CXA3541N

2-channel Read/Write Amplifier for GMR-Ind Head Hard Disk Drive

Description

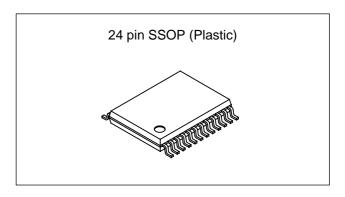
The CXA3541N is a read/write amplifier for GMR-Ind (Giant Magneto Resistive-Inductive) heads used in hard disk drives, and is capable of supporting up to two channels.

Features

- +5V and -3V power supply
- Current bias voltage sense type
- Low power 180mW at read
- Differential read amplifier gain; $\times 100/135$ (RMR = 50Ω)
- Input noise of $0.77 \text{nV}/\sqrt{\text{Hz}}$ (typ.), RMR = 50Ω , IB = 5.9 mA
- Recovery time write to read; 300ns (typ.)
- Write data is triggered by differential P-ECL signal
- · Servo bank write
- · Write unsafe detection circuit
- Serial port

Head selection

MR bias


Write current

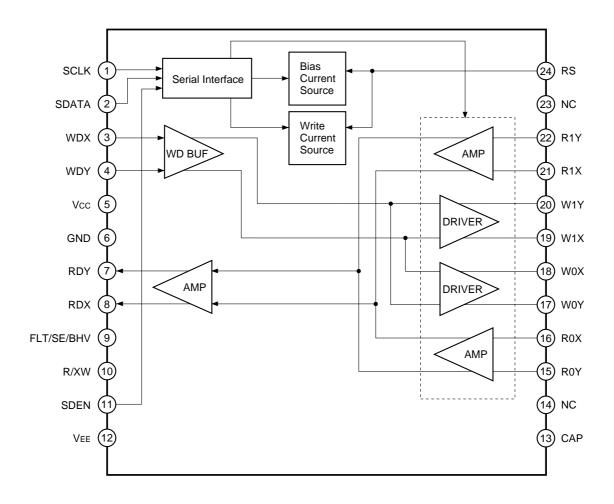
Applications

Hard disk drives with GMR-Ind heads

Structure

Bipolar silicon monolithic IC

Absolute Maximum Ratings (Ta = 25°C)


 Supply voltage 	Vcc	-0.3 to +5.8	V
 Supply voltage 	VEE	-3.7 to +0.3	V
 Digital input voltage 	Vdi	-0.3 to Vcc + 0	.3 V
 Operating temperature 	Topr	0 to +70	°C
 Storage temperature 	Tstg	-55 to +150	°C
 Allowable power dissipa 	ation		
	PD	800	mW
		(on be	oard)

Operating Conditions

 Supply voltage 	Vcc	4.4 to 5.5	V
	VEE	-3.5 to -2.6	V
 MR bias voltage 	V_{MR}	-300 to +300	m۷
 Bias current 	lв	3 to 8	mΑ
 Write current 	lw	19.5 to 49.5	mΑ

Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits.

Block Diagram and Pin Configuration

Pin Description

Pin No.	Symbol	Equivalent circuit	Description
1 2 11	SCLK SDATA SDEN	7.5k 2 111 2 Vcc Figure 14k Figure 2Vf GND	Serial control signal input.
3 4	WDX WDY	3 Vcc Vcc Vcc Vcc Vcc Vcc Vcc Vcc Vcc Vc	Differential P-ECL write data input.
5	Vcc		5V power supply.
6	GND		Ground.
7 8	RDY RDX	7 8 1.8mA GND	Read amplifier output with coupling capacitors. High impedance in the write mode.
9	FLT/SE/BHV	9 Vcc GND	Head unsafe detection output. Servo bank write enable input. Buffered head voltage output.

