Ultra－Small，Rail－to－Rail I／O with Disable， Single－／Dual－Supply，Low－Power Op Amps

Abstract

General Description The MAX4245／MAX4246／MAX4247 family of low－cost op amps offer rail－to－rail inputs and outputs，draw only $320 \mu \mathrm{~A}$ of quiescent current，and operate from a single +2.5 V to +5.5 V supply．For additional power conserva－ tion，the MAX4245／MAX4247 offer a low－power shutdown mode that reduces supply current to 50 nA ，and puts the amplifiers＇outputs in a high－impedance state．These devices are unity－gain stable with a 1 MHz gain－band－ width product driving capacitive loads up to 470pF． The MAX4245／MAX4246／MAX4247 family is specified from $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ ，making them suitable for use in a variety of harsh environments，such as automotive appli－ cations．The MAX4245 single amplifier is available in ultra－small 6－pin SC70 and space－saving 6－pin SOT23 packages．The MAX4246 dual amplifier is available in 8－pin SOT23，SO，and μ MAX ${ }^{\circledR}$ packages．The MAX4247 dual amplifier comes in a tiny 10－pin $\mu \mathrm{MAX}$ package．

Applications
Portable Communications
Single－Supply Zero－Crossing Detectors
Instruments and Terminals
Electronic Ignition Modules
Infrared Receivers
Sensor－Signal Detection

Features
－Rail－to－Rail Input and Output Voltage Swing
－50nA（max）Shutdown Mode（MAX4245／MAX4247）
－320～A（typ）Quiescent Current Per Amplifier
－Single＋2．5V to＋5．5V Supply Voltage Range
－110dB Open－Loop Gain with $2 k \Omega$ Load
－0．01\％THD with 100k Ω Load
－Unity－Gain Stable up to CLOAD $=470 \mathrm{pF}$
－No Phase Inversion for Overdriven Inputs
－Available in Space－Saving Packages
6－Pin SC70 or 6－Pin SOT23（MAX4245）
8－Pin SOT23／SO or 8－Pin μ MAX（MAX4246）
10－Pin μ MAX（MAX4247）
Ordering Information

PART	TEMP RANGE	PIN－ PACKAGE	TOP MARK
MAX4245AXT－T	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$6 \mathrm{SC} 70-6$	AAZ
MAX4245AUT－T	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$6 \mathrm{SOT} 23-6$	AAUB
MAX4246AKA－T	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$8 \mathrm{SOT} 23-8$	AAIN
MAX4246ASA	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8 SO	-
MAX4246AUA	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$8 \mu \mathrm{MAX}$	-
MAX4247AUB	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$10 \mu \mathrm{MAX}$	-

Selector Guide

PART	AMPLIFIERS PER PACKAGE	SHUTDOWN MODE
MAX4245AXT－T	1	Yes
MAX4245AUT－T	1	Yes
MAX4246AKA－T	2	No
MAX4246ASA	2	No
MAX4246AUA	2	No
MAX4247AUB	2	Yes

$\mu M A X$ is a registered trademark of Maxim Integrated Products，Inc．

Pin Configurations

Ultra-Small, Rail-to-Rail I/O with Disable, Single-/Dual-Supply, Low-Power Op Amps

ABSOLUTE MAXIMUM RATINGS

Power-Supply Voltage (VDD to VSS)-0.3V to +6V All Other Pins(VSS - 0.3V) to (VDD +0.3 V)	
Output Short-Circuit Duration	
Continuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$)	
6 -Pin SC70 (derate $3.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$	N
6 -Pin SOT23 (derate $8.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)	mW
mW/ ${ }^{\circ} \mathrm{C}$ above +	471 m

8-Pin SOT23 (derate $9.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)............ 727 mW
8-Pin μ MAX (derate $4.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) 362 mW
10-Pin μ MAX (derate $5.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) 444 mW
Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Junction Temperature .. $150^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+160^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s) $300^{\circ} \mathrm{C}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

