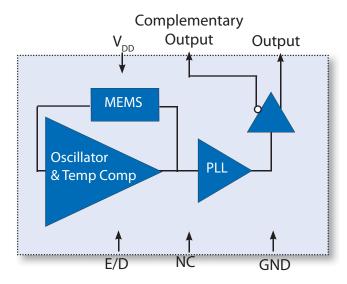


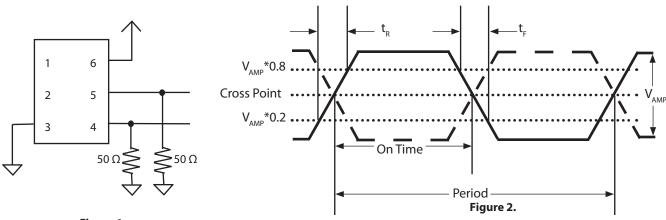
Vectron's VM-802 Crystal Oscillator is a silicon based MEMS stabilized, differential output oscillator, operating off a 2.5 or 3.3 volt supply in a hermetically sealed 5x3.2 plastic package.


Features

- High Shock MEMS based Oscillator
- 10.00-460.0000MHz Output Frequencies
- Low Power
- Differential Output
- Enable/Disable
- 2.25V to 3.6V Operation
- -20/70°C or -40/85°C Operation
- Product is compliant to RoHS directive
 and fully compatible with lead free assembly

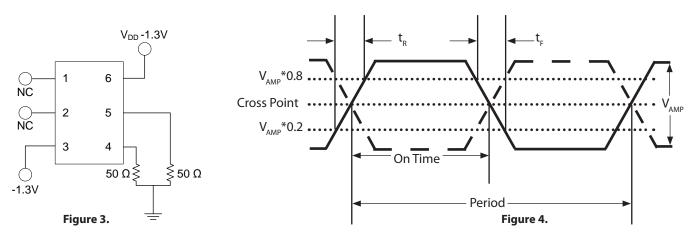
Applications

- PCI Express
- Ethernet, GbE, Synchronous Ethernet
- Fiber Channel
- Enterprise Servers
- Telecom
- Clock source for A/D's, D/A's
- · Driving FPGA's
- Test and Measurement
- PON
- Medical
- COTS


Block Diagram

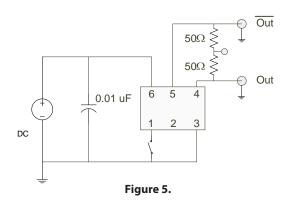
Performance Specifications

Table 1. Electrical Performance, HCSL Output										
Parameter	Symbol	Min	Typical	Maximum	Units					
Supply										
Voltage ¹	$V_{_{DD}}$	2.25		3.60	V					
Current (No Load)	l _{DD}			42	mA					
	Frequency									
Nominal Frequency	f _N	10		460	MHz					
Stability ² (Ordering Options)			±10, ±25, ±50		ppm					
		Outputs								
Output Logic Levels Output Logic High Output Logic Low	$oldsymbol{V}_{OH} \ oldsymbol{V}_{OL}$	0.725		0.1	V V					
Output Rise and Fall Time ³ Rise Time Fall Time	t _r			400 400	ps ps					
Load		50) ohms to grour	nd						
Duty Cycle⁴		48		52	%					
Jitter (200 kHz - 20 MHz) 156.250MHz ⁵ 12kHz-20MHz	фЈ		280 1.7		fs ps					
Period Jitter ⁶ RMS P/P	фЛ		3.9 28		ps ps					
	Ena	ble/Disable								
Output Enabled ⁷ Output Disabled	V _{IH} V _{IL}	0.75*V _{DD}		0.25*V _{DD}	V V					
Disable Time	t _D			5	ns					
Enable/Disable Leakage Current	l _{E/D}			±200	uA					
Start-Up Time	t _{su}			5	ms					
Operating Temp. (Ordering Option)	T _{OP}	-	°C							
Package Size			5.0 x 7.0 x 0.9		mm					


- 1. The VM-802 power supply pin should be filtered, e.g., a 0.1 and 0.01uf capacitor.
- 2. Includes calibration tolerance, operating temperature, supply voltage variations, aging and IR reflow.
- 3. Figure 1 defines the test circuit and Figure 2 defines these parameters.
- 4. Duty Cycle is defined as the On Time/Period.
- 5. Measured using an Agilent E5052.
- 6. Measured using a Wavecrest SIA3300C, 90K samples.
- 7. Outputs will be Enabled if the Enable/Disable pad is left open.

