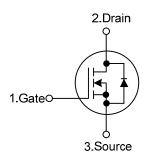


UTT36N05

Preliminary

36A, 50V N-CHANNEL ENHANCEMENT MODE POWER MOSFET TRANSISTOR

DESCRIPTION

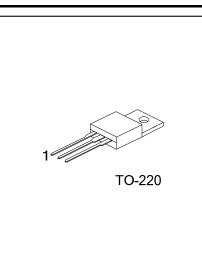

The UTC **UTT36N05** is an N-channel enhancement power MOSFET using UTC's advanced technology to provide the customers with perfect $R_{DS(ON)}$, high switching speed, high current capacity and low gate charge.

The UTC **UTT36N05** is suitable for motor control, AC-DC or DC-DC converters and audio amplifiers, etc.

FEATURES

- * $R_{DS(ON)}$ =33m Ω @ V_{GS} =5V, I_D =18A
- * High Switching Speed
- * High Current Capacity
- * Low Gate Charge(typical 35nC)

SYMBOL



ORDERING INFORMATION

Ordering Number		Daakaga	Pin Assignment			Deaking	
Lead Free	Halogen Free	Package	1	2	3	Packing	
UTT36N05L-TA3-T	UTT36N05G-TA3-T	TO-220	G	D	S	Tube	

Note: Pin Assignment: G: Gate D: Drain S: Source

UTT36N05L-TA3-T	(1) T: Tube
(2)Package Type	(2) TA3: TO-220
(3)Lead Free	(3) G: Halogen Free, L: Lead Free

■ ABSOLUTE MAXIMUM RATINGS (Tc=25°C, unless otherwise specified)

	PARAMETER		SYMBOL	RATINGS	UNIT
Drain-Source Volta	age (V _{GS} =0)		V _{DSS}	50	V
Drain-Gate Voltage	e (R _{GS} =20kΩ)		V _{DGR}	50	V
Gate-Source Volta	irce Voltage		V _{GSS}	$ \begin{array}{c c} I_{GSS} & \pm 15 \\ I_{D} & 36 \\ \hline 25 \\ \hline 100 & 100 \\ \hline 100 & 100$	
	Continuous	T _C =25°C		36	Α
Drain Current	Continuous	T _C =100°C	ID	25	Α
Pulsed (Note 2)		I _{DM}	144	А	
		Single Pulsed	E _{AS}	240	mJ
Avalanche Energy		Repetitive	E _{AR}	60	mJ
Power Dissipation	(T _C =25°C)		PD	100	W
Junction Temperat	nction Temperature		TJ	T _J 150	
Storage Temperati	ure		T _{STG}	-65~175	°C

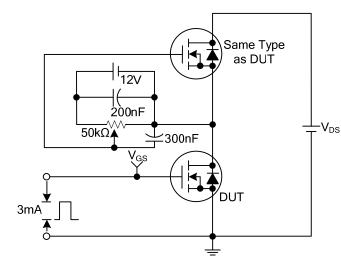
Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

2. Pulse width limited by safe operating area

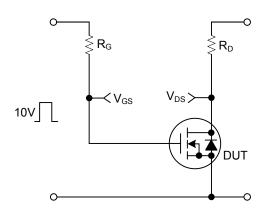
THERMAL DATA

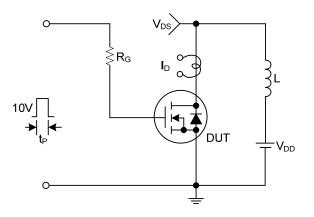
PARAMETER	SYMBOL	RATINGS	UNIT
Junction to Ambient	θ_{JA}	62.5	°C/W
Junction to Case	θ _{JC}	1.25	°C/W

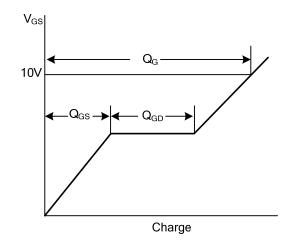
■ ELECTRICAL CHARACTERISTICS (T_c=25°C, unless otherwise specified)

