Vishay Semiconductors

INT-A-PAK Power Modules Ultrafast Diodes, 300 A

INT-A-PAK	

PRODUCT SUMMARY	
$I_{F(AV)}$ at T_C	300 A at 48 °C
V _R	600 V
t _{rr} (typical)	130 ns
I _{F(DC)} at T _C	230 A at 100 °C

FEATURES

- Electrically insulated by DBC ceramic
- 3500 V_{RMS} isolating voltage
- Standard JEDEC package
- Simplified mechanical designs, rapid assembly
- High surge capability
- Large creepage distances
- UL approved file E78996
- Case style INT-A-PAK
- Compliant to RoHS directive 2002/95/EC
- Designed and gualified for industrial level

ABSOLUTE MAXIMUM RATINGS						
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS		
Cathode to anode voltage	V _R		600	V		
Continuous forward ourrent per log		T _C = 25 °C	435			
Continuous forward current per leg	I _F	T _C = 100 °C	230	А		
Single pulse forward current	I _{FSM}	Limited by junction temperature	TBD			
Maximum power dissipation per leg	Р	$T_{\rm C} = 25 \ ^{\circ}{\rm C}$	781	w		
Maximum power dissipation per leg	PD	T _C = 100 °C	313	vv		
Operating junction and storage temperature range	T _J , T _{Stg}		- 40 to 150	°C		
RMS insulation voltage	V _{INS}	50 Hz, circuit to base, all terminals shorted, t = 1 s	3500 V			

ELECTRICAL SPECIFICATIONS (T _J = 25 °C unless otherwise specified)								
PARAMETER	SYMBOL	TEST CONDITIONS MIN. TYP. MAX. U		UNITS				
Cathode to anode breakdown voltage	V_{BR}	I _R = 500 μA	600	-	-			
		I _F = 150 A	-	1.23	1.53			
Forward valtage drep per lag		V	V	M	I _F = 300 A	-	1.43	1.96
Forward voltage drop per leg	V_{FM}	I _F = 150 A, T _J = 125 °C	-	1.11	1.29			
		I _F = 300 A, T _J = 125 °C	-	1.39	1.73			
Maximum reverse leakage current	I _{RM}	$T_J = 150 \ ^{\circ}C, \ V_R = 600 \ V$	-	-	50	mA		

Vishay Semiconductors

INT-A-PAK Power Modules Ultrafast Diodes, 300 A

DYNAMIC RECOVERY CHARACTERISTICS ($T_J = 25$ °C unless otherwise specified)								
PARAMETER	SYMBOL	TEST CO	MIN.	TYP.	MAX.	UNITS		
Reverse recovery time	+	T _J = 25 °C		-	130	165	ns	
Reverse recovery time	t _{rr}	T _J = 125 °C		-	195	260		
Peak recovery current	1	$T_J = 25 \text{ °C}$ $I_F = 50 \text{ A}$	T _J = 25 °C	I _F = 50 A	-	11	18	•
Feak recovery current	Irr	T _J = 125 °C	dl/dt = 200 A/µs V _R = 400 V (per leg)	-	20	30	A	
Reverse recovery charge	0	T _J = 25 °C		-	670	1485	nC	
Reverse recovery charge	Q _{rr}	T _J = 125 °C		-	1800	3900	no	
Peak rate of recovery current	dl _{(rec)M} /dt	T _J = 125 °C		-	-	400	A/µs	
Softnana factor por log		$I_F = 50 \text{ A}, \text{ T}_J = 25 \text{ °C}, \text{ dI}$	/dt = 400 A/µs, V _R = 200 V	-	0.2	-		
Softness factor per leg	S	$I_F = 50 \text{ A}, T_J = 125 \text{ °C}, \text{ dI/dt} = 400 \text{ A/}\mu\text{s}, \text{ V}_R = 200 \text{ V} \qquad - \qquad 0.22 \qquad -$			-			

THERMAL AND MECHANICAL SPECIFICATIONS						
PARAMETER		SYMBOL	TEST CONDITIONS	VALUES	UNITS	
Maximum junction op storage temperature	0	T _J , T _{Stg}		- 40 to 150	°C	
Maximum thermal res junction to case per l	B _{thic} DC operation		0.16			
Typical thermal resist case to heatsink	tance,	R _{thCS}	Mounting surface, flat, smooth and greased	0.05	K/W	
Mounting	to heatsink	-	A mounting compound is recommended and the torgue should be rechecked after a period of	4 to 6	Nm	
torque ± 10 %	busbar		3 hours to allow the spread of the compound.			
Approvimate weight				200	g	
Approximate weight				7.1	oz.	
Case style				INT-A-	PAK	

