SIKYWORIS ${ }^{\circ}$

DATA SHEET

AS193-73, AS193-73LF: PHEMT GaAs IC High-Linearity 3 V Control SPDT Switch 0.1-2.5 GHz

Features

- 2.5 to 5 V linear operation
- Harmonics $\mathrm{H}_{2}, \mathrm{H}_{3}>65 \mathrm{dBc} @ \mathrm{P}_{\mathrm{IN}}=34.5 \mathrm{dBm}$
- Low insertion loss ($0.35 \mathrm{~dB} @ 0.9 \mathrm{GHz}$)
- High isolation ($24 \mathrm{~dB} @ 0.9 \mathrm{GHz}$)
- Ultraminiature SOT-6 package
- PHEMT process
- Available lead (Pb)-free and RoHS-compliant MSL-1 @ $260^{\circ} \mathrm{C}$ per JEDEC J-STD-020

Description

The AS193-73 is a PHEMT GaAs FET IC high-linearity SPDT switch in a SOT-6 plastic package. This switch has been designed for use where extremely high linearity, low control voltage, high isolation, low insertion loss and ultraminiature package size are required. It can be controlled with positive, negative or a combination of both voltages. Some standard implementations include antenna changeover, T / R and diversity switching over 3 W . The AS193-73 switch can be used in many analog and digital wireless communication systems including cellular, GSM and UMTS applications.

NEW Skyworks offers lead (Pb)-free, RoHS (Restriction of Hazardous Substances)-compliant packaging.

Pin Out

DC blocking capacitors (C_{BL}) must be supplied externally. $C_{B L}=100 \mathrm{pF}$ for operating frequency $>500 \mathrm{MHz}$.

Electrical Specifications at $25^{\circ} \mathrm{C}(0,3 \mathrm{~V})$

	Parameter ${ }^{(1)}$	Frequency	Min.	Typ.	Max.	Unit
Insertion loss ${ }^{(2)}$		$0.1-0.5 \mathrm{GHz}$		0.30	0.4	dB
		$0.5-1.0 \mathrm{GHz}$		0.35	0.5	dB
		$1.0-2.0 \mathrm{GHz}$		0.45	0.6	dB
		$2.0-2.5 \mathrm{GHz}$		0.55	0.7	dB
Isolation		$0.1-0.5 \mathrm{GHz}$	28	30		dB
		$0.5-1.0 \mathrm{GHz}$	22	24		dB
		$1.0-2.0 \mathrm{GHz}$	17	19		dB
		$2.0-2.5 \mathrm{GHz}$	15	17		dB
VSWR ${ }^{(3)}$		0.1-1.0 GHz		1.2:1		dB
		$1.0-2.5 \mathrm{GHz}$		1.3:1		dB

[^0]
Innovation to $\mathbf{G o}^{\text {™ }}$

Now available for purchase online

Operating Characteristics at $25{ }^{\circ} \mathrm{C}(0,3 \mathrm{~V})$

Parameter	Condition	Frequency	Min.	Typ.	Max.	Unit
Switching characteristics Rise, fall On, off Video feedthru	10/90\% or 90/10\% RF 50\% CTL to 90/10\% RF $\mathrm{T}_{\text {RISE }}=1 \mathrm{~ns}, \mathrm{BW}=500 \mathrm{MHz}$			$\begin{gathered} 60 \\ 100 \\ 50 \\ \hline \end{gathered}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{mV} \end{aligned}$
Input power for -0.1 dB compression	$V_{\text {CTL }}=0 / 3 \mathrm{~V}$	0.9 GHz		37		dBm
Harmonics $\mathrm{H}_{2}, \mathrm{H}_{3}$	$\mathrm{P}_{\text {IN }}=34.5 \mathrm{dBm}$	0.9 GHz		-65		dBc
Thermal resistance				25		${ }^{\circ} \mathrm{C} / \mathrm{W}$
Control voltages	$\mathrm{V}_{\text {Low }}=0$ to 0.2 V @ $20 \mu \mathrm{~A}$ max. $\mathrm{V}_{\text {HIGH }}=2.5 \mathrm{~V} @ 100 \mu \mathrm{~A}$ max. to $5 \mathrm{~V} @ 200 \mu \mathrm{~A} \max$.					

Typical Performance Data

Harmonics vs. Control Voltage 34.5 dBm 900 MHz GSM Pulse

Absolute Maximum Ratings

Characteristic	Value
RF input power	6 W max. $>900 \mathrm{MHz}$,
$0 / 5 \mathrm{~V}$ control	

Performance is guaranteed only under the conditions listed in the specifications table and is not guaranteed under the full range(s) described by the Absolute Maximum specifications. Exceeding any of the absolute maximum/minimum specifications may result in permanent damage to the device and will void the warranty.

CAUTION: Although this device is designed to be as robust as possible, ESD (Electrostatic Discharge) can damage this device. This device must be protected at all times from ESD. Static charges may easily produce potentials of several kilovolts on the human body or equipment, which can discharge without detection. Industry-standard ESD precautions must be employed at all times.

Recommended Solder Reflow Profiles
Refer to the "Recommended Solder Reflow Profile" Application Note.

Tape and Reel Information

Refer to the "Discrete Devices and IC Switch/Attenuators
Tape and Reel Package Orientation" Application Note.

Truth Table

$\mathbf{V}_{\mathbf{1}}$	$\mathbf{V}_{\mathbf{2}}$	$\mathbf{J}_{1}-\mathbf{J}_{\mathbf{2}}$	$\mathbf{J}_{\mathbf{1}}-\mathbf{J}_{\mathbf{3}}$
0	$\mathrm{~V}_{\text {HIGH }}$	Isolation	Insertion loss
$\mathrm{V}_{\text {HIGH }}$	0	Insertion loss	Isolation

All other conditions not recommended.
$\mathrm{V}_{\text {HIGH }}=2.5$ to 5 V .

SOT-6

0.012

[^0]: 1. All measurements made in a 50Ω system, unless otherwise specified.
 2. Insertion loss changes by $0.003 \mathrm{~dB} /{ }^{\circ} \mathrm{C}$.
 3. Insertion loss state.
