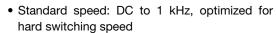


Vishay High Power Products

"Half-Bridge" IGBT INT-A-PAK (Standard Speed IGBT), 100 A



INT-A-PAK

PRODUCT SUMMARY			
V _{CES}	600 V		
I _C DC	220 A		
V _{CE(on)} at 100 A, 25 °C	1.11 V		

FEATURES

• Standard speed PT IGBT technology

- FRED Pt® antiparallel diodes with fast recovery
- Very low conduction losses
- Al₂O₃ DBC
- UL approved file E78996
- Compliant to RoHS directive 2002/95/EC
- Designed for industrial level

BENEFITS

- Optimized for high current inverter stages (AC TIG welding machines)
- Direct mounting to heatsink
- Very low junction to case thermal resistance
- Low EMI

ABSOLUTE MAXIMUM RATINGS					
PARAMETER	SYMBOL	SYMBOL TEST CONDITIONS		UNITS	
Collector to emitter voltage	V _{CES}		600	V	
Continuous collector current	1	T _C = 25 °C	220		
	Ic	T _C = 130 °C	100	Α	
Pulsed collector current	I _{CM}		440	A	
Peak switching current	I _{LM}		440	7	
Gate to emitter voltage	V_{GE}		± 20	V	
RMS isolation voltage	V _{ISOL}	Any terminal to case, t = 1 min	2500	V	
Maximum power dissipation	В	T _C = 25 °C	780	W	
	P_{D}	T _C = 100 °C	312] vv	

ELECTRICAL SPECIFICATIONS (T _J = 25 °C unless otherwise specified)							
PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNITS	
Collector to emitter breakdown voltage	V _{BR(CES)}	$V_{GE} = 0 \text{ V}, I_{C} = 1 \text{ mA}$	600	-	-		
		$V_{GE} = 15 \text{ V}, I_{C} = 100 \text{ A}$	-	1.11	1.28		
Collector to emitter voltage	$V_{\text{CE(on)}}$	I _C = 200 A	-	1.39	-	V	
		V _{GE} = 15 V, I _C = 100 A, T _J = 125 °C	-	1.08	1.22		
Gate threshold voltage	V _{GE(th)}	$I_C = 0.25 \text{ mA}$	3	-	6		
Collector to emitter leakage current	I _{CES}	V _{GE} = 0 V, V _{CE} = 600 V	-	-	1	mA	
Collector to enfitter leakage current		V _{GE} = 0 V, V _{CE} = 600 V, T _J = 125 °C	-	-	10		
Diede femuerd veltere dree	V_{FM}	I _C = 100 A, V _{GE} = 0 V	-	1.44	1.96	- V	
Diode forward voltage drop		I _C = 100 A, V _{GE} = 0 V, T _J = 125 °C	-	1.25	1.54		
Gate to emitter leakage current	I _{GES}	V _{GE} = ± 20 V	-	-	± 250	nA	

GA100TS60SFPbF

Document Number: 94544 Revision: 04-May-10

Vishay High Power Products "Half-Bridge" IGBT INT-A-PAK (Standard Speed IGBT), 100 A

PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNITS
Total gate charge	Qg	I _C = 100 A	-	640	700	
Gate to emitter charge	Q_ge	V _{CC} = 400 V	-	108	120	nC
Gate to collector charge	Q _{gc}	V _{GE} = 15 V	-	230	300	
Rise time	t _r	I _C = 100 A	-	0.45	-	
Fall time	t _f	$V_{CC} = 480 \text{ V}$	-	1.0	-	μs
Turn-on switching energy	E _{on}	V _{GE} = 15 V	-	4	6	
Turn-off switching energy	E _{off}	$R_g = 15 \Omega$	-	23	29	
Total switching energy	E _{ts}	T _J = 25 °C	-	27	35	- mJ
Turn-on switching energy	E _{on}	I _C = 100 A, V _{CC} = 480 V	-	6	12	
Turn-off switching energy	E _{off}	$V_{GE} = 15 \text{ V}, R_g = 15 \Omega$	-	35	40	
Total switching energy	E _{ts}	T _J = 125 °C	-	41	52	
Input capacitance	C _{ies}	V _{GF} = 0 V	-	16 250	-	
Output capacitance	Coes	V _{CC} = 30 V	-	1040	-	pF
Reverse transfer capacitance	C _{res}	f = 1.0 MHz	-	190	-	
Diode reverse recovery time	t _{rr}	I _F = 50 A	-	91	155	ns
Diode peak reverse current	I _{rr}	dl _F /dt = 200 A/μs	-	10.6	15	Α
Diode recovery charge	Q _{rr}	V _{RR} = 200 V	-	500	900	nC
Diode reverse recovery time	t _{rr}	I _F = 50 A	-	180	344	ns
Diode peak reverse current	I _{rr}	dl _F /dt = 200 A/μs	-	17	20.5	Α
Diode recovery charge	Q _{rr}	V _{RR} = 200 V, T _J = 125 °C	-	1633	2315	nC

THERMAL AND MECHANICAL SPECIFICATIONS						
PARAMETER		SYMBOL	MIN.	TYP.	MAX.	UNITS
Operating junction temperature range		T_J	- 40	-	150	°C
Storage temperature range		T _{Stg}	- 40	-	125	
Junction to case	per switch	R _{thJC}	-	-	0.16	°C/W
	per diode		-	-	0.48	
Case to sink per module		R _{thCS}	-	0.1	-	
Mounting torque	case to heatsink		-	-	4	Nm
	case to terminal 1, 2, 3		-	-	3	
Weight			-	185	-	g

