

CS1180 用户手册

www.DataSheet4U.com

深圳市苍海科技有限公司

目 录

1 (CS1180 功能说明	4
1.1	CS1180 主要功能特性	4
1.2	应用场合	4
1.3	功能描述	5
2 (CS1180 特性说明	6
2.1	芯片绝对最大极限值	6
2.2		
2.3		
2.4	CS1180 电气特性	9
2.5	CS1180 时序	11
3 (CS1180 功能模块描述	13
3.1.	. 输入模拟缓冲器(Buffer)	13
3.2.	. 可编程增益放大器(PGA)	13
3.3.	. 调制器(Modulator)	
3.4.	. 误差校正(Calibration)	
3	3.3.1 系统校正(System Calibration)	
3.4	外接参考电压(External Voltage Reference)	14
3.5	时钟单元(Clock Unit)	14
3.6	数字滤波器(FIR)	14
3.7	1 13 200 (==)	
	3.7.1 片选信号(CS)	
_	3.7.2 串行时钟(SCLK)	
_	3.7.3 数据输入(SDI)和数据输出(SDO)	
_	3.7.4 数据准备就绪 (DRDY)	
3.8		
www.DataSheet44.con	CS1180 寄存器描述	16
4.1	寄存器列表	16
4.2	寄存器详细描述	17
5 0	CS1180 指令描述	21
5.1	CS1180 指令列表	21
5.2	CS1180 指令详细描述	22
6 (CS1180 的封装	24

图列表

图 1 CS1180 原理框图	5
图 2 CS1180 管脚图	
图 3 CS1180 时序图	11
图 4 外部晶振连接图	14
表 清 单	
表 1 CS1180 极限值	6
表 2 CS1180 数字逻辑特性	6
表 3 CS1180 管脚描述	
表 4 CS1180 封装	8
表 5 AVDD=5V时CS1180 电气特性	9
表 6 AVDD=3V时CS1180 电气特性	10
表 7 CS1180 时序表	12
表 8 调制器采样频率表	
表 9 外部参考电压和RAN的关系表	14
表 10 内部寄存器详细列表	16
表 11 CS1180 指令描述表	21

1 CS1180 功能说明

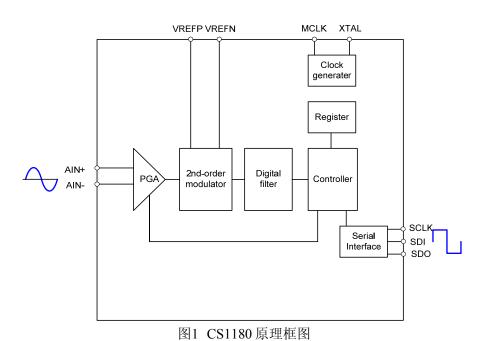
CS1180 是高精度、低功耗模数转换芯片。其分辨率为 24bit, 有效分辨率可达 19 位。可以广泛使用在工艺控制、量重、液体/气体化学分析、血液分析、智能发送器、便携测量仪器领域

1.1 CS1180 主要功能特性

- 24 位无失码、19 位有效精度模数转换器
- 集成 50Hz、60Hz 陷波(可达-90dB)
- INL 小于 0.0015%
- 可编程增益(1~128)
- 单时钟周期准备就绪
- 可编程模数转换(ADC)数据速率输出
- 外接参考电压范围可以为 0.1V~5V
- 芯片带有校正
- 集成兼容 SPI 总线接口

1.2 应用场合

- 工业过程控制
- 重量计
- 液体/气体化学分析
- 血液计
- 智能变换器
- 便携式设备


1.3 功能描述

CS1180原理框图如图 1 所示。

CS1180 是 24 位高精度、低功耗 Sigma-Delta 模数转换芯片,有效分辨率可达 19 位。可以在 $2.7V\sim5.5V$ 电源电压条件下工作.

CS1180 提供的 $1\sim$ 128 倍可编程增益放大器,在 128 倍时,CS1180 有效分辨率可达 18bit。调制器是一个二阶 Sigma-Delta 调制器,芯片的 FIR 滤波器提供 50Hz 和 60Hz 陷波滤波,有效提高芯片的抗干扰性能。

CS1180 提供 SPI 兼容的串行接口总线。

www.DataSheet4U.com

CS1180 特性说明

2.1 芯片绝对最大极限值

表 1 示出了 CS1180 的极限值

表1 CS1180 极限值

名称	符号	最小	最大	单位	说明	
模拟电源电压	AVDD	-0.3	6	V	AVDD to AGND	
数字电源电压	DVDD	-0.3	6	V	DVDD to DGND	
地之间压差	DVGND	-0.3	0.3	V	DGND to AGND	
电源瞬间电流			100	mA	Input Current momentary	
电源恒定电流			10	mA	Input Current continuous	
数字管脚输入电压		-0.3	DVDD+0.3	V	Digital Output Voltage to DGND	
数字输出管脚电压		-0.3	DVDD+0.3	V	Digital Output Voltage to DOND	
节温			150	°C	Max. Junction Temperature	
工作温度		-40	85	°C	Operating Temperature	
储存温度		-60	150	°C	Storage Temperature	
芯片管脚焊接温度			240	°C	Lead Temperature (Soldering, 10s)	