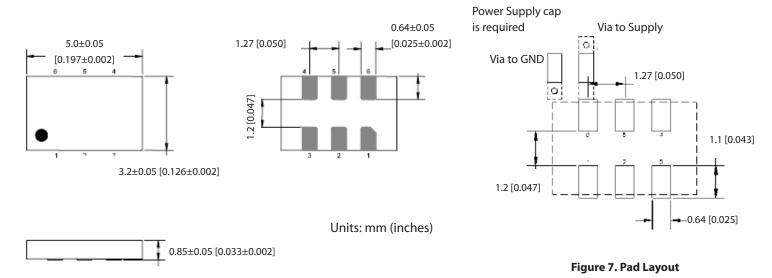
Performance Specifications

Table 2. Electrical Performance, LVPECL Option											
Parameter	Symbol	Min	Typical	Maximum	Units						
Supply											
Voltage ¹	V _{DD}	2.25		3.60	V						
Current (No Load)	I _{DD}			32	mA						
	Frequency										
Nominal Frequency	f _N	10		460	MHz						
Stability ³ (Ordering Option)			±10, ±25, ±50								
		Outputs									
Output Logic Levels ⁴ Output Logic High Output Logic Low	V _{OH} V _{OL}	V _{DD} -1.08		V _{DD} -1.555	V						
Output Rise and Fall Time ³	t _R /t _F										
Load		50	ohms into V _{DD} -1	.3V							
Duty Cycle⁴		48		52	%						
Jitter, 156.250MHz ⁵ 200kHz-20MHz 12kHz -20MHz	ф1		280 1.7		fs ps						
Period Jitter ⁶ RMS P/P	фЛ		3.9 28		ps ps						
	Ena	ble/Disable									
Output Enabled ⁷ Output Disabled	V _{IH} V _{IL}	0.75*V _{DD}		0.25*V _{DD}	V V						
Disable Time	t _D			5	ns						
Enable/Disable Leakage Current				±200	uA						
Start-Up Time	t _{su}			5	ms						
Operating Temp. (Ordering Option)	T _{OP}	-10/70 or -40/85 °C									
Package Size		5.0 x 7.0 x 0.9 mm									

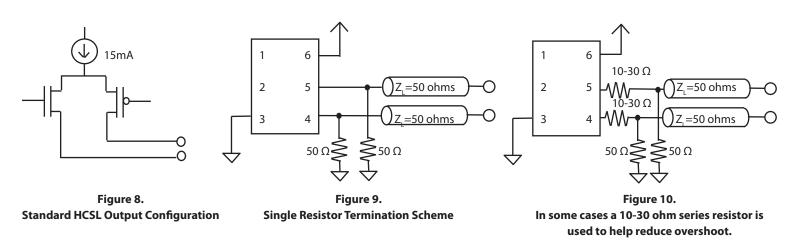

- 1. The VM-802 power supply pin should be filtered, eg, a 0.1 and 0.01uf capacitor.
- 2. Includes calibration tolerance, operating temperature, supply voltage variations, aging and IR reflow.
- 3. Figure 3 defines the test circuit and Figure 4 defines these parameters.
- 4. Duty Cycle is defined as the On/Time Period.
- 5. Measured using an Agilent E5052.
- 6. Measured using a Wavecrest SIA3300C, 90K samples.
- 7. Outputs will be Enabled if Enable/Disable is left open.

Performance Specifications

Table 3. Electrical Performance, LVDS Option										
Parameter	Symbol	Min	Typical	Maximum	Units					
Supply										
Voltage ¹	$V_{_{\mathrm{DD}}}$	2.25		3.60	V V					
Current (No Load)	I _{DD}			60	mA					
Frequency										
Nominal Frequency	$f_{_{\rm N}}$	f _N 10 460								
Stability ² (Ordering Option)			±10, ±25, ±50		ppm					
		Outputs								
Output Logic Levels³ Output Logic High Output Logic Low	V _{он} V _{ol}	0.9	1.43 1.10	1.6	V V					
Differential Output Amplitude		250	350	450	mV					
Differential Output Error				50	mV					
Offset Voltage		1.125	1.25	1.4	V					
Offset Voltage Error				50	mV					
Output Leakage Current				10	uA					
Output Rise and Fall Time ³	t _R /t _F			400	ps					
Load		100	O ohms differen	tial						
Duty Cycle⁴		48	50	52	%					
Jitter, 156.250MHz⁵ 200kHz -2 0MHz 12kHz - 20MHz	фЈ		280 1.7		fs ps					
Period Jitter ⁶ RMS P/P	фЈ		3.9 28		ps ps					
	Enal	ole/Disable								
Output Enabled ⁷ Output Disabled	V _{IH} V _{IL}	0.75*V _{DD}		0.25*V _{DD}	V V					
Disable Time	t _D			5	ns					
Enable/Disable Leakage Current	l _{E/D}			±200	uA					
Start-Up Time	t _{su}			5	ms					
Operating Temp. (Ordering Option)	T _{OP}		°C							
Package Size		5.0 x 7.0 x 0.9								