Pin No.	Symbol	Equivalent circuit	Description
10	R/XW	Vcc 3Vf GND	Read/write control signal input. Read when high, write when low.
12	VEE		-3V power supply.
13	CAP	Vcc Vcc Vcc Vcc Vcc Vcc	Connect an external capacitor of read amplifier between this pin and VEE.
14 23	NC		Non connection.
16 15 21 22	R0X R0Y R1X R1Y	16(21) (15)(22) VEE	MR heads for read. Two channels are provided.
18 17 19 20	W0X W0Y W1X W1Y	(18) (19) (17) (20) (19) (19) (19) (19) (19) (19) (19) (19	Inductive heads for write. Two channels are provided.

Pin No.	Symbol	Equivalent circuit	Description
24	RS	Vcc 250 VBGR T = 1.3V GND	Bias current setting register is connected between this pin and GND.

Electrical Characteristics

(Unless otherwise specified; Vcc = 5V, Vee = -3V, Ta = 25°C, CAP = $0.1\mu F$, RS = $7.5k\Omega$)

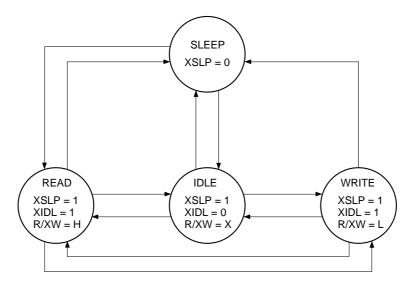
No.	Item	Symbol	Measurement conditions	Min.	Тур.	Max.	Unit	
Power Dissipation lw = 29.5mA, lb = 5.9mA				1 7 %	IVICA.			
1-1	W = 20.011	ISP1	Sleep mode		2.15	2.85	mA	
1-2		I _{ID1}	Idle mode		22	29	mA	
1-3	Vcc power supply current	IRE1	Read mode		37	48	mA	
1-4		lwr1	Write mode		98	130	mA	
1-5		I _{ID2}	Idle mode		10	13	mA	
1-7	VEE power supply current	IRE2	Read mode		10	13	mA	
1-8		lwR2	Write mode		10	13	mA	
1-9	Bank write mode	Іссви	$\begin{aligned} &\text{Iccbw} = 17 + 17 \times \text{N} + \text{Iw} \times \text{N} \\ &\text{Iw} = 29.5 \text{mA} \end{aligned}$	_	111		mA	
Digit	al Inputs				•	•		
2-1	TTL input low input voltage	VIL	TTL input; R/XW	0		0.8	V	
2-2	TTL input high input voltage	VIH	Internal pull-up resistor	2.0		Vcc + 0.3	V	
2-3	TTL input input current	ITTL	High voltage: 5V Low voltage: 0V	-200		200	μA	
2-4	Serial interface input low input voltage	VsIL	Serial input;			0.8	V	
2-5	Serial interface input high input voltage	VsiH	SDATA, SCLK, SDEN	2.35			V	
2-6	Serial interface input input current	VsT	High voltage: 3.3V Low voltage: 0V Pull-down resistor: 14kΩ	-500		500	μA	
3-1	P-ECL common voltage	VPC	(VH + VL)/2	1.55		Vcc	V	
3-2	P-ECL differential voltage	VPD	(VH – VL)	0.2		1.5	V	
3-3	P-ECL high voltage	Vрн				Vcc	V	
3-4	P-ECL input current	I WD	Input voltage: 4V	-20		20	μΑ	
Powe	Power Dissipation Iw = 29.5mA, IB = 5.9mA							
4-1	Bank write enable voltage	Vseh		Vcc + 1.2		Vcc + 1.4	V	
4-2	Bank write enable current	Iseh		6		14	mA	
5-1	FLT output low voltage	VFLTL	Open collector output External resistance = $2.4k\Omega$			0.8	V	
5-2	FLT output high voltage	VFLTH	Open collector output External resistance = 2.4kΩ	4.5			V	
6	BHV gain accuracy	Евну	$\begin{aligned} \text{VBHV} &= \text{VCC} - 4 \times \text{IB} \times (\text{RMR} + 5.5\Omega) \\ \text{IB} &= "111", \text{ RMR} = 50\Omega \end{aligned}$	-8		8	%	

