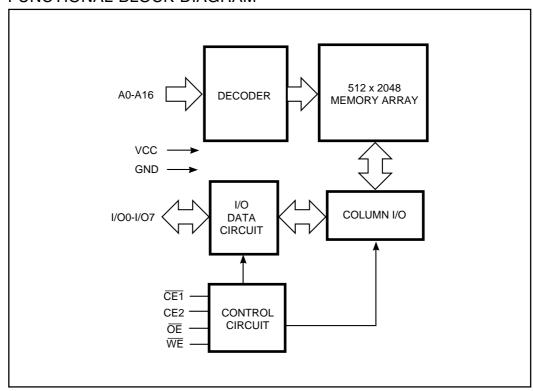
IS62C1024LL

128K x 8 LOW POWER CMOS STATIC RAM

FEATURES

- · High-speed access time: 70 ns
- · Low active power: 350 mW (typical)
- Low standby power: 125 μ W (typical) CMOS standby
- Output Enable (OE) and two Chip Enable (CE1 and CE2) inputs for ease in applications
- Fully static operation: no clock or refresh required
- · TTL compatible inputs and outputs
- Single 5V (±10%) power supply
- Data retention voltage: 2V(min.)

DESCRIPTION

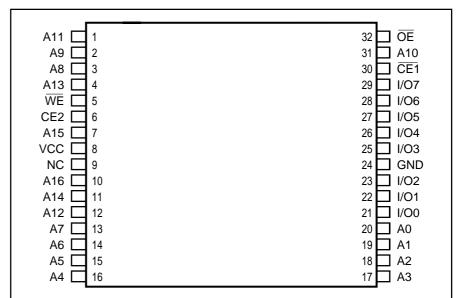

The *ICSI* IS62C1024LL is a low power,131,072-word by 8-bit CMOS static RAM. It is fabricated using *ICSI*'s high-performance CMOS technology. This highly reliable process coupled with innovative circuit design techniques, yields higher performance and low power consumption devices.

When $\overline{\text{CE1}}$ is HIGH or CE2 is LOW (deselected), the device assumes a standby mode at which the power dissipation can be reduced by using CMOS input levels.

Easy memory expansion is provided by using two Chip Enable inputs, $\overline{CE1}$ and CE2. The active LOW Write Enable (\overline{WE}) controls both writing and reading of the memory.

The IS62C1024LL is available in 32-pin 600mil DIP, 450mil SOP and 8*20mm TSOP-1 packages.

FUNCTIONAL BLOCK DIAGRAM


ICSI reserves the right to make changes to its products at any time without notice in order to improve design and supply the best possible product. We assume no responsibility for any errors which may appear in this publication. © Copyright 2000, Integrated Circuit Solution Inc.

PIN CONFIGURATION 32-Pin SOP and DIP

NC 🛮 1 32 VCC A16 🛮 2 31 A15 30 CE2 A14 🛮 3 29 WE A12 🛮 4 A7 🛮 5 28 🛮 A13 27 🛮 A8 A6 🗌 26 🛮 A9 A5 🛮 7 25 🛮 A11 A4 🛮 8 A3 🛮 9 24 OE 23 A10 A2 🛮 10 22 CE1 A1 🗌 11 A0 🛮 12 21 1/07 I/O0 **1**3 20 1/06 I/O1 **1**4 19 I/O5 I/O2 🛮 15 18 **I**/O4 GND ☐ 16 17 **1/O**3

PIN CONFIGURATION 32-Pin 8x20mm TSOP-1

PIN DESCRIPTIONS

A0-A16	Address Inputs
CE1	Chip Enable 1 Input
CE2	Chip Enable 2 Input
ŌĒ	Output Enable Input
WE	Write Enable Input
I/O0-I/O7	Input/Output
Vcc	Power
GND	Ground

OPERATING RANGE

Range	Ambient Temperature	Vcc
Commercial	0°C to +70°C	5V ± 10%

TRUTH TABLE

Mode	WE	CE1	CE2	ŌĒ	I/O Operation	Vcc Current
Not Selected	Χ	Н	Х	Χ	High-Z	Isb1, Isb2
(Power-down)	Χ	Χ	L	X	High-Z	ISB1, ISB2
Output Disabled	Н	L	Н	Н	High-Z	Icc
Read	Н	L	Н	L	D оит	Icc
Write	L	L	Н	Χ	Din	Icc