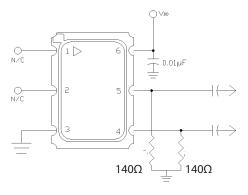

- 1. The VM-802 power supply pin should be filtered, eg, a 0.1 and 0.01uf capacitor.
- 2. Includes calibration tolerance, operating temperature, supply voltage variations, aging and IR reflow.
- 3. Figure 5 defines these parameters and Figure 4 defines the test circuit.
- 4. Duty Cycle is defined as the On/Time Period.
- 5. Measured using an Agilent E5052.
- 6. Measured using a Wavecrest SIA3300C, 90K samples.
- 7. Outputs will be Enabled if Enable/Disable is left open.

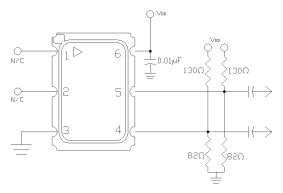
Package and Pinout


Table 4. Pinout									
Pin #	Symbol Function								
1	E/D or NC	Enable/Disable							
2	NC	No Connection							
3	GND	Electrical and Lid Ground							
4	f _o	Output Frequency							
5	Cf _o	Complementary Output Frequency							
6	V _{DD}	Supply Voltage							

Contact Pads are Gold flash (0.003 um min) over Palladium (0.01-0.15um) over Nickel (0.508-2.032um)

Figure 6. Package Outline Drawing


HCSL Application Diagrams


The VM-802 incorporates a standard High Speed Current Logic, HCSL, output scheme which is a 15mA current source switched between Out and Complementary Out. Being un-terminated drains, as shown in Figure 8, they require external 50 ohm resistors to ground as shown in Figure 9. HCSL is a high impedance output with quick switching times, in can be advantageous to use a 10 to 30 ohm series resistor as shown in Figure 10, to help reduce overshoot/ringing.

One of the most important considerations is terminating the Output and Complementary Outputs equally. An unused output should not be left un-terminated, and if it one of the two outputs is left open it will result in excessive jitter on both. PC board layout must take this and 50 ohm impedance matching into account. Load matching and power supply noise are the main contributors to jitter related problems.

LVPECL Application Diagrams

Figure 11. Single Resistor Termination SchemeResistor values are typically 140 ohms for 3.3V operation and 82.5ohms for 2.5V operation.

Figure 12. Pull-Up Pull Down TerminationResistor values are typically for 3.3V operation
For 2.5V operation, the resistor to ground is 62 ohms and the resistor to supply is 250 ohms

The VM-802 incorporates a standard LVPECL output scheme, which are un-terminated emitters as shown in Figure 8. There are numerous application notes on terminating and interfacing LVPECL logic and the two most common methods are a single resistor to ground, Figure 9, and a pull-up/pull-down scheme as shown in Figure 10. An AC coupling capacitor is optional, depending on the application and the input logic requirements of the next stage.

LVDS Application Diagrams

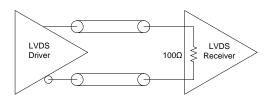


Figure 13. LVDS to LVDS Connection, Internal 100ohm

Some LVDS structures have an internal 100 ohm resistor on the input and do not need additional components.

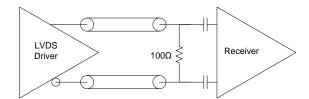


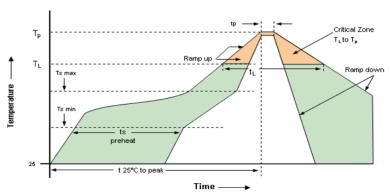
Figure 14. LVDS to LVDS Connection External 100ohm and AC blocking caps

Some input structures may not have an internal 100 ohm resistor on the input and will need an external 100ohm resistor for impedance matching. Also, the input may have an internal DC bias which may not be compatible with LVDS levels, AC blocking capacitors can be used.

One of the most important considerations is terminating the Output and Complementary Outputs equally. An unused output should not be left un-terminated, and if one of the two outputs is left open it will result in excessive jitter on both. PC board layout must take this and 50 ohm impedance matching into account. Load matching and power supply noise are the main contributors to jitter related problems.

