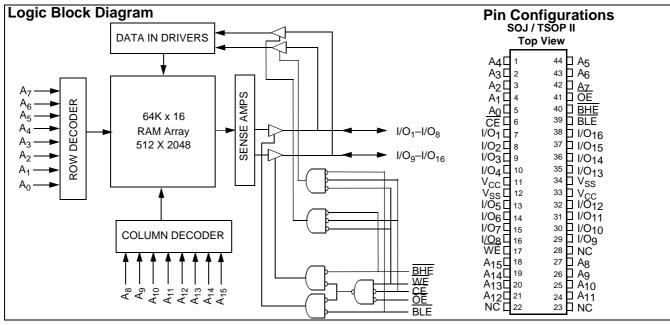


64K x 16 Static RAM

Features

- 3.3V operation (3.0V-3.6V)
- High speed
 - t_{AA} = 10, 12, 15 ns
- · CMOS for optimum speed/power
- Low Active Power (L version)
 - 576 mW (max.)
- Low CMOS Standby Power (L version)
 - 1.80 mW (max.)
- Automatic power-down when deselected
- · Independent control of upper and lower bits
- Available in 44-pin TSOP II and 400-mil SOJ
- Available in a 48-Ball Mini BGA package

Functional Description^[1]


The CY7C1021BNV is a high-performance CMOS static RAM organized as 65,536 words by 16 bits. This device has an automatic power-down feature that significantly reduces power consumption when deselected.

Writing to the device is accomplished by taking Chip Enable ($\overline{\text{CE}}$) and Write Enable (WE) inputs LOW. If Byte Low Enable (BLE) is LOW, then data from I/O pins (I/O₁ through I/O₈), is written into the location specified on the address pins (A₀ through A₁₅). If Byte High Enable (BHE) is LOW, then data from I/O pins (I/O₉ through I/O₁₆) is written into the location specified on the address pins (A₀ through A₁₅).

Reading from the device is accomplished by taking Chip Enable ($\overline{\text{CE}}$) and Output Enable ($\overline{\text{OE}}$) LOW while forcing the Write Enable ($\overline{\text{WE}}$) HIGH. If Byte Low Enable ($\overline{\text{BLE}}$) is LOW, then data from the memory location specified by the address pins will appear on I/O₁ to I/O₈. If Byte High Enable ($\overline{\text{BHE}}$) is LOW, then data from memory will appear on I/O₉ to I/O₁₆. See the truth table at the back of this data sheet for a complete description of read and write modes.

The input/output pins (I/O₁ through I/O₁₆) are placed in a high-impedance state when the <u>de</u>vice is deselected (CE | HIGH), the outputs are disabled (OE HIGH), the BHE and BLE are <u>disabled</u> (BHE, BLE HIGH), or during a write operation (CE | LOW, and WE | LOW).

The CY7C1021BNV is available in 400-mil-wide SOJ, standard 44-pin TSOP Type II, and 48-ball mini BGA packages.

Note:


1. For guidelines on SRAM system design, please refer to the 'System Design Guidelines' Cypress application note, available on the internet at www.cypress.com

Selection Guide

			-10	-12	-15
Maximum Access Time (ns)	10	12	15		
Maximum Operating Current (mA)	Commercial		160	150	140
	Industrial		180	170	160
Maximum CMOS Standby Current (mA)	Commercial/Industrial		5	5	5
		L	0.5	0.5	0.5

Pin Configurations

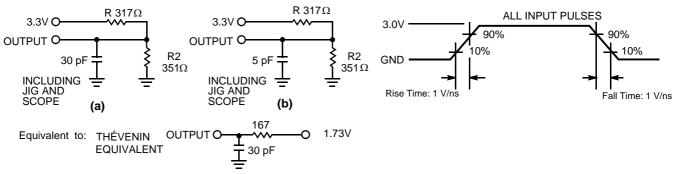
Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)
Storage Temperature65°C to +150°C
Ambient Temperature with Power Applied55°C to +125°C
Supply Voltage on V_{CC} to Relative $GND^{[1]}$ –0.5V to +4.6V
DC Voltage Applied to Outputs in High Z State $^{[1]}$ 0.5V to V CC+0.5V