$\left(V_{D D}=+2.7 \mathrm{~V}, V_{S S}=0 V, V_{C M}=0 V, V_{O U T}=V_{D D} / 2, R L\right.$ connected from OUT to $V_{D D} / 2, \overline{S H D N}=V_{D D}(M A X 4245 / M A X 4247$ only $)$, $\mathbf{T}_{\mathbf{A}}=+\mathbf{2 5}^{\circ} \mathbf{C}$, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Supply Voltage Range	VDD	Inferred from PSRR test		2.5		5.5	V
Supply Current (Per Amplifier)	IDD	$\mathrm{V}_{\mathrm{DD}}=+2.7 \mathrm{~V}$			320	650	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{DD}}=+5.5 \mathrm{~V}$			375	700	
Supply Current in Shutdown	ISHDN_	$\overline{\text { SHDN_ }}=\mathrm{V}_{\text {SS }}($ Note 2)			0.05	0.5	$\mu \mathrm{A}$
Input Offset Voltage	Vos	$\mathrm{V}_{\text {SS }}-0.1 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq \mathrm{V}_{\mathrm{DD}}+0.1 \mathrm{~V}$			± 0.4	± 1.5	mV
Input Bias Current	IB	$\mathrm{V}_{\text {SS }}-0.1 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq \mathrm{V}_{\mathrm{DD}}+0.1 \mathrm{~V}$			± 10	± 50	nA
Input Offset Current	Ios	$V_{S S}-0.1 \mathrm{~V} \leq \mathrm{V}_{C M} \leq \mathrm{V}_{\mathrm{DD}}+0.1 \mathrm{~V}$			± 1	± 6	nA
Input Resistance	RIN	$\mathrm{IV} \mathrm{IN}_{+}-\mathrm{V}_{\text {IN }} \mathrm{I} \leq 10 \mathrm{mV}$		4000			k ת
Input Common-Mode Voltage Range	$V_{\text {cm }}$	Inferred from CMRR test		VSS - 0.1		$V_{D D}+0.1$	V
Common-Mode Rejection Ratio	CMRR	$\mathrm{V}_{S S}-0.1 \mathrm{~V} \leq \mathrm{V}_{\text {CM }} \leq \mathrm{V}_{\text {DD }}+0.1 \mathrm{~V}$		65	80		dB
Power-Supply Rejection Ratio	PSRR	$2.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$		75	90		dB
Large-Signal Voltage Gain	Av	$\begin{aligned} & V_{S S}+0.05 V \leq V_{\text {OUT }} \leq V_{D D}-0.05 V \\ & R_{L}=100 \mathrm{k} \Omega \end{aligned}$		120			dB
		$\mathrm{V}_{\text {SS }}+0.2 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq \mathrm{V}_{\text {DD }}-0.2 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$		95	110		
Output Voltage Swing High	VOH	Specified as VDD - Vout	$\mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega$		1		mV
			$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$		35	60	
Output Voltage Swing Low	VoL	Specified as VOUT - VSS	$\mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega$		1		mV
			$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$		30	60	
Output Short-Circuit Current	IOUT(SC)	$\mathrm{V}_{\mathrm{DD}}=+5.0 \mathrm{~V}$	Sourcing		11		mA
			Sinking		30		
Output Leakage Current in Shutdown	IOUT(SH)	Device in Shutdown Mode$\left(\overline{S H D N_{-}}=\mathrm{V}_{S S}\right), \mathrm{V}_{S S} \leq \mathrm{V}_{\text {OUT }} \leq \mathrm{V}_{\mathrm{DD}}(\text { Note } 2)$			± 0.01	± 0.5	$\mu \mathrm{A}$
SHDN_ Logic Low	$\mathrm{V}_{\text {IL }}$	(Note 2)			$0.3 \times \mathrm{V}_{\text {DD }}$		V
$\overline{\text { SHDN_ Logic High }}$	V_{IH}	(Note 2)		$0.7 \times \mathrm{V}_{\mathrm{DD}}$			V
$\overline{\text { SHDN_ Input Current }}$	$\mathrm{l} / \mathrm{l} \mathrm{l}_{\mathrm{H}}$	$\mathrm{V}_{\text {SS }} \leq \overline{\text { SHDN }} \leq \mathrm{V}_{\mathrm{DD}}$ (Note 2)			0.5	50	nA

Ultra-Small, Rail-to-Rail I/O with Disable, Single-/Dual-Supply, Low-Power Op Amps

ELECTRICAL CHARACTERISTICS (continued)

