

2N6800

MECHANICAL DATA Dimensions in mm (inches)

N-CHANNEL ENHANCE-MENT POWER MOSFET

BV_{DSS}	400V
I _D	3.0A
R _{DS(on)}	1.0Ω

FEATURES

- AVALANCHE ENERGY RATED
- HERMETICALLY SEALED
- DYNAMIC dv/dt RATING
- SIMPLE DRIVE REQUIREMENTS

TO39 – Package (TO205AF)

Pin 1 – Source Pin 2 – Gate Pin 3 – Drain

ABSOLUTE MAXIMUM RATINGS (T_{case} = 25°C unless otherwise stated)

V _{GS}	Gate – Source Voltage	±20V		
I _D	Continuous Drain Current $(V_{GS} = 10V, T_{case} = 25^{\circ}C)$	ЗА		
I _D	Continuous Drain Current $(V_{GS} = 10V, T_{case} = 100^{\circ}C)$	2A		
I _{DM}	Pulsed Drain Current ¹	12A		
P _D	Power Dissipation @ T _{case} = 25°C	25W		
	Linear Derating Factor	0.20W/°C		
dv/dt	Peak Diode Recovery ³	4V/ns		
T _J , T _{stg}	Operating and Storage Temperature Range	–55 to 150°C		
R _{θJC}	Thermal Resistance Junction to Case	5.0°C/W		
$R_{ extsf{ heta}JCA}$	Thermal Resistance Junction-to-Ambient	175°C/W		

Notes

1) Pulse Test: Pulse Width \leq 300 μ s, $\delta \leq$ 2%

2) @ V_{DD} = 50V , L \geq 0.100mH , R_G = 25 Ω , Peak I_L = 1.5A , Starting T_J = 25°C

3) @ I_{SD} \leq 1.5A , di/dt \leq 50A/ μs , V_{DD} \leq BV_{DSS} , T_J \leq 150°C , SUGGESTED R_G = 7.5 Ω

Semelab Plc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.

2N6800

ELECTRICAL CHARACTERISTICS (T_{amb} = 25°C unless otherwise stated)

	Parameter	Test Conditions	Min.	Тур.	Max.	Unit	
	STATIC ELECTRICAL RATINGS			· · ·			
BV_{DSS}	Drain – Source Breakdown Voltage	$V_{GS} = 0$ $I_D = 1mA$	400			V	
ΔBV_{DSS}	Temperature Coefficient of	Reference to 25°C		0.37		V/°C	
ΔT_{J}	Breakdown Voltage	I _D = 1mA		0.37			
R _{DS(on)}	Static Drain to Source	$V_{GS} = 10V$ $I_D = 2A$			1	Ω	
	On-State Resistance	$V_{GS} = 10V$ $I_D = 3A$			1.15		
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}$ $I_D = 250 \mu A$	2		4	V	
9 _{fs}	Forward Transconductance	$V_{DS} \ge 15V$ $I_{DS} = 2A$	2			S(Ω)	
	Zero Gate Voltage Drain Current	V _{DS} = 0.8xMax Rating			25		
IDSS		$V_{GS} = 0$ $T_J = 125^{\circ}C$			250	μΑ	
I _{GSS}	Forward Gate – Source Leakage	V _{GS} = 20V			100	– nA	
I _{GSS}	Reverse Gate – Source Leakage	$V_{GS} = -20V$			-100		
	DYNAMIC CHARACTERISTICS						
C _{iss}	Input Capacitance	$V_{GS} = 0$		620			
C _{oss}	Output Capacitance	$V_{DS} = 25V$		200		pF	
C _{rss}	Reverse Transfer Capacitance	f = 1MHz		75			
Qg	Total Gate Charge		19.1		33	nC	
Q _{gs}	Gate – Source Charge	$-V_{GS} = 10V$ $I_D = 3A$	1		5.8		
Q _{gd}	Gate – Drain ("Miller") Charge	V _{DS} = Max Rating x 0.5	6.7		19.9		
t _{d(on)}	Turn–On Delay Time				30	- ns	
t _r	Rise Time	$V_{DD} = 200V$ $V_{GS} = 10V$			35		
t _{d(off)}	Turn-Off Delay Time	$I_D = 3A$ $R_G = 7.5\Omega$			55		
t _f	Fall Time				35		
	SOURCE – DRAIN DIODE CHARAG						
I _S	Continuous Source Current				3	A	
I _{SM}	Pulse Source Current ²				12		
V _{SD}	Diode Forward Voltage	$I_{\rm S} = 3.0 {\rm A}$ $T_{\rm J} = 25^{\circ} {\rm C}$				V	
		$V_{GS} = 0$			1.4		
t _{rr}	Reverse Recovery TimeReverse	$I_{\rm F} = 3.0 {\rm A}$ $T_{\rm J} = 25^{\circ} {\rm C}$			700	ns	
Q _{rr}	Recovery Charge	$d_i / d_t \le 100 A / \mu s V_{DD} \le 50 V$			6.2		
t _{on}	Forward Turn–On Time			Negligible		μC	
	PACKAGE CHARACTERISTICS	1		-		1	
L _D	Internal Drain Inductance (from centre o	f drain pad to die)		5			
L _S	Internal Source Inductance (from centre	of source pad to end of source bond wire)		15		nH	
Notes	1) Pulse Test: Pulse Width ≤ 3	$300 \text{ us } \delta < 2\%$				1	

2) Repetitive Rating - Pulse width limited by maximum junction temperature.

Semelab PIc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.