2.2 CS1180 数字逻辑特性

表 2 示出了 CS1180 的数字逻辑特性

表2 CS1180 数字逻辑特性

	参数	最小	典型	最大	单位	条件说明
	VIH	$0.8 \times DVDD$		DVDD	V	
	VIL	DGND		$0.2 \times DVDD$	V	
	VOH	DVDD-0.4		DVDD+0.4	V	Ioh=1mA
	VOL	DGND		DGND+0.4	V	IoL=1mA
www.DataSheet4l	· 4414			10	uA	VI=DVDD
	IIL	-10			uA	VI=DGND
	fosc	1		5	MHz	
	tosc	200		1000	ns	
	说明:					

1、CS1180 数字接口为 CMOS 逻辑接口。

2.3 CS1180 的管脚和封装

CS1180 管脚图如图 2 所示,管脚的详细描述则见表 3 和表 4

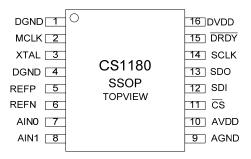


图2 CS1180 管脚图

表3 CS1180 管脚描述

	管脚序号	符号	管脚描述	备注
Ī	1	DGND	数字地	
	2	MCLK	主时钟输入,1~10MHz	
	3	XTAL	晶振驱动管脚 2	
	4	DGND	数字地	
	5	REFP	模拟(正)参考电压输入端	
	6	REFN	模拟(负)参考电压输入端	
	7	AIN0	模拟输入+	
	8	AIN1	模拟输入 -	
	9	AGND	模拟地	
	10	AVDD	模拟电源电压 2.7V~5.25V	
	11	$\overline{\mathrm{CS}}$	芯片选择信号,低有效	
Lo	12	SDI	串口输入数据	
J.E	13	SDO	串口输出数据	
	14 SCLK		串口工作时钟,采用 Schmitt 触发器	
	15	DRDY	数据准备就绪指示信号, 低有效	
	16	DVDD	数字电源电压, 2.7~5.25V	

www.DataSheet4U

CS1180 使用的是 SSOP16 封装,工作温度范围为-40℃到+85℃,参见表 4

表4 CS1180 封装

产品名称	封装及管脚数	工作温度范围
CS1180	SSOP16	_40°C~85°C

2.4 CS1180 电气特性

表5 AVDD=DVDD=5V 时 CS1180 电气特性

参数		条件	最小值	典型值	最大值	单位
	HE LOCAL STREET	Buffer 关闭	AGND-0.1		AVDD+0.1	V
	模拟输入范围	Buffer 打开	AGND+0.4		AVDD-1.5	V
	满幅输入电压	RAN=0			±VREF/PGA	V
	(AIN+) - (AIN-)	RAN=1			\pm VREF/(2×PGA)	V
	, , , ,	Buffer 关闭		5/PGA	,	ΜΩ
模拟输入	差分输入阻抗	Buffer 打开		5		GΩ
		$f_{DATA} = 3.75Hz$		1.65		Hz
	带宽(-3dB)	$f_{DATA} = 7.50Hz$		3.44		Hz
		$f_{DATA} = 15.0Hz$		3.7		Hz
	PGA	可选增益范围	1		128	
	输入电容			9		pF
	输入泄漏电流	调制器关闭, T = 25℃		5		pA
	分辨率	无失码		24		Bits
	积分线性度				± 0.0015	% of FS
	失调误差			8		ppm of FS
	失调误差漂移			0.02		ppm of FS/℃
	增益误差			0.005		%
系统性能	增益误差漂移			1.0		ppm/°C
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	共模抑制比	直流	100			dB
		$f_{CM} = 60$ Hz, $f_{DATA} = 15$ Hz		130		dB
		$f_{\text{CM}} = 50 \text{Hz}, f_{\text{DATA}} = 15 \text{Hz}$		120		dB
	陷波抑制比	$f_{CM} = 60$ Hz, $f_{DATA} = 15$ Hz		100		dB
		$f_{SIG} = 50$ Hz, $f_{DATA} = 15$ Hz	00	100		dB
	电源抑制比	直流 RAN=0	80 0.1	95 2.5	2.6	dB V
	VREF≡REFP	RAN = 0 $RAN = 1$	0.1	2.5	AVDD	V
	-REFN	RAN = 1 $RAN = 0$	0	2.3	AVDD	V
参考电压	REFP,REFN 输入范围	RAN = 0 $RAN = 1$	0.1		AVDD	V
输入	和 八花田	直流	0.1	120	AVDD	dB
sheet4U.com	共模抑制比	且.かに f _{VREFCM} = 60Hz		120		dB
	偏置电流	IVREFCM — OUTIZ		1.3		uA
	电源电压	AVDD	4.75	1.3	5.25	V
		PGA = 1, Buffer 关闭	1./3	350	5.25	uA
		PGA = 1, Buffer 打开		470		uA
电源	模拟部分电流	PGA = 1, Buffer 关闭		370		uA
		PGA = 128, Buffer 打开		630		uA
	数字部分电流	PGA = 128, Buffer 打开 普通模式		1.40		mA
	※ 1 HP刀 七 加	ロペピスと	<u> </u>	1.70	1	111/1