$\left(V_{D D}=+2.7 \mathrm{~V}, V_{S S}=0 V, V_{C M}=0 V, V_{O U T}=V_{D D} / 2\right.$, RL connected from OUT to $V_{D D} / 2, \overline{S H D N}=V_{D D}(M A X 4245 / M A X 4247$ only $)$, $\mathbf{T}_{\mathbf{A}}=+\mathbf{2 5}^{\circ} \mathbf{C}$, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN TYP	MAX	UNITS
Gain-Bandwidth Product	GBW		1.0		MHz
Phase Margin	¢M		70		degrees
Gain Margin	Gm_{M}		20		dB
Slew Rate	SR		0.4		V/us
Input Voltage-Noise Density	e_{n}	$\mathrm{f}=10 \mathrm{kHz}$	52		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
Input Current-Noise Density	in	$\mathrm{f}=10 \mathrm{kHz}$	0.1		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
Capacitive-Load Stability	Cload	Av = 1 (Note 3)		470	pF
Shutdown Delay Time	t(SH)	(Note 2)	3		$\mu \mathrm{s}$
Enable Delay Time	t (EN)	(Note 2)	4		$\mu \mathrm{s}$
Power-On Time	ton		4		$\mu \mathrm{s}$
Input Capacitance	CIN		2.5		pF
Total Harmonic Distortion	THD	$\begin{aligned} & f=10 \mathrm{kHz}, \mathrm{~V} \text { OUT }=2 \mathrm{Vp}-\mathrm{p}, \mathrm{AV}=+1, \\ & \mathrm{VDD}=+5.0 \mathrm{~V}, \text { Load }=100 \mathrm{k} \Omega \text { to } \mathrm{V}_{\mathrm{DD}} / 2 \end{aligned}$	0.01		\%
Settling Time to 0.01\%	ts	$\mathrm{V}_{\text {OUT }}=4 \mathrm{~V}$ step, $\mathrm{V}_{\mathrm{DD}}=+5.0 \mathrm{~V}, \mathrm{AV}=+1$	10		$\mu \mathrm{s}$

ELECTRICAL CHARACTERISTICS

$\left(V_{D D}=+2.7 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}, \mathrm{~V}_{C M}=0 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=\mathrm{V}_{\mathrm{DD}} / 2\right.$, RL connected from OUT to $\mathrm{V}_{\mathrm{DD}} / 2, \overline{\mathrm{SHDN}}=\mathrm{V}_{\mathrm{DD}}(\mathrm{MAX} 4245 / \mathrm{MAX} 4247$ only $)$, $\mathbf{T}_{\mathbf{A}}=\mathbf{- 4 0 ^ { \circ }} \mathbf{C}$ to $\mathbf{+ 1 2 5}^{\circ} \mathbf{C}$, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP MAX	UNITS
Supply Voltage Range	VDD	Inferred from PSRR test	2.5	5.5	V
Supply Current (Per Amplifier)	IDD	$\mathrm{V}_{\mathrm{DD}}=+2.7 \mathrm{~V}$		800	$\mu \mathrm{A}$
Supply Current in Shutdown	ISHDN_	$\overline{\text { SHDN_ }}=\mathrm{V}_{\text {SS }}$ (Note 2)		1	$\mu \mathrm{A}$
Input Offset Voltage	VOS	$\mathrm{V}_{\text {SS }} \leq \mathrm{V}_{\text {CM }} \leq \mathrm{V}_{\mathrm{DD}}$ (Note 4)		± 3.0	mV
Input Offset Voltage Drift	TCVOS	$\mathrm{V}_{\text {SS }} \leq \mathrm{V}_{\text {CM }} \leq \mathrm{V}_{\text {DD }}$ (Note 4)		± 2	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Bias Current	IB	$\mathrm{V}_{\text {SS }} \leq \mathrm{V}_{\text {CM }} \leq \mathrm{V}_{\text {DD }}$ (Note 4)		± 100	nA
Input Offset Current	IOS	$\mathrm{V}_{\text {SS }} \leq \mathrm{V}_{\text {CM }} \leq \mathrm{V}_{\text {DD }}$ (Note 4)		± 10	nA
Input Common-Mode Voltage Range	VCM	Inferred from CMRR test (Note 4)	VSS	VDD	V
Common-Mode Rejection Ratio	CMRR	$\mathrm{V}_{S S} \leq \mathrm{V}_{\text {CM }} \leq \mathrm{V}_{\text {DD }}$ (Note 4)	60		dB
Power-Supply Rejection Ratio	PSRR	$2.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$	70		dB
Large-Signal Voltage Gain	Av	$\begin{aligned} & \mathrm{V}_{\mathrm{SS}}+0.2 \mathrm{~V} \leq \mathrm{V}_{\mathrm{OUT}} \leq \mathrm{V}_{\mathrm{DD}}-0.2 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \end{aligned}$	85		dB
Output Voltage Swing High	VOH	Specified as VDD - Vout, $\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$		90	mV
Output Voltage Swing Low	VOL	Specified as Vout - V ${ }_{\text {SS }}$, RL $=2 \mathrm{k} \Omega$		90	mV
Output Leakage Current in Shutdown	IOUT(SH)	Device in Shutdown Mode ($\left.\overline{\mathrm{SHDN}_{-}}=\mathrm{V}_{S S}\right)$, $\mathrm{V}_{\text {SS }} \leq \mathrm{V}_{\text {OUT }} \leq \mathrm{V}_{\text {DD }}$ (Note 3)		± 1.0	$\mu \mathrm{A}$