N.	14	0	NA	N 4" -	т	N/A s	1.1
No.	Item	Symbol	Measurement conditions	Min.	Тур.	Max.	Unit
Read	Characteristics RMR = 5	50Ω , $l_B = 5$.					
R1	Low gain	Avl	Gain = 0 RMR = 50Ω , IB = 5.9 mA	82	100	118	V/V
R2	High gain	А∨н	Gain = 1 RMR = 50Ω , IB = 5.9 mA	110	135	160	V/V
R3	Low frequency cut-off (–3dB)	FcL			350	550	kHz
R4	High frequency cut-off (–3dB)	Fсн		140	200		MHz
R5	Input reflected noise	Eni	Exclusive of head noise RMR = 50Ω , IB = $5.9mA$		0.77	0.95	$\frac{\text{nV}}{\sqrt{\text{Hz}}}$
R6	MR bias current range 1	BR1		3		8	mA
R7	MR bias accuracy	Еів		-7		+7	%
R8	MR bias resolution	Rıв	3-bit DAC		0.714	_	mA
R9-1	Vcc power supply rejection ratio	PSRR1	Ripple voltage: 100mVp-p 100kHz to 50MHz	38			dB
R9-2	VEE power supply rejection ratio	PSRR2	Ripple voltage: 100mVp-p 100kHz to 10MHz	45			dB
R10-1	Common mode rejection ratio 1	CMRR1	Ripple voltage: 100mVp-p 100kHz to 50MHz	37			dB
R10-2	Common mode rejection ratio 2	CMRR2	Ripple voltage: 100mVp-p 51MHz to 80MHz	27			dB
R11	Control line input noise rejection	CLRR	Ripple voltage: 100mVp-p 4MHz to 80MHz	40			dB
R12	RDX/RDY offset difference magnitude	Voff1	Write to read			50	mV
R13	RDX/RDY output impedance	RDro	Differential, read mode	30		100	Ω
Read	Safety Characteristics						
P1	MR head open threshold	MRop	Head X – Head Y	600	750	900	mV
P2	MR head short threshold	MRsh	Head X – Head Y I _B = "000" to "011"	15	50	90	mV
Write	Characteristics						
W1	Write current range	Iwr	DAC code = x "0000" to x "1111"	19.5		49.5	mA
W2	Write current accuracy	Eıw	$R_H = 0\Omega$	– 7		+7	%
W3	Write current resolution	Rıw	4-bit DAC		2		mA
W4	Leakage current	ILEAK	Unselected head			200	μΑ
W6	Damping resistor	Rd		800	1000	1200	Ω
W7	Write current propagation delay time	Tpd	Lн = 0, Rн = 0 Write data to 50% of write current			10	ns
W8	Write current rise/fall time	Tr/Tf	$R_H = 15\Omega$, $L_H = 150$ nH, $I_W = 25$ mA		1.9		ns
W9	Erase current accuracy	EIE	Vcc = 3.5V DAC code = x "0101"	-18	-9	0	%
W10	Bank write current accuracy		Refer to Fig.				