www.DataS

表6 AVDD=DVDD=3V时 CS1180 电气特性

参数		条件	最小值	典型值	最大值	单位
	提到tA) 英国	Buffer 关闭	AGND-0.1		AVDD+0.1	V
	模拟输入范围	Buffer 打开	AGND+0.3		AVDD-1.5	V
	满幅输入电压	RAN=0			± VREF/PGA	V
	(AIN+) - (AIN-)	RAN=1			\pm VREF/(2×PGA)	V
		Buffer 关闭		5/PGA	, ,	ΜΩ
模拟输入	差分输入阻抗	Buffer 打开		5		GΩ
(美)外間/へ		$f_{DATA} = 3.75Hz$		1.65		Hz
	带宽(-3dB)	$f_{DATA} = 7.50Hz$		3.44		Hz
		$f_{DATA} = 15.0Hz$		14.6		Hz
	PGA	可选增益范围	1		128	
	输入电容			9		pF
	输入泄漏电流	调制器关闭, T = 25℃		5		pA
	分辨率	无失码		24		Bits
	积分线性度				± 0.0015	% of FS
	失调误差			15		ppm of FS
	失调误差漂移			0.04		ppm of FS/℃
	增益误差			0.01		%
系统性能	增益误差漂移			1.0		ppm/°C
71/2017/10	共模抑制比	直流	100			dB
		f_{CM} = 60Hz, f_{DATA} = 15Hz		130		dB
		$f_{CM} = 50$ Hz, $f_{DATA} = 15$ Hz		120		dB
	陷波抑制比	$f_{CM} = 60$ Hz, $f_{DATA} = 15$ Hz		100		dB
		$f_{SIG} = 50$ Hz, $f_{DATA} = 15$ Hz		100		dB
	电源抑制比	直流	75	90	1.20	dB
	VREF≡REFP	RAN = 0	0.1	1.25	1.30	V
	-REFN	RAN = 1	0	2.5	2.6	V
参考电压	REFP, REFN	RAN = 0	0		AVDD	V
输入	输入范围	RAN = 1	0.1	120	AVDD	V
1124	共模抑制比	直流		120		dB
	位出土法	$f_{VREFCM} = 60Hz$		120		dB
	偏置电流	AVDD	2.7	0.65	2.2	uA
heet4U.com	电源电压	AVDD	2.7	220	3.3	V
		PGA = 1, Buffer 关闭		330		uA
电源	模拟部分电流	PGA = 1, Buffer 打开		450		uA
		PGA = 128, Buffer 关闭		350		uA
		PGA = 128, Buffer 打开		630		uA
	数字部分电流	普通模式		1.1		mA