Ultra-Small, Rail-to-Rail I/O with Disable, Single-/Dual-Supply, Low-Power Op Amps

ELECTRICAL CHARACTERISTICS (continued)

$\left(V_{D D}=+2.7 \mathrm{~V}, V_{S S}=0 V, V_{C M}=0 V, V_{O U T}=V_{D D} / 2\right.$, RL connected from OUT to $V_{D D} / 2, \overline{S H D N}=V_{D D}(M A X 4245 / M A X 4247$ only $)$, $\mathrm{T}_{\mathrm{A}}=\mathbf{- 4 0 ^ { \circ }} \mathbf{C}$ to $+\mathbf{1 2 5}{ }^{\circ} \mathrm{C}$, unless otherwise noted.) (Note 1)

Note 1: Specifications are 100% tested at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. All temperature limits are guaranteed by design.
Note 2: Shutdown mode is only available in MAX4245 and MAX4247.
Note 3: Guaranteed by design, not production tested.
Note 4: For $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, Input Common-Mode Range is $\mathrm{V}_{\mathrm{SS}}-0.1 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq \mathrm{V}_{\mathrm{DD}}+0.1 \mathrm{~V}$.

Typical Operating Characteristics

$\left(\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{DD}} / 2\right.$, no load, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. $)$

Ultra-Small, Rail-to-Rail I/O with Disable, Single-/Dual-Supply, Low-Power Op Amps

Typical Operating Characteristics (continued)

$\left(\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{DD}} / 2\right.$, no load, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. $)$

Ultra-Small, Rail-to-Rail I/O with Disable, Single-/Dual-Supply, Low-Power Op Amps

Typical Operating Characteristics (continued)

$\left(V_{D D}=2.7 \mathrm{~V}, \mathrm{~V}_{S S}=\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{DD}} / 2\right.$, no load, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. $)$

Ultra-Small, Rail-to-Rail I/O with Disable, Single-/Dual-Supply, Low-Power Op Amps

PIN			NAME	
MAX4245	MAX4246	MAX4247		
1	-	-	$\mathrm{IN}+$	N
2	4	4	$\mathrm{V}_{\text {SS }}$	G
3	-	-	IN-	In
4	-	-	OUT	A
5	-	-	SHDN	S
6	8	10	VDD	P
-	1	1	OUTA	A
-	2	2	INA-	In
-	3	3	INA+	N
-	5	7	INB+	N
-	6	8	INB-	In
-	7	9	OUTB	A
-	-	5	SHDNA	S
-	-	6	SHDNB	

Figure 1a. Minimizing Offset Error Due to Input Bias Current (Noninverting)

Detailed Description

Rail-to-Rail Input Stage
The MAX4245/MAX4246/MAX4247 have rail-to-rail input and output stages that are specifically designed for low-voltage, single-supply operation. The input stage consists of composite NPN and PNP differential stages, which operate together to provide a common-mode range extending to both supply rails. The crossover region of these two pairs occurs halfway between VDD and VSS. The input offset voltage is typically $\pm 400 \mu \mathrm{~V}$. Low-operating supply voltage, low supply current and rail-to-rail outputs make this family of operational amplifiers an excellent choice for precision or general-purpose, low-voltage, battery-powered systems.
Since the input stage consists of NPN and PNP pairs, the input bias current changes polarity as the common-