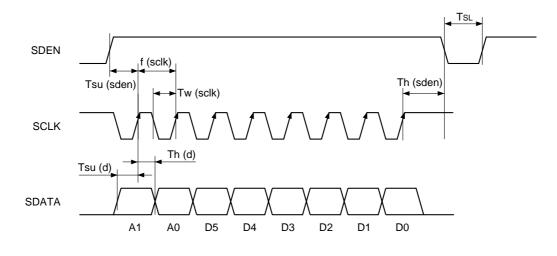
No.	Item	Symbol	Measurement conditions	Min.	Тур.	Max.	Unit
Write	Safety Characteristics						ı
U1	Write head open threshold	Rop	Detect open head		1.2	1.4	V
U2	Head voltage when short to GND	Vg	Detect short to GND			0.1	٧
U3	WD frequency too low	fwdL		0.5		1.8	MHz
U4	Write safety detect time	Tws	T1: 2 transitions on WDX/WDY			300 + T1	ns
U5	Low Vcc threshold	VWthL	Fault detected	3.7	3.9	4.1	V
U6	Low Vcc threshold	VWthH	Fault removed	3.9	4.1	4.3	V
U7	Low Vcc threshold hysteresis	Vhys			200		mV
Swite	ching Characteristics lw =	29.5mA, Ів =	= 5.9mA				
S1	Write to Read	Twr	Signal on WDX/WDY 90% RD signal or 10% lw		300	500	ns
S2	Read to Write	TRW	90% lw		50	70	ns
S3	Idle to Read	Tır	90% RD signal			1.0	μs
S4	Sleep to Read	Tsr1	90% RD signal, 90% Ib*1 IB = "011"		600	2000	μs
Bank	Write Characteristics lw =	= 29.5mA, І в	= 5.9mA		•		
S5	Read to Bank write	Ткв	90% lw			100	ns
S6	Bank write to Read	T _{BR}	10% lw			100	ns
S7	Idle to Bank write Idle to Write	Tıw	90% lw			300	μs
Seria	I Port Timing						
B1	Setup time	Tsu (sden)	SDEN to first SCLK	30			ns
B2	Hold time	Th (sden)	Last SCLK to deassert SDEN	15			ns
B4	SCLK frequency	f (sclk)				30	MHz
B5	SCLK pulse width	Tw (sclk)		10			ns
B6	SCLK – SDATA setup time	Tsu (d)		10			ns
B7	SCLK – SDATA hold time	Th (d)		10			ns
B8	SDEN low time	TsL		100			ns

 $^{^{*\}mbox{\scriptsize 1}}$ Tsr is proportional to IB and external CAP value.

Serial Port Characteristics


ADR1	ADR0	DATA5	DATA4	DATA3	DATA2	DATA1	DATA0
0	0	XSLP	XIDL	N/A	N/A	N/A	HS
0	1	GAIN	BHV	N/A	IB2	IB1	IB0
1	0	MROPN	MRSHT	IW3	IW2	IW1	IW0

 $[\]ensuremath{^{*}}$ IB[2:0] bits are initialized by "0" at power on.


Code Description

Bit	Function
XSLP	0 = Set the pre-amplifier into low power "sleep" mode.
XIDL	0 = Set pre-amplifier to idle mode.
HS	Head select bit.
GAIN	Set the pre-amplifier to high or low gain mode. 1 = Set pre-amplifier to high gain mode.
BHV	Active the BHV test point pin. "1" active.
IB[2:0]	MR bias current set.
MROPN	1 = Set MR head open detector active.
MRSHT	1 = Set MR head short detector active.
IW[3:0]	Set write current.

Mode Control

Serial Port Timing Detail

Serial Port Timing

After the SDEN goes high, the last eight bits are transferred into the register. The SCLK will shift the data presented at SDATA into an internal shift register on the rising edge of each clock.

As SCLK initial condition, both of low and high signal is acceptable.

Unsafe Condition

1. Write fault condition

FLT is a high level in write fault condition.

- Open write head leads. fwp < 15MHz
- Write head leads shorted to ground.
- WD frequency is too low.
- Power supply is out of tolerance.
- 2. Read fault condition

FLT is a low level in read fault condition.

• Open short MR head. (This function is set by serial resister.)

Bank Write Control (Refer to Bank "Write current vs. Current accuracy" characteristic curve)

- 1. Set the read mode.
- 2. Force a certain voltage (min. Vcc + 1.2V) to FLT/SE pin by using the pull-up register. (RsE = 820 Ω) #This operation disables all fault detection.
- 3. Set Vcc at 3.5V (in case of the erase mode only)
- 4. Start the write operation by setting R/XW = L.
- 5. Terminate the write operation by setting R/XW = H.
 - i) Allow 50% write duty or less.
 - ii) Low voltage detector is disabled in the bank write mode and erase mode.
 - iii) Don't change the serial register data bits in following conditions:
 - Vcc = 3.5V
 - On entering write data.

