

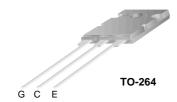
FGL40N120AND 1200V NPT IGBT

Features

· High speed switching

• Low saturation voltage : $V_{CE(sat)} = 2.6 \text{ V} @ I_C = 40 \text{A}$

· High input impedance


• CO-PAK, IGBT with FRD : $t_{rr} = 75$ ns (typ.)

Applications

Induction Heating, UPS, AC & DC motor controls and general purpose inverters.

Description

Employing NPT technology, Fairchild's AND series of IGBTs provides low conduction and switching losses. The AND series offers an solution for application such as induction heating (IH), motor control, general purpose inverters and uninterruptible power supplies (UPS).

Absolute Maximum Ratings

Symbol	Parameter		FGL40N120AND	Units
V _{CES}	Collector-Emitter Voltage		1200	V
V _{GES}	Gate-Emitter Voltage		±25	V
	Collector Current	@T _C = 25°C	64	Α
I _C	Collector Current	@T _C = 100°C	40	Α
I _{CM(1)}	Pulsed Collector Current		160	Α
I _F	Diode Continuous Forward Current	@T _C = 100°C	40	А
I _{FM}	Diode Maximum Forward Current		240	Α
D	Maximum Power Dissipation	@T _C = 25°C	500	W
P_{D}	Maximum Power Dissipation	@T _C = 100°C	200	W
SCWT	Short Circuit Withstand Time, V _{CE} = 600V, V _{GE} = 15V, T _C = 125°C		10	μs
TJ	Operating Junction Temperature		-55 to +150	°C
T _{STG}	Storage Temperature Range		-55 to +150	°C
T _L	Maximum Lead Temp. for Soldering Purposes, 1/8" from Case for 5 second	ds	300	°C

Notes:

(1) Pulse width limited by max. junction temperature

Thermal Characteristics

Symbol	Parameter	Тур.	Max.	Units
$R_{\theta JC}$ (IGBT)	Thermal Resistance, Junction-to-Case		0.25	°C/W
$R_{\theta JC}(DIODE)$	Thermal Resistance, Junction-to-Case		0.7	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient		25	°C/W

Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FGL40N120AND	FGL40N120AND	TO-264	=	=	25

Electrical Characteristics of the IGBT $T_C = 25^{\circ}C$ unless otherwise noted

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
Off Charact	eristics					
BV _{CES}	Collector-Emitter Breakdown Voltage	$V_{GE} = 0V$, $I_C = 1mA$	1200			V
BV _{CES} / ΔT _J	Temperature Coefficient of Breakdown Voltage	V _{GE} = 0V, I _C = 1mA		0.6		V/°C
I _{CES}	Collector Cut-Off Current	$V_{CE} = V_{CES}, V_{GE} = 0V$			1	mA
I _{GES}	G-E Leakage Current	$V_{GE} = V_{GES}, V_{CE} = 0V$			±250	nA
On Charact	eristics					
V _{GE(th)}	G-E Threshold Voltage	$I_{C} = 250 \mu A, V_{CE} = V_{GE}$	3.5	5.5	7.5	V
- GE(III)		I _C = 40A, V _{GE} = 15V		2.6	3.2	V
V _{CE(sat)}	Collector to Emitter Saturation Voltage	I _C = 40A, V _{GE} = 15V, T _C = 125°C		2.9		V
		I _C = 64A, V _{GE} = 15V		3.15		V
Dynamic Cl	naracteristics			l.		1
C _{ies}	Input Capacitance			3200		pF
C _{oes}	Output Capacitance	$V_{CE} = 30V, V_{GE} = 0V$		370		pF
C _{res}	Reverse Transfer Capacitance	t = 1MHz		125		pF
Switching (Characteristics					
t _{d(on)}	Turn-On Delay Time			15		ns
t _r	Rise Time]		20		ns
t _{d(off)}	Turn-Off Delay Time	f = 1MHz V _{CC} = 600V, I _C = 40A,		110		ns
t _f	Fall Time	$R_G = 5\Omega$, $V_{GE} = 15V$,		40	80	ns
E _{on}	Turn-On Switching Loss	Inductive Load, T _C = 25°C		2.3	3.45	mJ
E _{off}	Turn-Off Switching Loss			1.1	1.65	mJ
E _{ts}	Total Switching Loss			3.4	5.1	mJ
t _{d(on)}	Turn-On Delay Time			20		ns
t _r	Rise Time			25		ns
t _{d(off)}	Turn-Off Delay Time	$V_{CC} = 600V, I_{C} = 40A,$		120		ns
t _f	Fall Time	$R_G = 5\Omega$, $V_{GE} = 15V$,		45		ns
E _{on}	Turn-On Switching Loss	Inductive Load, T _C = 125°C		2.5		mJ
E _{off}	Turn-Off Switching Loss			1.8		mJ
E _{ts}	Total Switching Loss			4.3		mJ
Qg	Total Gate charge			220	330	nC
Q _{ge}	Gate-Emitter Charge	$V_{CE} = 600V, I_{C} = 40A,$ $V_{GE} = 15V$		25	38	nC
Q _{gc}	Gate-Collector Charge	1 *GE = 10 *		130	195	nC