DC Input Voltage ^[1]	-0.5V to Voo+0.5V
Current into Outputs (LOW)	
• • • •	
Static Discharge Voltage(per MIL-STD-883, Method 3015)	>2001V
Latch-Up Current	>200 mA

Operating Range

Range	Ambient Temperature	V _{CC}
Commercial	0°C to +70°C	3.3V ± 10%
Industrial	-40°C to +85°C	3.3V ± 10%


Electrical Characteristics Over the Operating Range

				-10		-12		-15		
Parameter	Description	Test Conditions M		Min.	Max.	Min.	Max.	Min.	Max.	Unit
V _{OH}	Output HIGH Voltage	$V_{CC} = Min., I_{OH} = -4.0$	mA	2.4		2.4		2.4		V
V _{OL}	Output LOW Voltage	$V_{CC} = Min., I_{OL} = 8.0 n$	nΑ		0.4		0.4		0.4	V
V _{IH}	Input HIGH Voltage			2.2	V _{CC} +0.3V	2.2	V _{CC} +0.3V	2.2	V _{CC} +0.3V	V
V _{IL}	Input LOW Voltage ^[1]				0.8	-0.3	0.8	-0.3	0.8	V
I _{IX}	Input Load Current	$GND \le V_I \le V_{CC}$		-1	+1	-1	+1	-1	+1	μΑ
l _{OZ}	Output Leakage Current	$GND \le V_1 \le V_{CC}$, Output Disabled		-1	+1	-1	+1	-1	+1	μА
I _{CC}	V _{CC} Operating	$V_{CC} = Max., I_{OUT} = 0mA$	Com'l		160		150		140	mA
	Supply Current	$f = f_{MAX} = 1/t_{RC}$	Ind'l		120		170		160	mΑ
I _{SB1}	Automatic CE Powerdown Current —TTL Inputs	Max. V_{CC} , $\overline{CE} \ge V_{IH}$, $V_{IN} \ge V_{IH}$ or $V_{IN} \le V_{IL}$, $f = f_{MAX}$			40		40		40	mA
I _{SB2}	Automatic CE	Max. V _{CC} ,			5		5		5	mΑ
	Power Down Current —CMOS Inputs	$CE \ge V_{CC}$ -0.3V, $V_{IN} \ge V_{CC}$ -0.3V or V_{IN} \le 0.3V, f = 0	$CE \ge V_{CC} - 0.3V$, $V_{IN} \ge V_{CC} - 0.3V$ or V_{IN}		500		500		500	μА

Capacitance^[2]

Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$T_A = 25$ °C, $f = 1$ MHz	6	pF
C _{OUT}	Output Capacitance		8	pF

AC Test Loads and Waveforms

- Note:

 1. Minimum voltage is –2.0V for pulse durations of less than 20 ns.

 2. Tested initially and after any design or process changes that may affect these parameters.

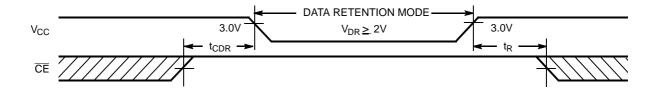
Switching Characteristics^[3] Over the Operating Range

		-10		-12		-15		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Unit
READ CYCLE	<u> </u>	· ·	¥	•		•		·
t _{RC}	Read Cycle Time	10		12		15		ns
t _{AA}	Address to Data Valid		10		12		15	ns
t _{OHA}	Data Hold from Address Change	3		3		3		ns
t _{ACE}	CE LOW to Data Valid		10		12		15	ns
t _{DOE}	OE LOW to Data Valid		4		6		7	ns
t _{LZOE}	OE LOW to Low Z	0		0		0		ns
t _{HZOE}	OE HIGH to High Z ^[4, 5]		5		6		7	ns
t _{LZCE}	CE LOW to Low Z ^[5]	3		3		3		ns
t _{HZCE}	CE HIGH to High Z ^[4, 5]		5		6		7	ns
t _{PU}	CE LOW to Power-Up	0		0		0		ns
t _{PD}	CE HIGH to Power-Down		12		12		15	ns
t _{DBE}	Byte Enable to Data Valid		5		6		7	ns
t _{LZBE}	Byte Enable to Low Z	0		0		0		ns
t _{HZBE}	Byte Disable to High Z		5		6		7	ns
WRITE CYCL	E ^[6]	1	1	•		•	•	
t _{WC}	Write Cycle Time	10		12		15		ns
t _{SCE}	CE LOW to Write End	8		9		10		ns
t _{AW}	Address Set-Up to Write End	7		8		10		ns
t _{HA}	Address Hold from Write End	0		0		0		ns
t _{SA}	Address Set-Up to Write Start	0		0		0		ns
t _{PWE}	WE Pulse Width	8		8		10		ns
t _{SD}	Data Set-Up to Write End	6		6		8		ns
t _{HD}	Data Hold from Write End	0		0		0		ns
t _{LZWE}	WE HIGH to Low Z ^[5]	3		3		3		ns
t _{HZWE}	WE LOW to High Z ^[4, 5]		5		6		7	ns
t _{BW}	Byte Enable to End of Write	8		8		9		ns