IS62C1024LL

ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Parameter	Value	Unit
VTERM	Terminal Voltage with Respect to GND	-0.5 to +7.0	V
TBIAS	Temperature Under Bias	-45 to +85	°C
Тѕтс	Storage Temperature	-65 to +150	°C
PT	Power Dissipation	1.5	W
Іоит	DC Output Current (LOW)	20	mA

Notes:

CAPACITANCE(1,2)

Symbol	Parameter	Conditions	Max.	Unit
Cin	Input Capacitance	VIN = 0V	6	pF
Соит	Output Capacitance	Vout = 0V	8	pF

Notes

- 1. Tested initially and after any design or process changes that may affect these parameters.
- 2. Test conditions: $T_A = 25^{\circ}C$, f = 1 MHz, $V_{CC} = 5.0V$.

DC ELECTRICAL CHARACTERISTICS (Over Operating Range)

Symbol	Parameter	Test Conditions		Min.	Max.	Unit
Vон	Output HIGH Voltage	Vcc = Min., IoH = -1.0 mA		2.4	_	V
Vol	Output LOW Voltage	Vcc = Min., IoL = 2.1 mA		_	0.4	V
VIH	Input HIGH Voltage			2.2	Vcc + 0.5	V
VIL	Input LOW Voltage(1)			-0.3	0.8	V
lu	Input Leakage	$GND \leq Vin \leq Vcc$	Com.	-2	1	μΑ
ILO	Output Leakage	GND ≤ Vout ≤ Vcc	Com.	-2	1	μΑ

Notes:

POWER SUPPLY CHARACTERISTICS(1) (Over Operating Range)

0	D	Total Constitution			ns	11.2
Symbol	Parameter	Test Conditions		win.	Max.	Unit
lcc1	Vcc Dynamic Operating Supply Current	$V_{CC} = Max., \overline{CE} = V_{IL}$ $I_{OUT} = 0 \text{ mA}, f = f_{MAX}$	Com.	_	70	mA
lcc2	Vcc Dynamic Operating Supply Current	Vcc = Max., CE = V _{IL} lo∪t = 0 mA, f = 1 MHz	Com.	_	15	mA
ISB1	TTL Standby Current (TTL Inputs)	$V_{CC} = Max.$, $V_{IN} = V_{IH}$ or V_{IL} , $\overline{CE1} \ge V_{IH}$, or $CE2 \le V_{IL}$, $f = 0$	Com.	_	2	mA
ISB2	CMOS Standby Current (CMOS Inputs)	$\label{eq:control_vcc} \begin{split} & \frac{V\text{cc} = \text{Max.,}}{\text{CE1}} \leq \text{Vcc} - 0.2\text{V,} \\ & \text{CE2} \leq 0.2\text{V, Vin} > \text{Vcc} - 0.2\text{V, or Vin} \leq 0.2\text{V, } f = 0 \end{split}$	Com.	_	25	μΑ

Note:

Stress greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

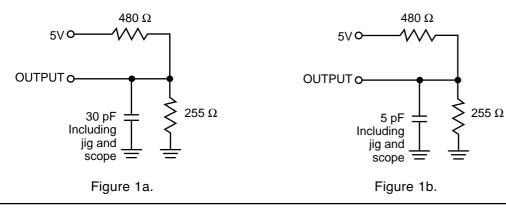
^{1.} $V_{IL} = -3.0V$ for pulse width less than 10 ns.

^{1.} At f = fmax, address and data inputs are cycling at the maximum frequency, f = 0 means no input lines change.

READ CYCLE SWITCHING CHARACTERISTICS(1)

(Over Operating Range)

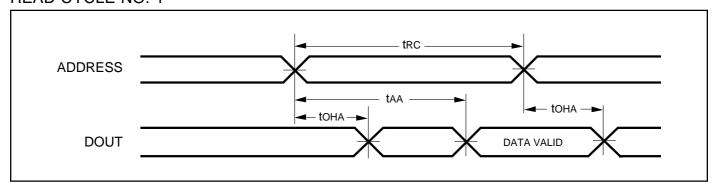
		-	70	
Symbol	Parameter	Min.	Max.	Unit
trc	Read Cycle Time	70	_	ns
taa	Address Access Time	_	70	ns
tона	Output Hold Time	3	_	ns
t _{ACE1}	CE1 Access Time	_	70	ns
t _{ACE2}	CE2 Access Time	_	70	ns
tDOE	OE Access Time	_	35	ns
tLZOE ⁽²⁾	OE to Low-Z Output	0	_	ns
thzoe(2)	OE to High-Z Output	0	25	ns
tLZCE1(2)	CE1 to Low-Z Output	10	_	ns
tLZCE2(2)	CE2 to Low-Z Output	10	_	ns
thzce(2)	CE1 or CE2 to High-Z Output	0	25	ns