www.DataS

2.5 CS1180 时序

CS1180的时序图如图 3 所示,详细的时序说明见表 7

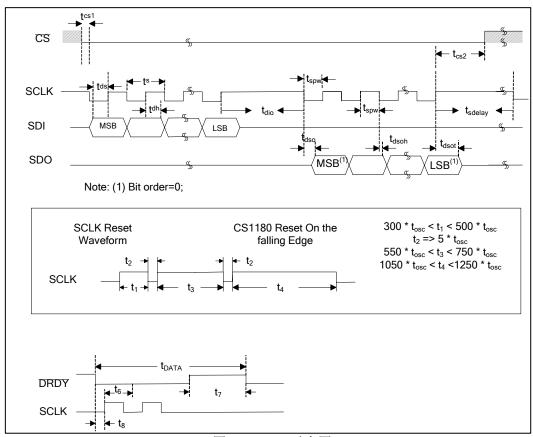


图3 CS1180 时序图

表7 CS1180 时序表

参数	描述		最小值	最大值	单位
$t_{\rm s}$	SCLK 时钟周期		4		tosc 周期
t_{spw}	SCLK 脉冲宽度,高	电平及低电平	200		ns
t_{cs1}	片选信号 CS 下降沿	与第一个 SCLK 沿的建立时间	0		ns
t _{ds}	SDI数据的建立时间	l(与 SCLK 的延迟)	50		ns
t _{dh}	有效 SDI 数据的保持	持时间	50		ns
t _{dio}	在发出下列指令时 S 的第一个 SCLK 时旬 RDATA, RREG, WR		50		tosc 周期
$t_{ m dso}$	SDO 输出数据与 SC	LK 的延迟时间		50	ns
t _{dsoh}	SDO 数据的保持时间	1	0		
t _{dsot}	SDO 变为三态与 SC	LK 时钟沿的延迟	6	10	tosc 周期
t _{cs2}	片选信号 CS 保持低	电平时间与最后一个 SCLK 时钟沿	0		ns
	当前指令的最后一	RREG, WREG, SYNC, RDATA, STOPC	4		tosc 周期
t_{sdelay}	个 SCLK 时钟沿到	OCALSYS, GCALSYS	8		DRDY 周期
Sucius	下一个指令的第一 个 SCLK 时钟沿:	RESET(也可以是通过 SCLK 或者 RST 引脚发出的 RESET 指令)	16		tosc 周期
t_6	允许的模拟输入信号	号的变化到下一次有效的转换		5000	tosc 周期
t ₇	DOR 更新,DOR 无	· · · · · · · · · · · · · · · · · · ·	4		tosc 周期
t ₈	DRDY 信号变低后的	的首个 SCLK 时钟	0		tosc 周期

3 CS1180 功能模块描述

3.1. 输入模拟缓冲器(Buffer)

在没有使能模拟输入缓冲器(Buffer)时,输入阻抗约 $5M\Omega/PGA$ 。当系统要求较高的输入阻抗时,可以使能模拟输入缓冲器,此时可以将输入阻抗提高约到 $5G\Omega$ 。

缓冲器的使能信号可以由内部寄存器 ACR 控制。当 ACR 寄存器的 BUF 为高时,输入缓冲器使能,有效提高输入阻抗。

如果使能缓冲器,芯片增加额外的功率消耗。消耗功率的大小与 PGA 的增益有关, PGA = 1 时,增加约 50uA 电流,而 PGA = 128 时,增加的电流则达 150uA。

当开启缓冲器后,对输入信号的范围有所要求,此时要求输入信号的范围为AGND+0.3V~AVDD-1.5V。

3.2. 可编程增益放大器 (PGA)

内部的电压增益放大器可以编程配置增益为 1, 2, 4, 8, 16, 32, 64, 128。通过使用 PGA 可以提高有效转换精度。例如,PGA=1, 5V 满幅模数转换,有效识别电压为 4.7uV,但 如果 PGA=128, 39mV 满幅模数转换时,可最小可以识别 75nV 输入电压。

3.3. 调制器(Modulator)

CS1180 的调制器是单环回、2 阶 Σ — Δ 调制器,调制器的采样频率可以通过 SPEED (ACR 寄存器的 bit 5) 控制,具体如下表所示:

晶振频率	SPEED	ADC 采样频率	数据输出速率	陷波频率		
(MHz)	SPEED	(KHz)	DR = 00	DR = 01	DR = 10	(Hz)
2.4576	0	19.200	15	7.5	3.75	50/60
2.4370	1	9.600	7.5	3.75	1.875	25/30
4.9152	0	38.400	30	15	7.5	100/120
4.9132	1	19.200	15	7.5	3.75	50/60

表8 调制器采样频率表

www.DataSheet4U.com

3.4. 误差校正(Calibration)

芯片校正是指芯片系统校正,校正包括模数转换器偏移误差校正(Offset calibration)、模数转换器增益校正(Gain calibration)。在进行纠正时,DRDY 维持为高,表示现在 AD 转换的结果不可用。

在芯片重新上电、外部环境温度改变、增益(PGA)改变后必须进行误差校正,以保证模数转换的正确。

完成校正后 DRDY 管脚变低,即 DRDY 输出低电平时表示芯片已经完成校正。校正完成后的第一个输出数据由于内部电路工作的延时导致不正确,不能作为正常模数转换数据。第二个转换输出数据是正常的,可以使用。

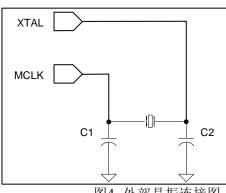
3.3.1 系统校正 (System Calibration)

系统校正可以校正芯片内部及系统的偏移误差和增益误差,校正必须要求输入正确的输入信号后进行。系统校正指令包括 OCALSYS、GCALSYS,其中 OCALSYS 进行偏移误差校正,GCALSYS 进行增益误差校正,偏移误差校正、增益误差校正分别在 8 个 TDADA 数据周期内完成。

在进行偏移误差校正(OCALSYS)时,必须要求输入为差分电压为 0, 芯片计算出系统的偏移误差值并写入 OCC 寄存器中,在正常转换时予以抵消。

在进行增益误差校正(SYSGCAL)时,必须输入正满幅度(Full Scale)的电压,芯片计算出系统的增益误差并写入 GCC 寄存器中,在正常转换时予以抵消。

3.4 外接参考电压(External Voltage Reference)


CS1180 需要外接参考电压,具体值通过 ACR 寄存器配置。参考电压接在 REFP 与 REFN 管脚上,电压不能超过芯片的电源电压,具体电压值如下表:

