters shall be as specified in table II herein, except interim electrical parameter tests prior to burn-in are optional at the discretion of the manufacturer.
- 4.3 <u>Quality conformance inspection</u>. Quality conformance inspection shall be in accordance with method 5005 of MIL-STD-883 including groups A, B, C, and D inspections. The following additional criteria shall apply.
 - 4.3.1 Group A inspection.
 - a. Tests shall be as specified in table II herein.
 - b. Subgroups 5 and 6 in table 1, method 5005 of MIL-STD-883 shall be omitted.

STANDARDIZED MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444	SIZE A		5962-89943
		REVISION LEVEL A	SHEET 33

- c. Subgroup 4 (C_{IN} and C_{OUT} measurement) shall be measured only for the initial test and after process or design changes which may affect input capacitance.
- d. Subgroups 7 and 8 shall include verification of the truth table.

4.3.2 Groups C and D inspections.

- a. End-point electrical parameters shall be as specified in table II herein.
- b. Steady-state life test conditions, method 1005 of MIL-STD-883.
 - (1) Test condition C or D. The test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to the preparing or acquiring activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1005 of MIL-STD-883.
 - (2) $T_A = +125$ °C, minimum.
 - (3) Test duration: 1,000 hours, except as permitted by method 1005 of MIL-STD-883.

5. PACKAGING

5.1 <u>Packaging requirements</u>. The requirements for packaging shall be in accordance with MIL-STD-883 (see 3.1 herein).

6. NOTES

- 6.1 <u>Intended use</u>. Microcircuits conforming to this drawing are intended for use for Government microcircuit applications (original equipment), design applications, and logistics purposes.
- 6.2 <u>Replaceability</u>. Microcircuits covered by this drawing will replace the same generic device covered by a contractor-prepared specification or drawing.
- 6.3 <u>Configuration control of SMD's</u>. All proposed changes to existing SMD's will be coordinated with the users of record for the individual documents. This coordination will be accomplished in accordance with MIL-STD-973 using DD Form 1692, Engineering Change Proposal.
- 6.4 <u>Record of users</u>. Military and industrial users shall inform Defense Electronics Supply Center when a system application requires configuration control and the applicable SMD. DESC will maintain a record of users and this list will be used for coordination and distribution of changes to the drawings. Users of drawings covering microelectronics devices (FSC 5962) should contact DESC-EC, telephone (513) 296-6047.
- 6.5 <u>Comments</u>. Comments on this drawing should be directed to DESC-EC, Dayton, Ohio 45444-5270, or telephone (513) 296-5377.
- 6.6 <u>Approved sources of supply</u>. Approved sources of supply are listed in MIL-BUL-103. The vendors listed in MIL-BUL-103 have agreed to this drawing and a certificate of compliance (see 3.6 herein) has been submitted to and accepted by DESC-EC.

STANDARDIZED MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444	SIZE A		5962-89943
		REVISION LEVEL A	SHEET 34

DESC FORM 193A JUL 91

42542