Data Retention Characteristics Over the Operating Range (L version only)

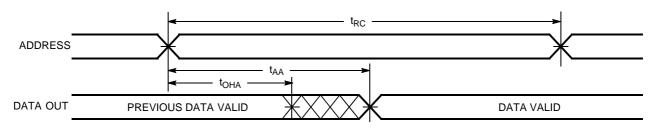
Parameter	Description	Conditions ^[7]	Min.	Max.	Unit
V_{DR}	V _{CC} for Data Retention		2.0		V
I _{CCDR}	Data Retention Current Com'l	$V_{CC} = V_{DR} = 2.0V,$ $CE \ge V_{CC} - 0.3V,$ $V_{IN} \ge V_{CC} - 0.3V \text{ or } V_{IN} \le 0.3V$		100	μΑ
t _{CDR} ^[8]	Chip Deselect to Data Retention Tim		0		ns
t _R ^[9]	Operation Recovery Time		t _{RC}		ns

Notes:

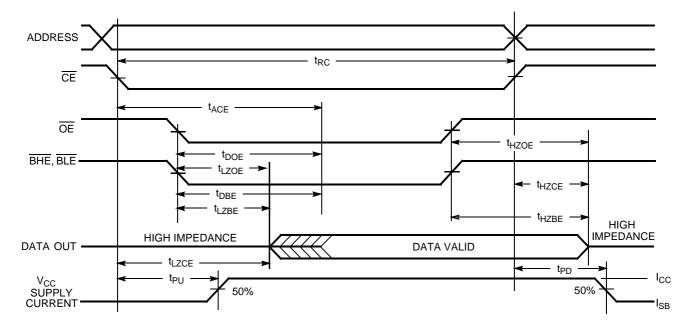

- 3. Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V, and output loading of the specified I_{OL}/I_{OH} and 30-pF load capacitance.

 4. t_{HZOE}, t_{HZBE}, t_{HZCE}, and t_{HZWE} are specified with a load capacitance of 5 pF as in part (b) of AC Test Loads. Transition is measured ±500 mV from steady-state voltage.
- 5. At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE}, t_{HZOE} is less than t_{LZCE}, and t_{HZWE} is less than t_{LZCE}, tand t_{HZWE} for any given device.

 6. The internal write time of the memory is defined by the overlap of CE LOW, WE LOW and BHE / BLE LOW. CE, WE and BHE / BLE must be LOW to initiate a write, and the transition of these signals can terminate the write. The input data set-up and hold timing should be referenced to the leading edge of the signal that terminates the write.
- 7. No input may exceed V_{CC} + 0.5V.
- 8. Tested initially and after any design or process changes that may affect these parameters.
- 9. $t_r \le 3$ ns for the -12 and -15 speeds. $t_r \le 5$ ns for the -20 and slower speeds.