Electrical Characteristics of DIODE $T_C = 25^{\circ}C$ unless otherwise noted

Symbol	Parameter	Test Con	Min.	Тур.	Max.	Units	
V	Diode Forward Voltage	I _F = 40A	T _C = 25°C		3.2	4.0	V
V _{FM}	Diode Forward Voltage		T _C = 125°C		2.7		V
	Diode Reverse Recovery Time		$T_C = 25^{\circ}C$		75	112	nS
t _{rr}	Diode Reverse Recovery Time		T _C = 125°C		130		113
ı	Diode Peak Reverse Recovery	I _F = 40A,	T _C = 25°C		8	12	Α
l'rr	Current	di/dt = 200A/μs	T _C = 125°C		13		Α
0	Diada Daviera Daviera Charre		T _C = 25°C		300	450	nC
Q _{rr}	Diode Reverse Recovery Charge		T _C = 125°C		845		IIC

Typical Performance Characteristics

Figure 1. Typical Output Characteristics

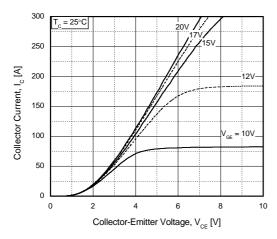


Figure 3. Saturation Voltage vs. Case
Temperature at Variant Current Level

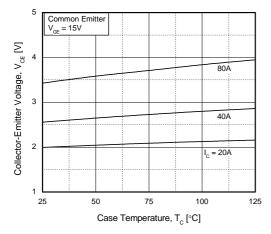


Figure 5. Saturation Voltage vs. V_{GE}

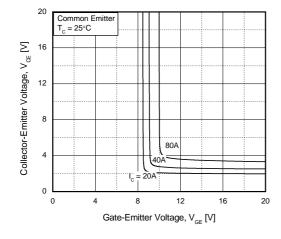


Figure 2. Typical Saturation Voltage Characteristics

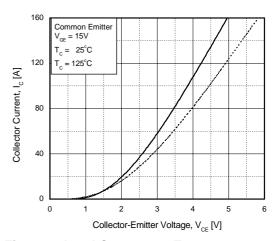


Figure 4. Load Current vs. Frequency

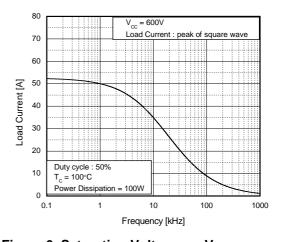
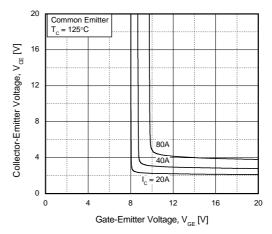



Figure 6. Saturation Voltage vs. V_{GE}

Typical Performance Characteristics (Continued)