次,并能多引起在16100000000000000000000000000000000000								
RAN (ACR.2)	电源电压 (V)	参考差分电压(V)	备注					
0	5	<=2.5						
1	5	<=5						
0	3.0	<=1.25						
1	3.0	<=2.5						

表9 外部参考电压和 RAN 的关系表

3.5 时钟单元 (Clock Unit)

CS1180 可以外接晶体、振荡器或时钟。如果接外部时钟,则从 MCLK 管脚输入,此时 XTAL 悬空。如果外部接晶体,电路要求如下: (要求在 MCLK 及 XTAL 管脚上同时接 10~20pF 的电容)

www.DataSheet4U.com

图4 外部晶振连接图

3.6 数字滤波器(FIR)

CS1180 带有一个可编程的 FIR 滤波器。FIR 滤波器可以被配置成不同的输出速率。当使用 2.4576M 的时钟时,CS1180 的输出数据的速率可以被配置成 15Hz, 7.5Hz 或者 3.75Hz。此时,FIR 滤波器可以同时对 50Hz 和 60Hz 的杂波信号进行陷波滤波。

如果希望得到其他的输出数据速率,则须使用其他的时钟频率。此时,陷波频率也同时跟着改变了。比如,当使用默认的寄存器配置,时钟频率为3.6864M时候,输出数据的频率为:

(3.6864MHz/2.4576MHz)×15Hz=22.5Hz 陷波频率为:

 $(3.6864MHz/2.4576MHz) \times (50Hz 和 60Hz) = (75Hz 和 90Hz)$

3.7 串行总线接口(SPI)

CS1180 通过 SPI 总线与外部的控制器进行通讯。CS1180 只能用于从模式。总线接口是标准的四线 SPI 总线,包括 CS,SCLK,SDI 和 SDO。

3.7.1 片选信号(CS)

在与 CS1180 进行通讯前,外部的控制器必须先发出 CS 片选信号。在整个通讯期间,CS 信号必须维持为低。当 CS 信号变高后,整个 SPI 总线会被复位。CS 信号也可以被接为常低。当 CS 信号被拉为常低时,SPI 总线可以工作在三线模式,这种情况比较适合于 CS1180 和外部的微控制器进行通讯。

3.7.2 串行时钟(SCLK)

SCLK 为施密特触发,用来对 SDI 和 SDO 信号进行采样。为了防止错误的采样数据,SCLK 必须十分干净。如果在 3 个 DRDY 周期内都没有 SCLK 时钟出现,那么在下一个 SCLK 来临时,SPI 总线将被复位,进而开始下一个通讯周期。SCLK 上的一个特定的波形可以复位整个芯片。具体信息请参考 RESET 章节

3.7.3 数据输入(SDI)和数据输出(SDO)

SDI和 SDO 引脚分别用来输入和输出数据。在没有使用时,SDO 为高阻态,这样就允许将 SDI和 SDO 接在一起然后通过一个双向的总线来驱动它。

3.7.4 数据准备就绪(DRDY)

DRDY信号用来表示内部数据寄存器的状态。当内部数据寄存器 DOR 内新的数据准备就绪时,DRDY信号会变低。当执行完一个从内部数据寄存器 DOR 读取数据的读操作后,DRDY信号将变高。在 DOR 寄存器的数据准备更新时 DRDY信号也会变高,表示此时 DOR寄存器内的数据不可用,防止在 DOR 寄存器进行更新时从 DOR 寄存器内读取数据。DRDY的信号也可以从 ACR 寄存器的 bit 7 来获得。

3.8 上电复位及芯片的复位(RESET)

4 CS1180 寄存器描述

CS1180 通过一系列控制寄存器来配置工作方式,控制寄存器包括数据格式、模数转换数据输出速率、校正控制等。

4.1 寄存器列表

内部寄存器详细列表如表 11 所示:

表10 内部寄存器详细列表

	地址(H)	寄存器	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
	00	SETUP	ID3	ID2	ID1	ID0	保留	PGA2	PGA1	PGA0
	01	MUX	0	0	0	0	0	0	0	1
	02	ACR	DRDY	U/B	SPEED	BUF	BITOR	RAN	DR1	DR0
	03	ODAC	保留	CHSEL	ISET1	ISET0	保留	保留	保留	保留
	04	保留								
	05	保留								
	06	保留								
	07	OCC0	OCC07	OCC06	OCC05	OCC04	OCC03	OCC02	OCC01	OCC00
h	08 eet4U.com	OCC1	OCC17	OCC16	OCC15	OCC14	OCC13	OCC12	OCC11	OCC10
	09	OCC2	OCC27	OCC26	OCC25	OCC24	OCC23	OCC22	OCC21	OCC20
	0A	GCC0	GCC07	GCC06	GCC05	GCC04	GCC03	GCC02	GCC01	GCC00
	0B	GCC1	GCC15	GCC14	GCC13	GCC12	GCC11	GCC10	GCC09	GCC08
	0C	GCC2	GCC23	GCC22	GCC21	GCC20	GCC19	GCC18	GCC17	GCC16
	0D	DOR2	DOR23	DOR22	DOR21	DOR20	DOR19	DOR18	DOR17	DOR16
	0E	DOR1	DOR15	DOR14	DOR13	DOR12	DOR11	DOR10	DOR09	DOR08
	0F	DOR0	DOR07	DOR06	DOR05	DOR04	DOR03	DOR02	DOR01	DOR00

www.DataSl

4.2 寄存器详细描述

SETUP 寄存器(地址=00H, 复位值=xxxx0000) PGA 控制(SETUP REGISTER)