Environmental and IR Compliance

Table 5. Environmental Compliance							
Parameter	Condition						
Mechanical Shock	MIL-STD-883 Method 2002						
Mechanical Vibration	MIL-STD-883 Method 2007						
Temperature Cycle	MIL-STD-883 Method 1010						
Solderability	MIL-STD-883 Method 2003						
Fine and Gross Leak	MIL-STD-883 Method 1014						
Resistance to Solvents	MIL-STD-202 Method 215						
Moisture Sensitivity Level	MSL1						


IR Compliance

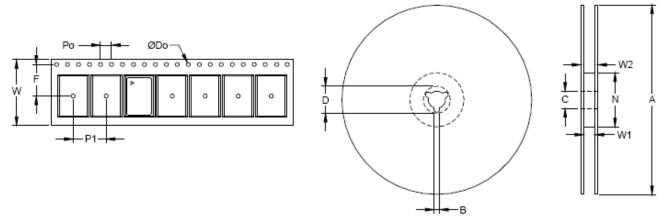
Suggested IR Profile

Devices are built using lead free epoxy and can be subjected to standard lead free IR reflow conditions shown in Table 6. Contact pads are gold over nickel and lower maximum temperatures can also be used, such as 220C.

Table 6. Reflow Profile				
Parameter	Symbol	Value		
PreHeat Time	ts	200 sec Max		
Ramp Up	R_{UP}	3°C/sec Max		
Time above 217°C	tL	150 sec Max		
Time to Peak Temperature	tAMB-P	480 sec Max		
Time at 260°C	tP	30 sec Max		
Time at 240°C	tP2	60 sec Max		
Ramp down	$R_{_{DN}}$	6°C/sec Max		

Solderprofile:

Maximum Ratings, Tape & Reel


Absolute Maximum Ratings and Handling Precautions

Stresses in excess of the absolute maximum ratings can permanently damage the device. Functional operation is not implied or any other excess of conditions represented in the operational sections of this data sheet. Exposure to absolute maximum ratings for extended periods may adversely affect device reliability.

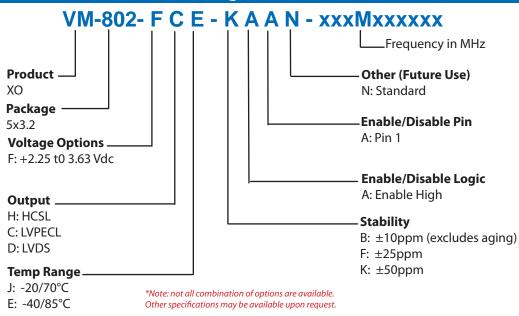

Although ESD protection circuitry has been designed into the VM-802, proper precautions should be taken when handling and mounting, VI employs a Human Body Model and Charged Device Model for ESD susceptibility testing and design evaluation. ESD thresholds are dependent on the circuit parameters used to define the model. Although no industry standard has been adopted for the CDM a standard resistance of 1.5kOhms and capacitance of 100pF is widely used and therefor can be used for comparison purposes.

Table 7. Maximum Ratings		
Parameter		Unit
Storage Temperature	-55 to 125	°C
Junction Temperature	150	С
Supply Voltage	-0.5 to 5.0	V
Enable Disable Voltage	-0.5 to V _{DD} +0.5	V
ESD, Human Body Model	1500	V
ESD, Charged Device Model	1500	V

Table 8.	Table 8. Tape and Reel Information											
	Tape D	imension	s (mm)		Reel Dimensions (mm)							
W	F	Do	Ро	P1	А	В	С	D	N	W1	W2	#/Reel
12	5.5	1.5	4	8	180	2	13	21	60	13	15.4	1000/3000

Ordering Information

Example: VM-802-ECE-KAAN-156M250

For Additional Information, Please Contact

USA:

Vectron International 267 Lowell Road Hudson, NH 03051 Tel: 1.888.328.7661

Fax: 1.888.329.8328

Europe:

Vectron International Landstrasse, D-74924 Neckarbischofsheim, Germany Tel: +49 (0) 3328.4784.17 Fax: +49 (0) 3328.4784.30

Asia:

VI Shanghai 1589 Century Avenue, the 19th Floor Chamtime International Financial Center Shanghai, China Tel: 86.21.6081.2888 Fax: 86.21.6163.3598

Disclaimer

Vectron International reserves the right to make changes to the product(s) and or information contained herein without notice. No liability is assumed as a result of their use or application. No rights under any patent accompany the sale of any such product(s) or information.

Vectron International • 267 Lowell Road, Hudson, NH 03051 • Tel: 1-88-VECTRON-1 • http://www.vectron.com Page8