"Half-Bridge" IGBT INT-A-PAK Vishay High Power Products (Standard Speed IGBT), 100 A

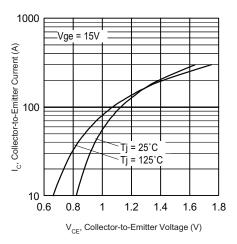


Fig. 1 - Typical Output Characteristics

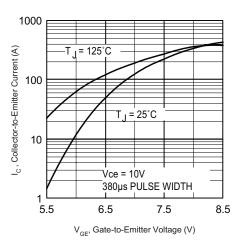


Fig. 2 - Typical Transfer Characteristics

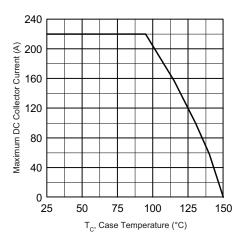


Fig. 3 - Maximum Collector Current vs. Case Temperature

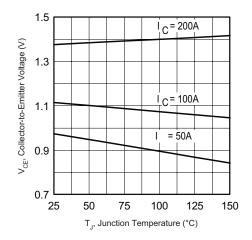


Fig. 4 - Typical Collector to Emitter Voltage vs. Junction Temperature

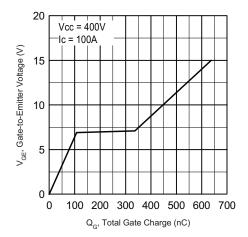


Fig. 5 - Typical Gate Charge vs. Gate to Emitter Voltage

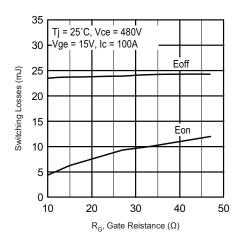


Fig. 6 - Typical Switching Losses vs.
Gate Resistance

GA100TS60SFPbF

Vishay High Power Products "Half-Bridge" IGBT INT-A-PAK (Standard Speed IGBT), 100 A

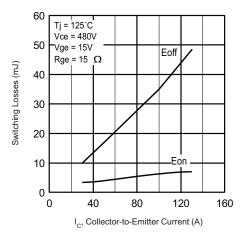


Fig. 7 - Typical Switching Losses vs. Collector to Emitter Current

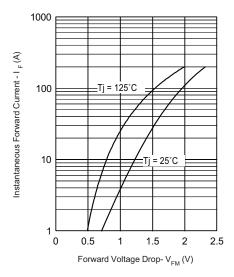


Fig. 8 - Maximum Forward Voltage Drop vs. Instantaneous Forward Current

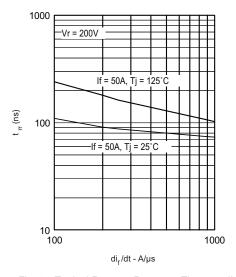


Fig. 9 - Typical Reverse Recovery Time vs. dI_F/dt

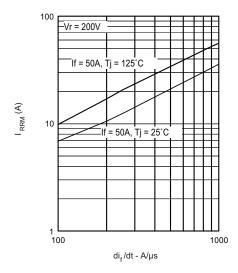


Fig. 10 - Typical Reverse Recovery Current vs. dI_F/dt

Document Number: 94544 Revision: 04-May-10

"Half-Bridge" IGBT INT-A-PAK Vishay High Power Products (Standard Speed IGBT), 100 A

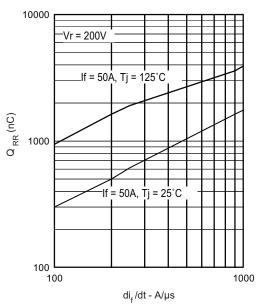
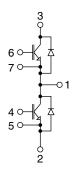
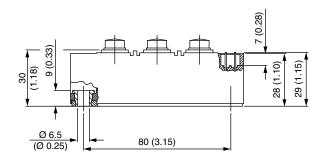



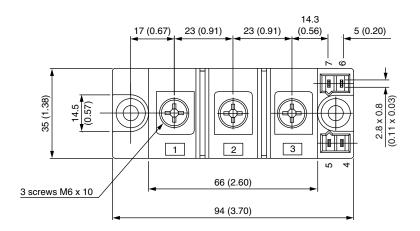
Fig. 11 - Typical Stored Charge vs. dl_F/dt

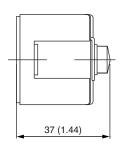
ORDERING INFORMATION TABLE

- 1 Essential part number IGBT modules
- 2 Current rating (100 = 100 A)
- 3 Circuit configuration (T = Half bridge)
- 4 INT-A-PAK
- **5** Voltage code (60 = 600 V)
- **6** Speed/type (S = Standard speed IGBT)
 - 7 Diode type
 - PbF = Lead (Pb)-free

CIRCUIT CONFIGURATION


LINKS TO RELATED DOCUMENTS				
Dimensions	www.vishay.com/doc?95173			




Vishay Semiconductors

INT-A-PAK IGBT

DIMENSIONS in millimeters (inches)

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk and agree to fully indemnify and hold Vishay and its distributors harmless from and against any and all claims, liabilities, expenses and damages arising or resulting in connection with such use or sale, including attorneys fees, even if such claim alleges that Vishay or its distributor was negligent regarding the design or manufacture of the part. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Document Number: 91000 www.vishay.com