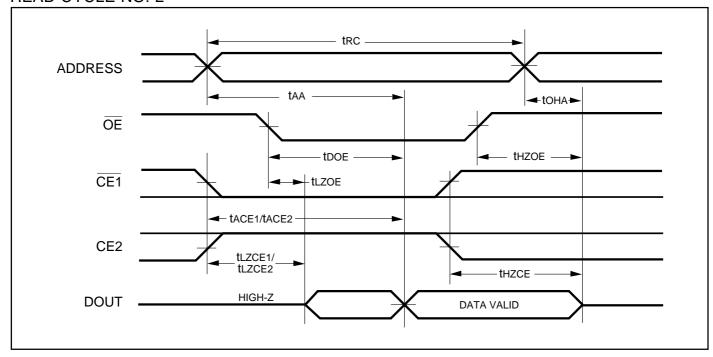

Notes:

- Test conditions assume signal transition times of 5 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V and output loading specified in Figure 1a.
- 2. Tested with the load in Figure 1b. Transition is measured ±500 mV from steady-state voltage. Not 100% tested.

AC TEST CONDITIONS

Parameter	Unit
Input Pulse Level	0V to 3.0V
Input Rise and Fall Times	5 ns
Input and Output Timing	1.5V
and Reference Level	
Output Load	See Figures 1a and 1b


AC TEST LOADS



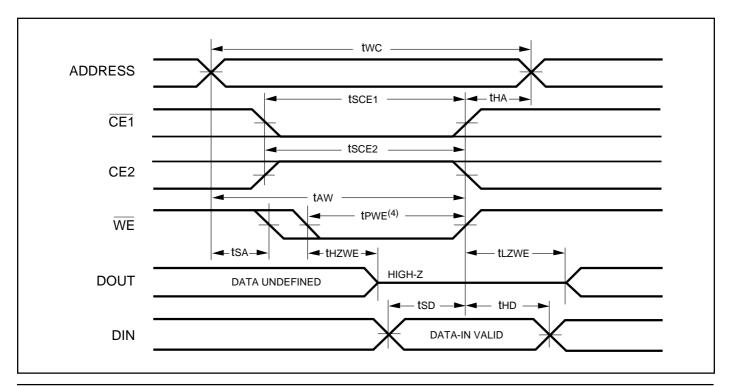
AC WAVEFORMS

READ CYCLE NO. 1^(1,2)

READ CYCLE NO. 2(1,3)

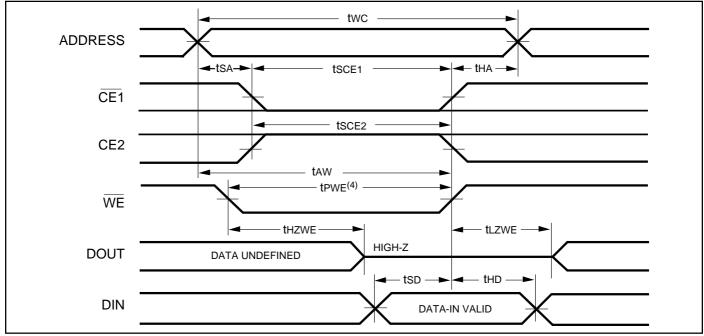
- Notes:
 1. WE is HIGH for a Read Cycle.
 2. The device is continuously selected. OE, CE1 = VIL, CE2 = VIH.
 3. Address is valid prior to or coincident with CE1 LOW and CE2 HIGH transitions.