MSB									
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
ID3	ID2	ID1	ID0	保留	PGA2	PGA1	PGA0		

SETUP. 7-4: 芯片的 ID 编号, 供厂家使用

SETUP.3 :保留

SETU.2-0 : PGA2/PGA1/PGA0, 可编程增益放大器增益选择(Programmable Gain Amplifier Gain

Selection)

000=1 (默认值);

001 = 2

010 = 4

011 = 8

100 = 16

101 = 32

110 = 64

111 = 128

MUX 寄存器(地址=01H,复位值=01H)通道选择(SETUP REGISTER)

MSB	MSB								
Bit 7	Bit 6	Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1							
0	0	0	0	0	0	0	1		

此寄存器配置为 00H 时,可将 ADC 的输入端从芯片内部短路,此时可以测量 ADC 自身的性能(此时 ADC 的输出即为其噪声),在正常使用时,必须将此寄存器配置为 01H。

ACR寄存器(地址=02H, 复位值=x0H) 模拟电路控制(Analog Control Register)

			**				
MSB							LSB
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
DRDY	U/B	SPEED	BUF	BITOR	RAN	DR1	DR0

ACR.7 : DRDY,数据准备就绪(Data Ready,只读),与输出管脚 DRDY 值相同;

ACR.6 : U/B, 数据格式 (Data Format)

0=双极性(默认值);

+FSR 输出7FFFFFH, ZERO=000000H, -FSR=800000H;

1=单极性:

+FSR 输出 FFFFFFH, ZERO =000000H, -FSR =000000H;

ACR.5 : SPEED,模数转换器采样频率控制(Modulator Clock Speed)

0=fosc/128 (默认值);

 $1 = \frac{\text{fosc}}{256}$;

ACR.4 : BUF, 输入缓冲器使能(Buffer Enable);

ACR.3 : BITOR, 输出数据 bit 顺序

0=高位在前(默认值)

1=低位在前

ACR.2 : RAN, 转换范围选择(Select)

0=满幅输入(Full Scale)为+/-V_{REF}(默认值);

1=满幅输入(Full Scale)为+/- V_{REF}/2;

ACR.1-0 : DR1/DR0,数据输出速率(Data Rate)

00=15Hz(默认值);

01 = 7.5Hz;

10=3.75Hz; 11=保留(Reserved)

ODAC寄存器(地址=03_H,复位值=00_H)Offset DAC设置

MSB							LSB
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
无效	CHSEL	ISET1	ISET0	无效	无效	无效	无效

ISET1-0: 模拟电路偏置电流选择,

00=偏置电流为 10uA (默认值)

01 或 10=偏置电流增加 25%,

11=偏置电流增加 50%,

当使用较高的时钟频率时,增加模拟电路偏置电流有助于提高 CS1180 的性能。

CHSEL: 斩波一调制方式选择。

0=斩波频率为调制器采样频率 1/2, PGA=1~128 时可用。(默认)

1=斩波频率等于调制器采样频率,PGA=2~128时可用。

在一般情况下 CHSEL 设置为 0 即可,但是在某些情况下(具体情况和外围应用电路有关)一些高频噪声可能会耦合到低频段,此时可以设置 CHSEL 为 1,注意此时会导致失调电压和噪声又一些增大。

OCC0 寄存器(地址=07_H,复位值=00_H),失调误差系数(Offset Calibration Coefficient)

MSB									
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
OCC07	OCC06	OCC05	OCC04	OCC03	OCC02	OCC01	OCC00		
OCC0 与 OCC1 及 OCC2 组成偏移误差校正系数 OCC23~0 (共 24 位, OCC23 是 MSB,									
OCC00 是 I	LSB),对偏	扇移误差进行	校正。						

OCC1 寄存器(地址=08_H,复位值=00_H)失调误差正系数(Offset Calibration Coefficient)

MSB							LSB		
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
OCC15	OCC14	OCC13	OCC12	OCC11	OCC10	OCC09	OCC08		
OCC0与O	OCC0 与 OCC1 及 OCC2 组成偏移误差校正系数 OCC23~0 (共 24 位, OCC23 是 MSB,								
OCC00 是 I	LSB),对偏	移误差进行	校正。						

www.DataSheet4OCC2 寄存器(地址=09H,复位值=00H)失调误差校正系数(Offset Calibration Coefficient)