BHV (Buffered Head Voltage)

- 1. Applicable within $Vcc = 5V \pm 5\%$.
- 2. Turn BHV on, but turn off MROPN and MRSHT.
- 3. VBHV is determined by basis of Vcc. VBHV = Vcc $(4 \times IB \times (RMR + 5.5\Omega))$

Head Condition

- 1. Short X-Y terminal on un-used write head.
- 2. Recommended X-Y terminal on un-used read head short.

Polarity

- 1. Read output signal on RDX is negative, when MRX is positive by increasing RMR.
- 2. Write current flows into X side, when WDX is high and WDY is low.

Head Select Table

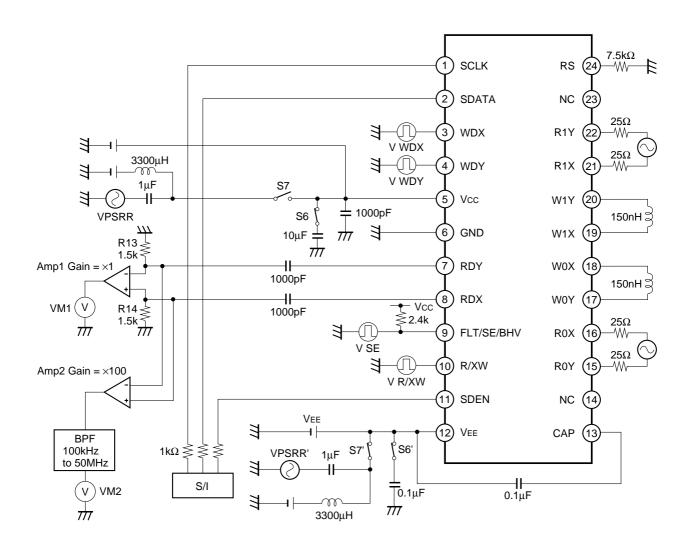
(2ch)

HS	Normal operation
0	0
1	1

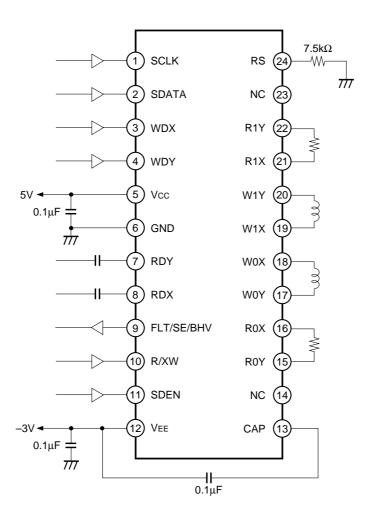
MR Bias

IB2	IB1	IB0	Iв [mA]
0	0	0	3.0
0	0	1	3.714
0	1	0	4.429
0	1	1	5.143
1	0	0	5.857
1	0	1	6.571
1	1	0	7.286
1	1	1	8.0

Write Current

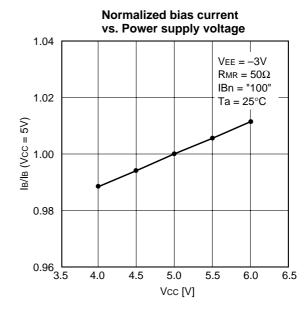

IW3	IW2	IW1	IWO	Write current [mA _{0-P}]
0	0	0	0	19.5
0	0	0	1	21.5
0	0	1	0	23.5
0	0	1	1	25.5
0	1	0	0	27.5
0	1	0	1	29.5
0	1	1	0	31.5
0	1	1	1	33.5
1	0	0	0	35.5
1	0	0	1	37.5
1	0	1	0	39.5
1	0	1	1	41.5
1	1	0	0	43.5
1	1	0	1	45.5
1	1	1	0	47.5
1	1	1	1	49.5

Actual head current is defined by the following equation:

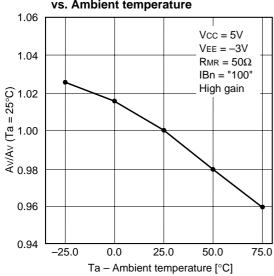

IHEAD = IW/(1 + RH/RD)