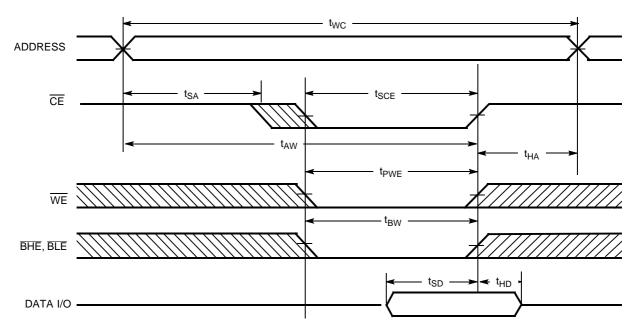
Data Retention Waveform



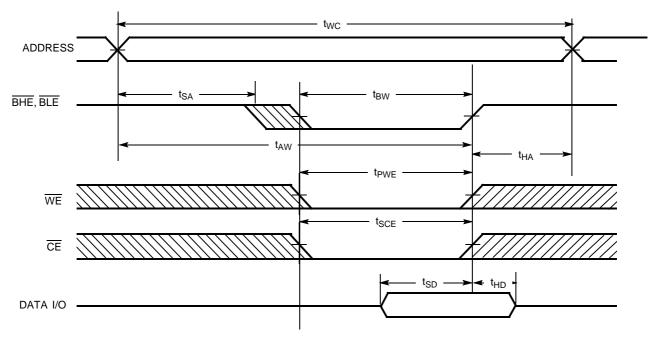
Switching Waveforms

Read Cycle No. 1^[10, 11]

Read Cycle No. 2 (OE Controlled)[11, 12]


Notes:

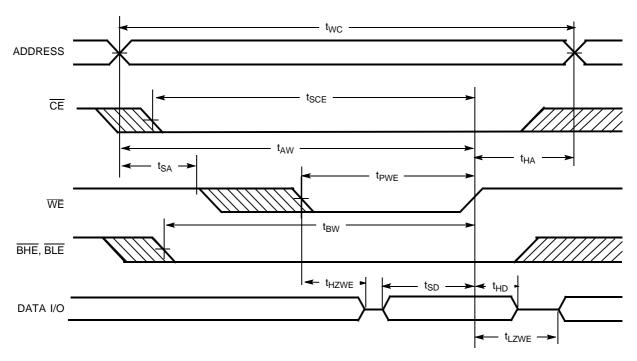
- 10. <u>Device</u> is continuously selected. \overline{OE} , \overline{CE} , \overline{BHE} and/or $\overline{BHE} = V_{IL}$.
- WE is HIGH for read cycle.
 Address valid prior to or coincident with CE transition LOW.



Switching Waveforms (continued)

Write Cycle No. 1 ($\overline{\text{CE}}$ Controlled)[13, 14]

Write Cycle No. 2 (BLE or BHE Controlled)



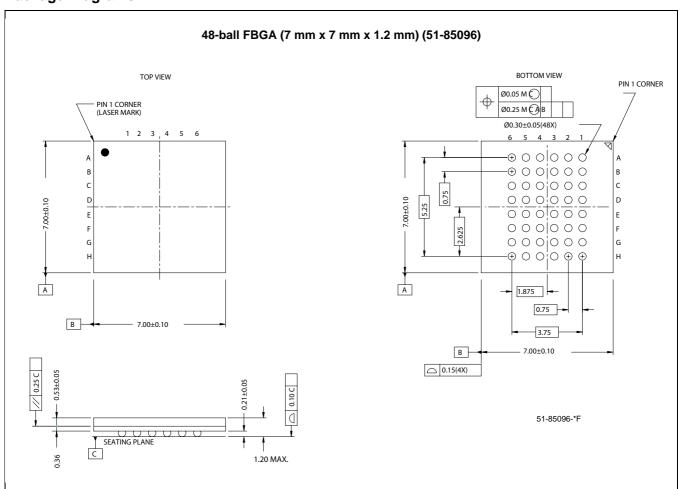
Notes:
13. Data I/O is high impedance if \overline{OE} or \overline{BHE} and/or \overline{BLE} = V_{IH} .
14. If \overline{CE} goes HIGH simultaneously with \overline{WE} going HIGH, the output remains in a high-impedance state.