Figure 1b. Minimizing Offset Error Due to Input Bias Current (Inverting)
mode voltage passes through the crossover region. Match the effective impedance seen by each input to reduce the offset error caused by input bias currents flowing through external source impedance (Figures 1a and 1 b).
The combination of high-source impedance plus input capacitance (amplifier input capacitance plus stray capacitance) creates a parasitic pole that can produce an underdamped signal response. Reducing input capacitance or placing a small capacitor across the feedback resistor improves response in this case.
The MAX4245/MAX4246/MAX4247 family's inputs are protected from large differential input voltages by internal $5.3 \mathrm{k} \Omega$ series resistors and back-to-back triple-diode stacks across the inputs (Figure 2). For differentialinput voltages much less than 2.1V (triple-diode drop),

Ultra-Small, Rail-to-Rail I/O with Disable, Single-/Dual-Supply, Low-Power Op Amps

Figure 2. Input Protection Circuit
input resistance is typically $4 \mathrm{M} \Omega$. For differential voltages greater than 2.1 V , input resistance is around $10.6 \mathrm{k} \Omega$, and the input bias current can be approximated by the following equation:

$$
\mathrm{IB}=(\mathrm{V} \text { DIFF }-2.1 \mathrm{~V}) / 10.6 \mathrm{k} \Omega
$$

In the region where the differential input voltage approaches 2.1 V , the input resistance decreases exponentially from $4 \mathrm{M} \Omega$ to $10.6 \mathrm{k} \Omega$ as the diodes begin to conduct. It follows that the bias current increases with the same curve.
In unity-gain configuration, high slew-rate input signals may capacitively couple to the output through the triple-diode stacks.

Rail-to-Rail Output Stage
The MAX4245/MAX4246/MAX4247 can drive a $2 \mathrm{k} \Omega$ load and still typically swing within 35 mV of the supply rails. Figure 3 shows the output voltage swing of the MAX4245 configured with $A v=-1 \mathrm{~V} / \mathrm{V}$.

Applications Information

Power-Supply Considerations

The MAX4245/MAX4246/MAX4247 operate from a single +2.5 V to +5.5 V supply (or dual $\pm 1.25 \mathrm{~V}$ to $\pm 2.75 \mathrm{~V}$ supplies) and consume only $320 \mu \mathrm{~A}$ of supply current per amplifier. A 90dB power-supply rejection ratio allows the amplifiers to be powered directly off a decaying battery voltage, simplifying design and extending battery life.

Power-Up
The MAX4245/MAX4246/MAX4247 output typically settles within $4 \mu \mathrm{~s}$ after power-up. Figure 4 shows the output voltage on power-up and power-down.

Shutdown Mode

The MAX4245/MAX4247 feature a low-power shutdown mode. When SHDN_ is pulled low, the supply current drops to 50 nA per amplifier, the amplifier is disabled, and the output enters a high-impedance state. Pulling

Figure 3. Rail-to-Rail Input/Output Voltage Range

Figure 4. Power-Up/Power-Down Waveform
$\overline{\text { SHDN_ high enables the amplifier. Figure } 5 \text { shows the }}$ MAX4245/MAX4247's shutdown waveform.
Due to the output leakage currents of three-state devices and the small internal pullup current for SHDN_, do not let the $\overline{\text { SHDN_ float. Floating SHDN_ may result in }}$ indeterminate logic levels, and could adversely affect op amp operation. The logic threshold for SHDN_ is referred to VSS. When using dual supplies, pull SHDN_ to VSS, not GND, to shut down the op amp.

Driving Capacitive Loads
The MAX4245/MAX4246/MAX4247 are unity-gain stable for loads up to 470 pF . Applications that require greater capacitive drive capability should use an isolation resistor between the output and the capacitive load

Ultra-Small, Rail-to-Rail I/O with Disable, Single-/Dual-Supply, Low-Power Op Amps

Figure 5. Shutdown Waveform
(Figures 6a, 6b, 6c). Note that this alternative results in a loss of gain accuracy because RISO forms a voltage divider with the RLOAD.

Power-Supply Bypassing and Layout

 The MAX4245/MAX4246/MAX4247 family operates from either a single +2.5 V to +5.5 V supply or dual $\pm 1.25 \mathrm{~V}$ to $\pm 2.75 \mathrm{~V}$ supplies. For single-supply operation, bypass the power supply with a 100 nF capacitor to VSS (in this case GND). For dual-supply operation, both the V_{DD} and the VSS supplies should be bypassed to ground with separate 100 nF capacitors.Good PC board layout techniques optimize performance by decreasing the amount of stray capacitance at the op amp's inputs and output. To decrease stray capacitance, minimize trace lengths and widths by placing external components as close to the device as possible. Use surface-mount components when possible.