Rн: Head resistance Rp: Damping resistance

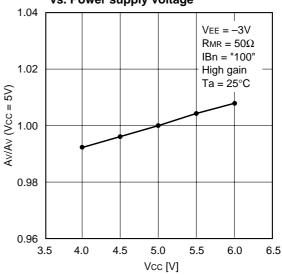
Electrical Characteristics Measurement Circuit

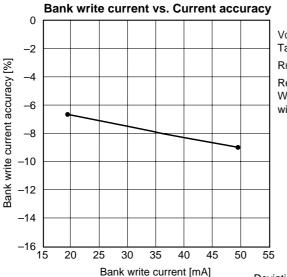


Application Circuit

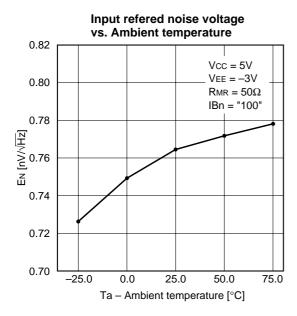


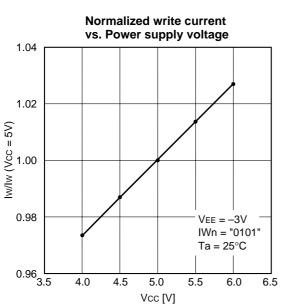
Application circuits shown are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits or for any infringement of third party patent and other right due to same.

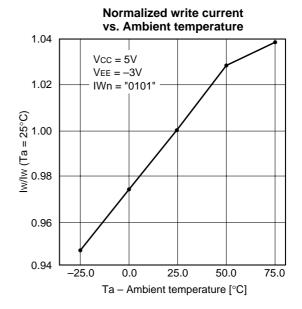

Normalized bias current vs. Ambient temperature 1.04 Vcc = 5VVEE = -3V $\mathsf{RMR} = 50\Omega$ 1.02 IBn = "100" IB/IB (Ta = 25°C) 1.00 0.98 0.96 -25.0 0.0 25.0 50.0 75.0 Ta – Ambient temperature [°C]

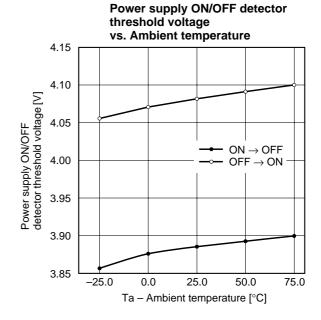


Normalized read amplifier voltage gain vs. Ambient temperature

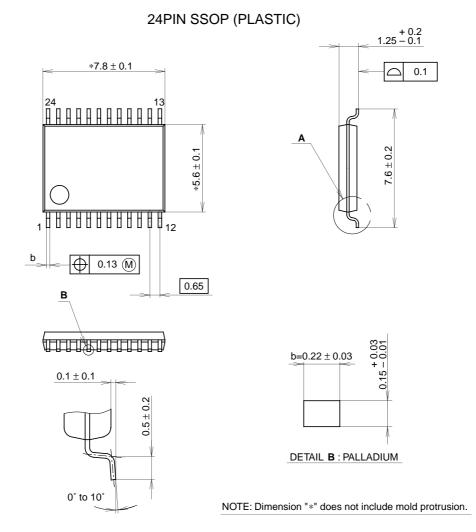

Normalized read amplifier voltage gain vs. Power supply voltage






Vcc = 5V Ta = 25°C RH = 0Ω Read 170 μ s Write 30 μ s with Write Data

Deviation of bank write current is within \pm 7% at basis of the chart.



Package Outline

Unit: mm

DETAIL A

SONY CODE	SSOP-24P-L01
EIAJ CODE	P-SSOP24-7.8x5.6-0.65
JEDEC CODE	

PACKAGE STRUCTURE

PACKAGE MATERIAL	EPOXY RESIN
LEAD TREATMENT	PALLADIUM PLATING
LEAD MATERIAL	COPPER ALLOY
PACKAGE MASS	0.1g