INT-A-PAK Power Modules Ultrafast Diodes, 300 A **Vishay Semiconductors**

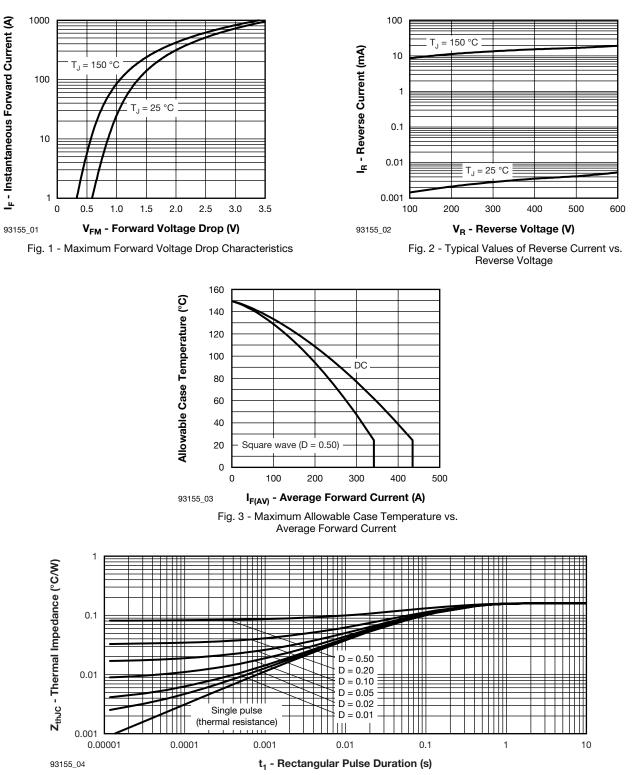


Fig. 4 - Maximum Thermal Impedance Z_{thJC} Characteristics

Vishay Semiconductors

INT-A-PAK Power Modules Ultrafast Diodes, 300 A

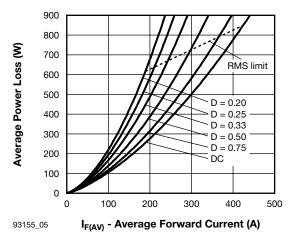


Fig. 5 - Forward Power Loss Characteristics

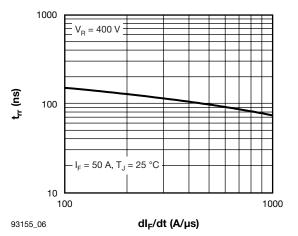
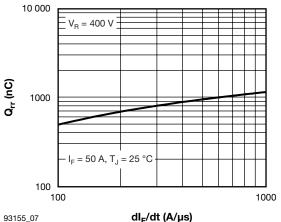



Fig. 6 - Typical Reverse Recovery Time vs. dI_F/dt (Per Leg)

dl_F/dt (A/µs)

Fig. 7 - Typical Reverse Recovery Charge vs. dl_F/dt (Per Leg)

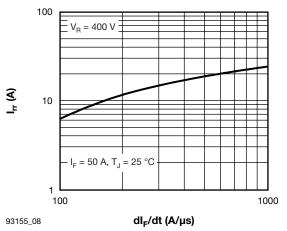
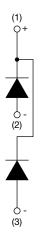


Fig. 8 - Typical Reverse Recovery Current vs. dl_F/dt (Per Leg)



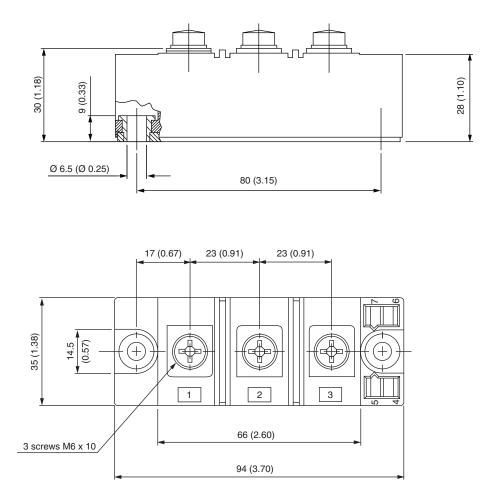
INT-A-PAK Power Modules Ultrafast Diodes, 300 A Vishay Semiconductors

ORDERING INFORMATION TABLE

Device code	VSK	С	U	300	1	06	PbF
	1	2	3	4		5	6
	1 - 2 -	Circ	dule type cuit confi 2 diode	guratior		ode	
	3 -	U =	Ultrafas	t diode			
	4 -	Cur	rent ratii	ng (300	= 300 A	N)	
	5 -	Volt	age rati	ng (06 =	600 V)		
	6 -	PbF	= Lead	(Pb)-fre	e		

CIRCUIT CONFIGURATION

LINKS TO RELATED DOCUMENTS					
Dimensions	www.vishay.com/doc?95254				




Outline Dimensions

Vishay Semiconductors

INT-A-PAK DBC

DIMENSIONS in millimeters (inches)

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk and agree to fully indemnify and hold Vishay and its distributors harmless from and against any and all claims, liabilities, expenses and damages arising or resulting in connection with such use or sale, including attorneys fees, even if such claim alleges that Vishay or its distributor was negligent regarding the design or manufacture of the part. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.