FRM15U621CU # APD PRE-AMPLIFIER MODULE #### DESCRIPTION The FRM15U621CU is an APD pre-amplifier module for 1300 and 1550nm wavelength optical receiver front-end. It contains a planar InGaAs-APD (Avalanche Photo-diode) and a transimpedance type GaAs pre-amplifier IC. The InGaAs-APD, having high responsivity, low capacitance and low noise characteristics, converts an incident optical signal to an electrical current signal effectively. An InGaAs-APD has internal gain and multiplies the current signal. The following low noise transimpedance pre-amplifier having an inverted gain, converts the electrical current signal to a voltage signal. The output of the pre-amplifier must be connected to an user prepared post amplifier in AC-coupled manner. The required DC voltage supplies are the APD bias voltage $V_{\rm R}$ and the preamplifier supply voltage $V_{\rm SS}$ (–5.2V typ.). Each voltage supply lead is bypassed by capacitors internally. Additional capacitors and inductors are recommended to realize the stabilization of supply voltages. The hermetically sealed dual-in-line package with GI multimode fiber pigtail (50/125 μm , N.A. = 0.21) is easy to be mounted on PC-board. The module is epoxy free internally. A taper-ended fiber guides the optical signal to the photo-diode efficiently. An internal gain of APD(M) can be adjusted by the supply voltage $V_{\rm R}$, At 680Mb/s NRZ format, the sensitivity achieved at M=10 is better than –38dBm. To maintain the optimum M when temperature changes, $V_{\rm R}$ must be temperature compensated. The typical $V_{\rm R}$ compensation rate is 0.15%/°C. #### **FEATURES** - Long wavelength region operation - InGaAs-Avalanche photodiode - Monolithic GaAs transimpedance pre-amplifier - Bandwidth of 600MHz min. - High sensitivity of –38dBm at 565Mb/s systems - Wide dynamic range - 14 pin DIL package with GI multimode fiber - Baseband operation # FRM15U621CU ### ABSOLUTE MAXIMUM RATINGS ($T_a = 25^{\circ}C$) | Parameter | Symbol | Ratings | Unit | | |-----------------------|------------------|---------------------|---------|--| | Storage Temperature | T _{stg} | -40 to +85 | °C | | | Operating Temperature | Top | -20 to +70 | °C
V | | | Supply Voltage | V _{SS} | -7 to 0 | | | | Supply Voltage | V _R | 0 to V _B | V | | | APD Reverse Current | I _R | 500 | μΑ | | - 1) V_B differs from device to device. V_B data is attached to each device. - 2) Please do not solder the package. The package has three case ground pins. Please use these pins for ground. ## OPTICAL AND ELECTRICAL CHARACTERISTICS (T_a = 25 $^{\circ}$ C, V_{SS} = -5.2V, λ = 1550nm) | Parameter | Symbol | Test Conditions | Limit | | | Unit | |---|-----------------|--|-------|------|-------|------| | | | | Min. | Тур. | Max. | Onit | | Responsivity | R | λ = 1550nm
M = 1 | 0.7 | 0.8 | _ | A/W | | Breakdown Voltage | V _B | I _D = 10μA | 60 | 80 | 100 | V | | Temperature Coefficient of V _B | γ | $\gamma = (1/V_B) \times (dV_B/dT)$ $\times 100$ | _ | 0.1 | _ | %/°C | | Transimpedance | Z _t | DC, R _L = ∞ | _ | 1 | _ | ΚΩ | | Bandwidth | BW | AC-Coupled, M=10
$R_L = 50\Omega$
-3dB from 1MHz | 600 | _ | _ | MHz | | Sensitivity | Pr | 680Mb/s NRZ
2 ¹⁵⁻¹ P.R.B.S.
B.E.R. = 10 ⁻⁹
V _R is set at optimum
value ⁽¹⁾ | -38 | | | dBm | | Dynamic Range | D _r | | 30 | _ | | dB | | Power Supply Current | I _{SS} | | _ | _ | 40 | mA | | Recommended Supply
Voltage | V _{ss} | | -5.46 | -5.2 | -4.94 | V | ⁽¹⁾ V_R is accompanied with each device. # APD PRE-AMPLIFIER MODULE ### TYPICAL CHARACTERISTICS Fig. 1 Power Supply Current Fig. 3 Received Optical Power vs. Output Voltage Fig. 2 Received Optical Power vs. Fig. 4 Frequency Response # FRM15U621CU ## APD PRE-AMPLIFIER MODULE Fig. 5 Pulse Response Fig. 6 Equivalent Input Noise Current Density Fig. 7 Error Rate Characteristics