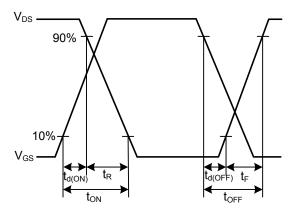

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
OFF CHARACTERISTICS						
Drain-Source Breakdown Voltage	BV _{DSS}	I _D =250µA, V _{GS} =0V				V
Drain Source Lookage Current	I _{DSS}	V _{DS} =Max Rating, V _{GS} =0V			1	
Drain-Source Leakage Current		V_{DS} = Max ×0.8, T_{C} =125°C, V_{GS} =0V			10	μA
Gate- Source Leakage Current	GSS	V _{GS} =+15V, V _{DS} =0V			+100	nA
Reverse		V _{GS} =-15V, V _{DS} =0V			-100	nA
ON CHARACTERISTICS (Note 1)			-			
Gate Threshold Voltage	V _{GS(TH)}	V _{DS} =V _{GS} , I _D =250µA	1	1.6	2.5	V
Static Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =5V, I _D =18A		0.033	0.04	Ω
On State Drain Current	I _{D(ON)}	V _{DS} >I _{D(ON)} ×R _{DS(ON)} max, V _{GS} =10V	36			А
DYNAMIC PARAMETERS						
Input Capacitance	CISS			1350	1800	рF
Output Capacitance	C _{OSS}	V _{GS} =0V, V _{DS} =25V, f=1.0MHz		450	600	рF
Reverse Transfer Capacitance	C _{RSS}			130	200	pF
SWITCHING PARAMETERS						
Total Gate Charge	Q_{G}			35	50	nC
Gate to Source Charge	Q_{GS}	V _{GS} =5V, V _{DS} =40V, I _D =36A		11		nC
Gate to Drain Charge	Q_{GD}			19		nC
Turn-ON Delay Time	t _{D(ON)}	-V _{DD} =25V, I _D =18A, R _G =50Ω, V _{GS} =5V		90	130	ns
Rise Time	t _R			550	800	ns
OFF-Voltage Rise Time	t _{R(VOFF)}	V _{DD} =40V, I _D =36A, R _G =50Ω, V _{GS} =5V		110	160	ns
Fall-Time	t _F			180	260	ns
Cross-Over Time	t _c			310	450	ns
SOURCE- DRAIN DIODE RATINGS AND (CHARACTE	RISTICS	-			
Maximum Body-Diode Continuous Current	ls				36	А
Maximum Body-Diode Pulsed Current	I _{SM}	(Note 2)			144	Α
Drain-Source Diode Forward Voltage	V_{SD}	I _{SD} =36A, V _{GS} =0V (Note 1)			1.6	V
Body Diode Reverse Recovery Time	t _{RR}			100		ns
Body Diode Reverse Recovery Charge	Q_{RR}	I _{SD} =36A, V _{DD} =30V, di/dt=100A/µs, −T _J = 150°C		0.27		μC
Body Diode Reverse Recovery Current	I _{RRM}	11 = 100 0		5.5		А

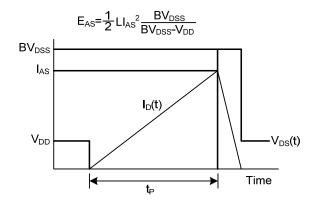
Notes: 1. Pulsed: Pulse duration = 300 ms, duty cycle 1.5%


2. Pulse width limited by safe operating area

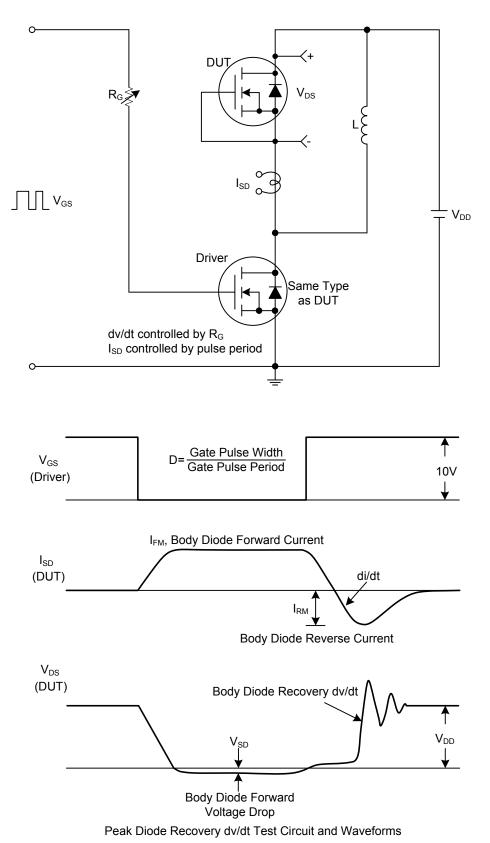

TEST CIRCUITS AND WAVEFORMS


Gate Charge Test Circuit


Resistive Switching Test Circuit


Unclamped Inductive Switching Test Circuit

Gate Charge Waveforms


Resistive Switching Waveforms

Unclamped Inductive Switching Waveforms

TEST CIRCUITS AND WAVEFORMS(Cont.)

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