MSB							LSB
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
OCC23	OCC22	OCC21	OCC20	OCC19	OCC18	OCC17	OCC16
OCC0与O	CC1 及 OCC	2组成偏移设	吴差校正系数	COCC23~0	(共 24 位,C	CC23 是 MS	SB,
OCC00 是 1	LSB),对偏	扇移误差进行	校正。				

GCC0 寄存器(地址=0A_H,复位值=59_H)增益误差校正系数(Gain Calibration Coefficient)

MSB									
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
GCC07	GCC06	GCC05	GCC04	GCC03	GCC02	GCC01	GCC00		
GCC0与G	GCC0 与 GCC1 及 GCC2 组成偏移误差校正系数 GCC23~0 (共 24 位, GCC23 是 MSB,								
GCC00 是 I	LSB),对增	曾益误差进行	校正。						

GCC1 寄存器(地址=0B_H,复位值=55_H)增益误差校正系数(Gain Calibration Coefficient)

MSB									
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
GCC15	GCC14	GCC13	GCC12	GCC11	GCC10	GCC09	GCC08		
GCC0 与 GCC1 及 GCC2 组成偏移误差校正系数 GCC23~0(共 24位, GCC23 是 MSB,									
GCC00 是 1	LSB),对增	曾益误差进行	校正。						

GCC2 寄存器(地址=0C_H,复位值=55_H)增益误差校正系数(Gain Calibration Coefficient)

MSB										
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
GCC23	GCC22	CC22 GCC21 GCC20 GCC19 GCC18 GCC17 GCC16								
GCC0与G	GCC0 与 GCC1 及 GCC2 组成偏移误差校正系数 GCC23~0(共 24 位, GCC23 是 MSB,									
GCC00 是 1	LSB),对增	曾益误差进行	校正。							

DOR2 寄存器(地址=0D_H,复位值=00_H)模数转换数据(Data Output Register)

MSB									
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
DOR 23	DOR22	DOR 21	DOR 20	F DOR 19	DOR 18	DOR 17	DOR 16		
DOR 0与I	OOR 1 及 DO	R2组成模数	女转换数据 D	OR23~0(共	E 24位,DO	R23 是 MSB	DOR00		
是 LSB)。									

DOR1 寄存器(地址=0E_H,复位值=00_H)模数转换数据(Data Output Register)

MSB							LSB
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
DOR15	DOR14	DOR13	DOR12	DOR11	DOR10	DOR09	DOR08
DOR 0与 I	OOR 1及DO	R 2 组成模数	女转换数据 D	OR23~0(共	E 24位,DO	R23 是 MSB	, DOR00
是 LSB)。							

DOR0 寄存器(地址=0F_H,复位值=00_H)模数转换数据(Data Output Register)

	MSB							LSB
	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
е	⁴ DOR07	DOR06	DOR05	DOR04	DOR03	DOR02	DOR01	DOR00
	DOR 0 与 DOR 1 及 DOR 2 组成模数转换数据 DOR23~0(共 24 位,DOR23 是 MSB,DOR00							
	是 LSB)。							

www.DataShee

5 CS1180 指令描述

CS1180 使用了一系列指令,指令完成对芯片的工作模式控制、工作速度控制、误差校正等。这些指令中有些是单条的(比如 RESET),有些则需要另外的操作数(比如 WREG等)。

操作数:

n=数量 (0到127)

r=寄存器(0到15)

x = 任意值

5.1 CS1180 指令列表

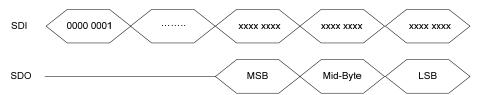
表 12 示出了 CS1180 的指令集

表11 CS1180 指令描述表

表刊 CSTTOV 用 V 固定化						
指令	描述	操作码	操作数			
RDATA	从 DOR 寄存器中读取数据	0000 0001 (01 _H)	-			
RREG	读取寄存器 "rrrr" 的值	0001 r r r r (1X _H)	xxxx_nnnn			
WREG	将数据写入到寄存器 "rrrr"中	0101 r r r r (5X _H)	xxxx_nnnn			
OCALSYS	对系统的失调误差进行纠正	1111 0011 (F3 _H)				
GCALSYS	对系统的增益误差进行纠正	1111 0100 (F4 _H)				
WAKEUP	将系统从睡眠模式模式中唤醒	1111 1011 (FB _H)				
RESET U.com	将芯片复位到上电后的状态	1111 1110 (FE _H)				

www.DataSheet4

注:接收数据时总是高位在前。发送数据的格式则由 ACR 寄存器的 BITORDER 位来决定


5.2 CS1180 指令详细描述

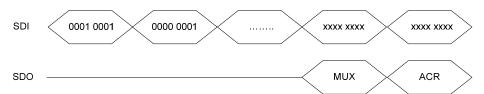
RDATA一读取数据

描述: 从 DOR 寄存器中读取最新的一次 AD 转换的值,这个值为 24bit

操作数:无 字节: 1

编码: 0000 0001 数据传输序列:

RREG一读取寄存器的值


描述: 输出最多 16 个寄存器的值。首个寄存器的地址由指令的首个操作数决定。读取的寄存器的数量由指令的第二个操作数的值加 1 决定。如果这个值超过了剩余的寄存器的数目,则寄存器的地址转到首个寄存器上。

操作数: r, n 字节: 2

编码: 0001 rrrr xxxx nnnn

数据传输序列:

读取两个寄存器的值,首个寄存器的地址为 01_H(MUX)

WREG-将数据写入寄存器中

www.DataSheet4描述: 将数据写入多个寄存器中。首个寄存器的地址由指令的首个操作数决定。读取的寄存器的数量由指令的第二个操作数的值加1决定。

操作数: r, n 字节: 2

编码: 0101 rrrr xxxx nnnn

数据传输序列:

将数据写入到两个寄存器中,第一个寄存器的地址为04H(DIO)

OCALSYS一纠正系统的失调误差

描述: 对系统的失调误差进行纠正。这个时候,系统的输入信号应该为 0, CS1180 计算出 OCC 的值对失调误差进行补偿。进行完这个操作后,OCC 寄存器的值将被更新。用户必须在正确的模拟输入端输入 0 信号 OCC 寄存器会被自动更新。

操作数:无

字节: 1

编码: 1111 0011 数据传输序列:

SDI 1111 0011

GCALSYS一纠正系统的增益误差

描述: 对系统的增益误差进行纠正,此时,系统的输入信号应该为满幅电压,CS1180 计算出 GCC 的值对增益误差进行补偿。进行完这个操作后,OCC 寄存器的值将被更新。用户必须在正确的模拟输入端输入满幅信号。GCC 寄存器会被自动更新。

操作数:无

字节: 1

编码: 1111 0100 数据传输序列:

SDI 1111 0100

WAKEUP一将系统从睡眠模式中唤醒

描述: 将 CS1180 从睡眠模式中唤醒

操作数:无 字节: 1

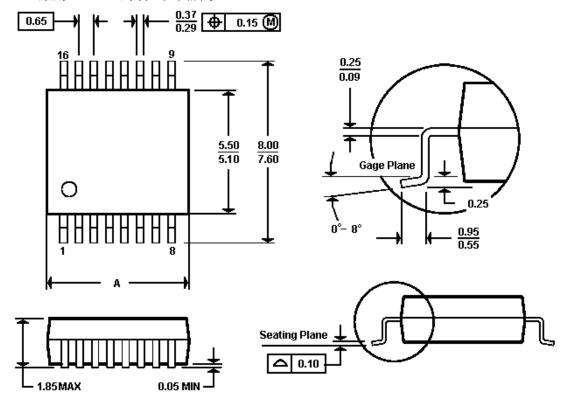
编码: 1111 1011 数据传输序列:

SDI 1111 1100

RESET-将芯片复位到默认状态

描述: 将所有寄存器的值复位到上电后的状态。这个指令可以终止 RDATAC 指令

操作数:无 字节: 1


编码: 1111 1110 数据传输序列:

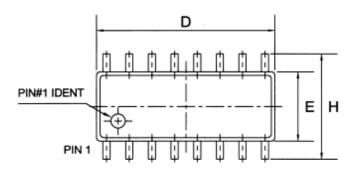
SDI 1111 1110

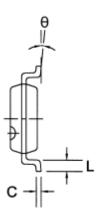
6 CS1180 的封装

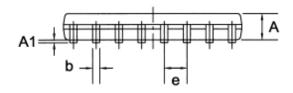
CS1180采用 SSOP16 封装,如图所示。

NOTES:

A. All linear dimensions are in millimeters


www.DataSheet4U.com B. This drawing is subject to change without notice


- C. Body demensions do not include mold flash or protrusion nont to exceed 0.15
- D. Falls within JEDEC MO-150


A MAX	6.40
A MIN	6.00

CS1180采用 SOP16 封装,如图所示:

0	Dimensions In Millmeters			Dimensions In Inches			
Symbol	Min	Nom	Max	Min	Nom	Max	
Α	1.30	1.50	1.70	0.051	0.059	0.067	
A1	0.06	0.16	0.26	0.002	0.006	0.010	
b	0.30	0.40	0.55	0.012	0.016	0.022	
С	0.15	0.25	0.35	0.006	0.010	0.014	
D	9.70	10.00	10.30	0.382	0.394	0.406	
E	3.75	3.95	4.15	0.148	0.156	0.163	
е	_	1.27		_	0.050		
Н	5.70	6.00	6.30	0.224	0.236	0.248	
L	0.45	0.65	0.85	0.018	0.026	0.033	
θ	0.		8'	0.	_	8-	

www. Data Sheet 4U.com