Figure 7. Capacitance Characteristics

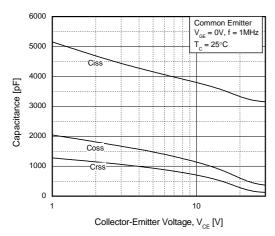


Figure 9. Turn-Off Characteristics vs. **Gate Resistance**

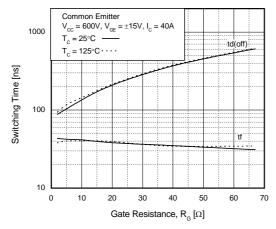


Figure 11. Turn-On Characteristics vs. **Collector Current**

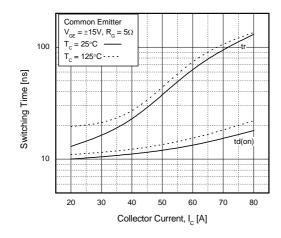


Figure 8. Turn-On Characteristics vs. Gate Resistance

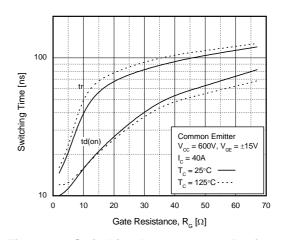


Figure 10. Switching Loss vs. Gate Resistance

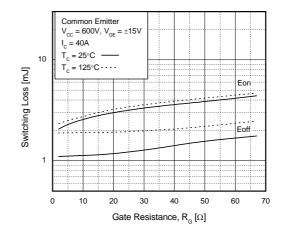
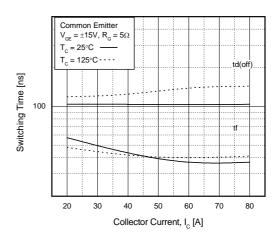



Figure 12. Turn-Off Characteristics vs. **Collector Current**

Typical Performance Characteristics (Continued)

Figure 13. Switching Loss vs. Collector Current

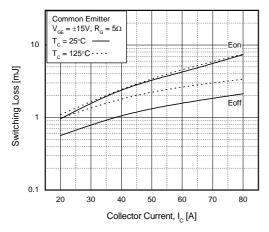


Figure 15. SOA Characteristics

Figure 17. Forward Characteristics

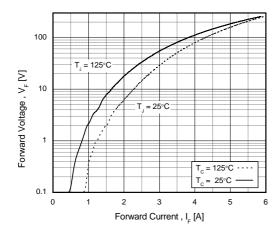


Figure 14. Gate Charge Characteristics

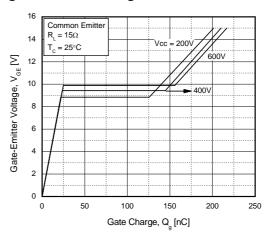
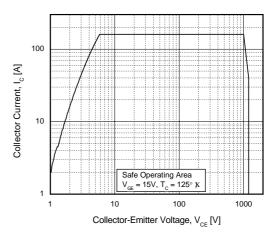
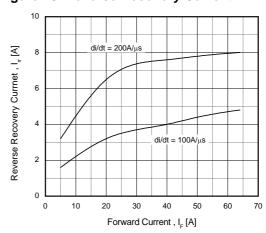




Figure 16. Turn-Off SOA

Figure 18. Reverse Recovery Current

Typical Performance Characteristics (Continued)

Figure 19. Stored Charge

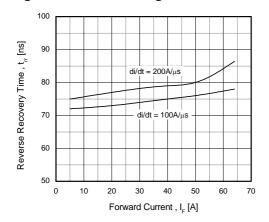
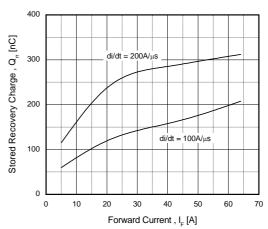
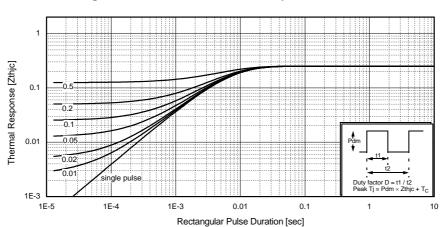
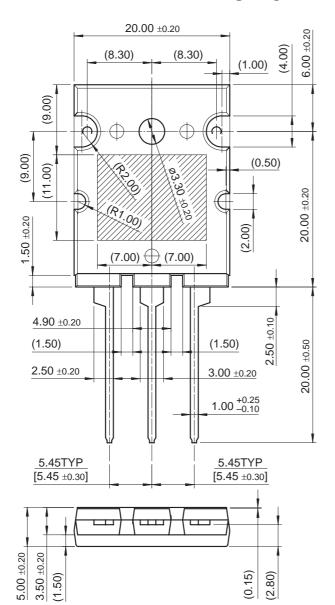
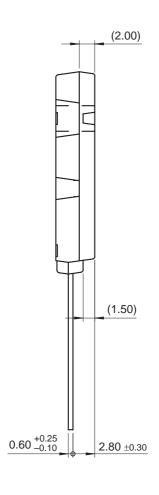