Pin Configurations (continued)
TOP VIEW

Figure 6a. Using a Resistor to Isolate a Capacitive Load from the Op Amp

Figure 6b. Pulse Response Without Isolating Resistor

Figure 6c. Pulse Response With Isolating Resistor

Chip Information

MAX4245 TRANSISTOR COUNT: 207
MAX4246/MAX4247 TRANSISTOR COUNT: 414
PROCESS: BiCMOS

Ultra-Small, Rail-to-Rail I/O with Disable, Single-/Dual-Supply, Low-Power Op Amps

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)

Ultra-Small, Rail-to-Rail I/O with Disable, Single-/Dual-Supply, Low-Power Op Amps

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)

Ultra-Small, Rail-to-Rail I/O with Disable, Single-/Dual-Supply, Low-Power Op Amps

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

12 \qquad Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600

MAX4246

Part Number Table

Notes:

1. See the MAX4246 QuickView Data Sheet for further information on this product family or download the MAX4246 full data sheet (PDF, 544kB).
2. Other options and links for purchasing parts are listed at: http://www.maxim-ic.com/sales.
3. Didn't Find What You Need? Ask our applications engineers. Expert assistance in finding parts, usually within one business day.
4. Part number suffixes: T or $T \& R=$ tape and reel; + = RoHS/lead-free; \# = RoHS/lead-exempt. More: See full data sheet or Part Naming Conventions.
5. * Some packages have variations, listed on the drawing. "PkgCode/Variation" tells which variation the product uses

Part Number	Free Sample	Buy Direct	Package: TYPE PINS SIZE DRAWING CODE/VAR	Temp	RoHS/Lead-Free? Materials Analysis
MAX4246ASA+T			SOIC;8 pin;.150" Dwg: 21-0041B (PDF) Use pkgcode/variation: S8+4*	-40C to +85C	RoHS/Lead-Free: Yes Materials Analysis
MAX4246ASA+			SOIC;8 pin;.150" Dwg: 21-0041B (PDF) Use pkgcode/variation: S8+4*	-40 C to +85C	RoHS/Lead-Free: Yes Materials Analysis
MAX4246AKA			SOT-23;8 pin; Dwg: 21-0078F (PDF) Use pkgcode/variation: K8-5*	-40 C to +85 C	RoHS/Lead-Free: No Materials Analysis
MAX4246AKA+			SOT-23;8 pin; Dwg: 21-0078F (PDF) Use pkgcode/variation: K8+5*	-40 C to +85 C	RoHS/Lead-Free: Yes Materials Analysis
MAX4246AKA-T			SOT-23;8 pin; Dwg: 21-0078F (PDF) Use pkgcode/variation: K8-5*	-40C to +85C	RoHS/Lead-Free: No Materials Analysis
MAX4246AKA +			SOT-23;8 pin; Dwg: 21-0078F (PDF) Use pkgcode/variation: K8+5*	-40 C to +85 C	RoHS/Lead-Free: Yes Materials Analysis
MAX4246AUA+			uMAX;8 pin;3 x 3mm Dwg: 21-0036J (PDF) Use pkgcode/variation: U8+1*	-40C to +85C	RoHS/Lead-Free: Yes Materials Analysis

MAX4246AUA-T	uMAX;8 pin;3 x 3mm Dwg: 21-0036J (PDF) Use pkgcode/variation: U8-1*	-40C to +85C	RoHS/Lead-Free: No Materials Analysis
MAX4246AUA	uMAX; $8 \mathrm{pin} ; 3 \times 3 \mathrm{~mm}$ Dwg: 21-0036J (PDF) Use pkgcode/variation: U8-1*	-40C to +85C	RoHS/Lead-Free: No Materials Analysis
MAX4246AUA+T	uMAX; 8 pin; $3 \times 3 \mathrm{~mm}$ Dwg: 21-0036J (PDF) Use pkgcode/variation: U8+1*	-40 C to +85C	RoHS/Lead-Free: Yes Materials Analysis

Didn't Find What You Need?

CONTACT US: SEND US AN EMAIL