Switching Waveforms (continued)

Write Cycle No. 2 (WE Controlled, OE LOW)

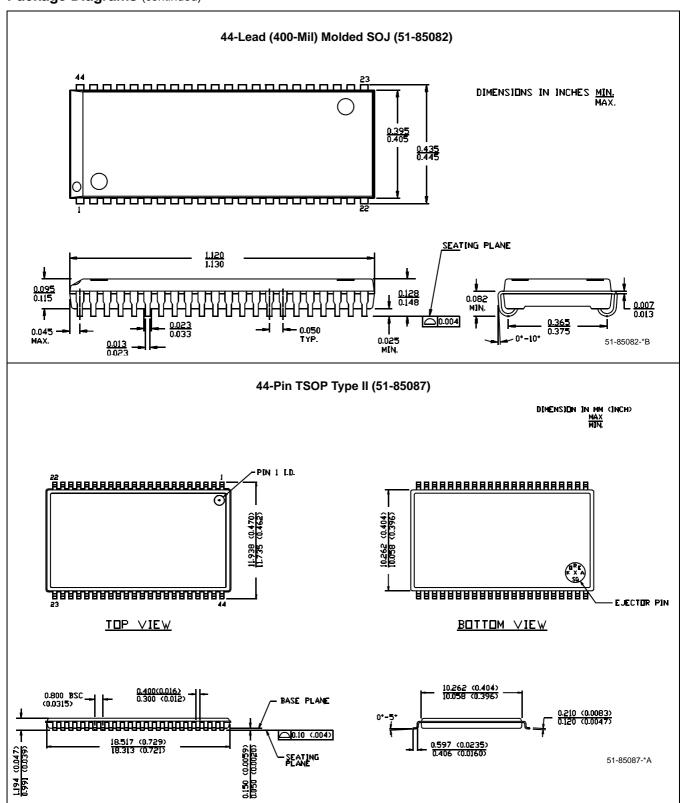
Truth Table

CE	OE	WE	BLE	BHE	I/O ₁ –I/O ₈	I/O ₉ –I/O ₁₆	Mode	Power
Н	Х	Х	Х	Х	High Z	High Z	Power-Down	Standby (I _{SB})
L	L	Н	L	L	Data Out	Data Out	Read - All bits	Active (I _{CC})
			L	Н	Data Out	High Z	Read - Lower bits only	Active (I _{CC})
			Н	L	High Z	Data Out	Read - Upper bits only	Active (I _{CC})
L	Х	L	L	L	Data In	Data In	Write - All bits	Active (I _{CC})
			L	Н	Data In	High Z	Write - Lower bits only	Active (I _{CC})
			Н	L	High Z	Data In	Write - Upper bits only	Active (I _{CC})
L	Н	Н	Х	Х	High Z	High Z	Selected, Outputs Disabled	Active (I _{CC})
L	Х	Х	Н	Н	High Z	High Z	Selected, Outputs Disabled	Active (I _{CC})



Ordering Information

Speed (ns)	Ordering Code	Package Diagram	Package Type	Operating Range
10	CY7C1021BNV33L-10VXC	51-85082	44-Lead (400-Mil) Molded SOJ (Pb-free)	Commercial
	CY7C1021BNV33L-10ZXC	51-85087	44-Lead TSOP Type II (Pb-free)	
12	CY7C1021BNV33L-12ZC	51-85087	44-Lead TSOP Type II	
	CY7C1021BNV33L-12ZXC	51-85087	44-Lead TSOP Type II (Pb-free)	
15	CY7C1021BNV33L-15ZC	51-85087	44-Lead TSOP Type II	
	CY7C1021BNV33L-15ZXC	51-85087	44-Lead TSOP Type II (Pb-free)	
	CY7C1021BNV33L-15VXC	51-85082	44-Lead (400-Mil) Molded SOJ (Pb-free)	
	CY7C1021BNV33L-15BAI	51-85096	48-ball Mini Ball Grid Array (7 mm x 7 mm)	Industrial
	CY7C1021BNV33L-15VXI	51-85082	44-Lead (400-Mil) Molded SOJ (Pb-free)	
	CY7C1021BNV33L-15ZXI	51-85087	44-Lead TSOP Type II (Pb-free)	
	CY7C1021BNV33L-15ZI	51-85087	44-Lead TSOP Type II	


Please contact local sales representative regarding availability of these parts.

Package Diagrams

Package Diagrams (continued)

All product and company names mentioned in this document may be the trademarks of their respective holders.

Document History Page

Document Title: CY7C1021BNV33 64K x 16 Static RAM Document Number: 001-06433						
REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change		
**	423847	See ECN	NXR	New Data Sheet		