Figure 20. Reverse Recovery Time


Figure 21. Transient Thermal Impedance of IGBT

Mechanical Dimensions

TO-264

Dimensions in Millimeters

TRADEMARKS

The following are registered and unregistered trademarks and service marks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx® Build it Now™ CorePLUS™ CROSSVOLT™ CTL™ Current Transfer Logic™ EcoSPARK® FACT Quiet Series™ FACT® FAST® FastvCore™ FPS™ FRFET® Global Power Resource™ Green FPS™	Green FPS™ e-Series™ GTO™ i-Lo™ IntelliMAX™ ISOPLANAR™ MegaBuck™ MICROCOUPLER™ MicroPak™ Motion-SPM™ OPTOLOGIC® OPTOPLANAR® PDP-SPM™ Power220® Power247® POWEREDGE®	Power-SPM™ PowerTrench® Programmable Active Droop™ QFET® QS™ QT Optoelectronics™ Quiet Series™ RapidConfigure™ SMART START™ SPM® STEALTH™ SuperFET™ SuperSOT™-3 SuperSOT™-6 SuperSOT™-8	SyncFET™ The Power Franchise® TinyBoost™ TinyBuck™ TinyLogic® TINYOPTO™ TinyPower™ TinyPWM™ TinyPWM™ UHC® UniFET™ VCX™
---	---	---	---

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 1. Life support devices or systems are devices or systems 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild Semiconductor. The datasheet is printed for reference information only.

Rev. I28

Search:

Go

DATASHEETS, SAMPLES, BUY

TECHNICAL INFORMATION APPLICATIONS DESIGN CENTER SUPPORT COMPANY INVESTORS MY F.

Order Samples

Qualification Support

Home >> Find products >>

FGL40N120AND

1200V NPT IGBT

Contents

- General description
- Features
- Applications
- Product status/pricing/packaging

General description

Employing NPT technology, Fairchild's AND series of IGBTs provides low conduction and switching losses. The AND series offers an solution for application such as induction heating (IH), motor control, general purpose inverters and uninterruptible power supplies (UPS).

back to top

Features

- High speed switching
- Low saturation voltage : V_{CE(sat)} = 2.6 V @ I_C = 40A
- High input impedance
- \overrightarrow{CO} -PAK, IGBT with FRD : t_{rr} = 75ns (typ.)

back to top

Applications

Induction Heating, UPS, AC & DC motor controls and general purpose inverters.

back to top

Product status/pricing/packaging

BUY

Datasheet Download this datasheet

e-mail this datasheet I ≕ '

This page Print version

Related Links

Request samples

How to order products

Product Change Notices (PCNs)

Support

Sales support

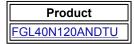
Quality and reliability

Design center

Product	Product status	Pb-free Status	Pricing*	Package type	Leads	Packing method	Package Marking Convention**
FGL40N120ANDTU	Full Production	Full Production	\$17.60	<u>TO-264</u>	3		<u>Line 1:</u> \$Y (Fairchild logo) <u>Line 2:</u> FGL40N120 <u>Line 3:</u> AND&3

^{*} Fairchild 1,000 piece Budgetary Pricing

^{**} A sample button will appear if the part is available through Fairchild's on-line samples program. If there is no sample button, please contact a <u>Fairchild distributor</u> to obtain samples


Indicates product with Pb-free second-level interconnect. For more information <u>click here.</u>

Package marking information for product FGL40N120AND is available. Click here for more information.

back to top

Qualification Support

Click on a product for detailed qualification data

back to top

© 2007 Fairchild Semiconductor

Products | Design Center | Support | Company News | Investors | My Fairchild | Contact Us | Site Index | Privacy Policy | Site Terms & Conditions | Standard Terms & Conditions |