WRITE CYCLE SWITCHING CHARACTERISTICS(1,3)


(Over Operating Range, Standard and Low Power)

		-7	70	
Symbol	Parameter	Min.	Max.	Unit
twc	Write Cycle Time	70	-	ns
tsce1	CE1 to Write End	60	_	ns
tsce2	CE2 to Write End	60	_	ns
taw	Address Setup Time to Write End	60	_	ns
tha	Address Hold from Write End	0	_	ns
tsa	Address Setup Time	0	_	ns
tPWE ⁽⁴⁾	WE Pulse Width	50	_	ns
tsp	Data Setup to Write End	30	_	ns
thd	Data Hold from Write End	0	_	ns
thzwe ⁽²⁾	WE LOW to High-Z Output	_	25	ns
tLZWE ⁽²⁾	WE HIGH to Low-Z Output	5	_	ns

Notes:

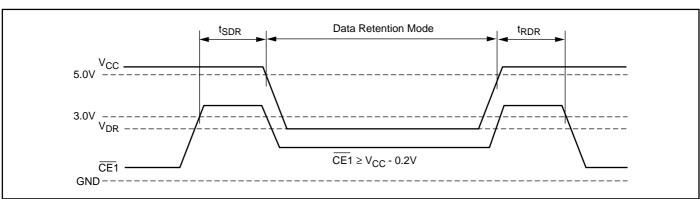

- 1. Test conditions assume signal transition times of 5 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V and output loading specified in Figure 1a.
- 2. Tested with the load in Figure 1b. Transition is measured ±500 mV from steady-state voltage. Not 100% tested.
- 3. The internal write time is defined by the overlap of CE1 LOW, CE2 HIGH and WE LOW. All signals must be in valid states to initiate a Write, but any one can go inactive to terminate the Write. The Data Input Setup and Hold timing are referenced to the rising or falling edge of the signal that terminates the Write.
- 4. Tested with OE HIGH.

AC WAVEFORMS WRITE CYCLE NO. 1 (**WE** Controlled)^(1,2)

WRITE CYCLE NO. 2 (CE1, CE2 Controlled)(1,2)

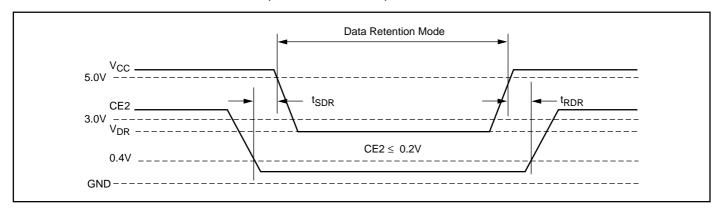
Notes:

- 1. The internal write time is defined by the overlap of $\overline{\text{CE1}}$ LOW, CE2 HIGH and $\overline{\text{WE}}$ LOW. All signals must be in valid states to initiate a Write, but any one can go inactive to terminate the Write. The Data Input Setup and Hold timing are referenced to the rising or falling edge of the signal that terminates the Write.
- 2. I/O will assume the High-Z state if $\overline{OE} = V_{IH}$.


DATA RETENTION SWITCHING CHARACTERISTICS

Symbol	Parameter	Test Condition		Min.	Max.	Unit	
V _{DR}	Vcc for Data Retention	See Data Retention Waveform		2.0	5.5	V	
IDR	Data Retention Current	Vcc = 3.0V, $\overline{\text{CE1}} \ge \text{Vcc} - 0.2\text{V}$ Vcc = 3.0V, $\overline{\text{CE2}} \le 0.2\text{V}$	Com.	_	10 ⁽¹⁾ 10 ⁽¹⁾	μA μA	
tsdr	Data Retention Setup Time	See Data Retention Waveform		0	_	ns	
t rdr	Recovery Time	See Data Retention Waveform		5	_	ms	

Notes:


1. IDR Maximum 3 μ A @ Ta 0°C to 40°C.

DATA RETENTION WAVEFORM (CE1 Controlled)

DATA RETENTION WAVEFORM (CE2 Controlled)

ORDERING INFORMATION

Commercial Range: 0°C to +70°C

Speed (ns)	Order Part No.	Package
70	IS62C1024LL-70W	600mil DIP
70	IS62C1024LL-70Q	450mil SOP
70	IS62C1024LL-70T	8*20mm TSOP-1

Integrated Circuit Solution Inc.

HEADQUARTER:

NO.2, TECHNOLOGY RD. V, SCIENCE-BASED INDUSTRIAL PARK,

HSIN-CHU, TAIWAN, R.O.C.

TEL: 886-3-5780333 Fax: 886-3-5783000

BRANCH OFFICE:

7F, NO. 106, SEC. 1, HSIN-TAI 5TH ROAD,

HSICHIH TAIPEI COUNTY, TAIWAN, R.O.C.

TEL: 886-2-26962140 FAX: 886-2-26962252 http://www.icsi.com.tw