FEATURES:

- 2.5Vdd
- 5 pairs of programmable skew outputs
- Low skew: 50ps same pair, 100ps all outputs
- Selectable positive or negative edge synchronization
- Tolerant of spread spectrum input clock
- Synchronous output enable
- Selectable reference input
- Input frequency: 4.17 MHz to 250 MHz
- Output frequency: 12.5 MHz to 250 MHz
- 1.8 V / 2.5 V LVTTL: up to 250 MHz
- HSTL / eHSTL: up to 250 MHz
- Hot insertable and over-voltage tolerant inputs
- 3-level inputs for skew control
- 3-level inputs for selectable interface
- 3-level inputs for divide selection multiply/divide ratios of (1-6, 8, 10, 12) I $(2,4)$
- Selectable HSTL, eHSTL, 1.8V/2.5V LVTTL, or LVEPECL input interface
- Selectable differential or single-ended inputs and ten singleended outputs
- PLL bypass for DC testing
- External differential feedback, internal loop filter
- Low Jitter: <75ps cycle-to-cycle
- Power-down mode
- Lock indicator
- Available in BGA package

DESCRIPTION:

The IDT5T9010 is a 2.5 V PLL clock driver intended for high performance computing and data-communications applications. A key feature of the programmable skew is the ability of outputs to lead or lag the REF input signal. The IDT5T9010 has ten programmable skew outputs in five banks of two, plus a dedicated differential feedback. Skew is controlled by 3-level input signals that may be hard-wired to appropriate high-mid-low levels. The redundant input capability allows for a smooth change over to a secondary clock source when the primary clock source is absent.

The feedback bank allows divide-by-functionality from 1 to 12 through the use of the DS[1:0] inputs. This provides the user with frequency multiplication1 to 12 withoutusing divided outputs for feedback. Each output bank also allows for a divide-by-functionality of 2 or 4.

The IDT5T9010 features a user-selectable, single-ended or differential inputtoten single-ended outputs. Theclockdriver also acts as atranslator from a differential HSTL, eHSTL, 1.8V/2.5V LVTTL, LVEPECL, or single-ended $1.8 \mathrm{~V} / 2.5 \mathrm{~V}$ LVTTL input to HSTL, eHSTL, or $1.8 \mathrm{~V} / 2.5 \mathrm{~V}$ LVTTL outputs. Selectable interface is controlledby3-levelinputsignalsthatmay behard-wired to appropriate high-mid-low levels. The outputs can be synchronously enabled/disabled.

Furthermore, when PE is held high, all the outputs are synchronized with the positive edge of the REF clock input. When PE is held low, all the outputs are synchronized with the negative edge of REF.

FUNCTIONAL BLOCK DIAGRAM

PIN CONFIGURATION

	1	2	3	4	5	6	7	8	9	10	11	12	
A	Vdo	$1 \mathrm{~F}_{2}$	$\overline{\text { 1sOE }}$	${ }_{1}$ Q0	${ }_{1}$ Q1	GND	GND	2Q1	2Q0	2sot	$2 F_{2}$	VDDQ	A
B	VdD	VdD	VdD	1F0	$1 F_{1}$	GND	GND	2 F 1	2F0	VdDQ	VdDa	$3 F_{2}$	B
C	OMODE	Vdo	VDD	VDD	GND	GND	GND	GND	Vdda	Vdda	VddQ	3SOE	C
D	REF_ SEL	Vdo	Vdo	VDD	GND	GND	GND	GND	Vddo	Vddo	3F0	3Q0	D
E	REF1	$\overline{\mathrm{REF}} 1$ /Vref1	NC	VDD	GND	GND	GND	GND	Vdda	Vddo	$3 F_{1}$	3Q1	E
F	REFo	$\overline{R E F o}$ /Vrefo	Vod	VDD	GND	GND	GND	GND	Vdda	Vddo	Vdda	Vddo	F
G	FB	FB /VREF2	Vdd	VDD	GND	GND	GND	GND	Vdda	Vddo	Vdda	Vddo	G
H	$\overline{\mathrm{PD}}$	$\frac{\overline{\mathrm{PLL}}}{\mathrm{EN}}$	PE	VdD	GND	GND	GND	GND	Vdda	Vdda	4F1	4Q1	H
J	RxS	TxS	VDD	VDD	GND	GND	GND	GND	Vdda	VdDQ	4F0	4Q0	J
K	LOCK	Vdo	VDD	VDD	GND	GND	GND	GND	VDDQ	VDDQ	VdDa	$\overline{4 S O E}$	K
L	VDD	VDD	FS	FBFo	FBF1	GND	GND	5F1	5F0	VDDQ	VdDQ	4F2	L
M	DS1	DSo	FBF2	QFB	$\overline{\text { QFB }}$	GND	GND	5Q1	5Q0	5sOE	5F2	VdDQ	M
	1	2	3	4	5	6	7	8	9	10	11	12	

ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Description	Max	Unit
VDDQ, VDD	Power Supply Voltage ${ }^{(2)}$	-0.5 to +3.6	V
VI	Input Voltage	-0.5 to +3.6	V
Vo	Output Voltage	-0.5 to VDDQ +0.5	V
VREF	Reference Voltage ${ }^{(3)}$	-0.5 to +3.6	V
TJ	Junction Temperature	150	${ }^{\circ} \mathrm{C}$
TSTG	Storage Temperature	-65 to +165	${ }^{\circ} \mathrm{C}$

NOTES:

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
2. VDDQ and VDD internally operate independently. No power sequencing requirements need to be met.
3. Not to exceed 3.6 V .

CAPACITANCE $\left(\mathrm{TA}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}, \mathrm{VIN}_{\mathrm{IN}}=0 \mathrm{~V}\right)$

Parameter	Description	Min.	Typ.	Max.	Unit
CIN	InputCapacitance	2.5	3	3.5	pF
Cout	OutputCapacitance	-	6.3	7	pF

NOTE:

1. Capacitance applies to all inputs except $\mathrm{RxS}, \mathrm{TxS}, \mathrm{nF}[2: 0], \mathrm{FBF}[2: 0]$, and $\mathrm{DS}[1: 0]$.

RECOMMENDEDOPERATING RANGE

Symbol	Description	Min.	Typ.	Max.	Unit
TA_{A}	AmbientOperatingTemperature	-40	+25	+85	${ }^{\circ} \mathrm{C}$
$\mathrm{VDD}^{(1)}$	Internal Power Supply Voltage	2.3	2.5	2.7	V
VDDQ $^{(1)}$	HSTL Output Power Supply Voltage	Extended HSTL and 1.8V LVTTLOutput Power Supply Voltage	1.4	1.5	1.6
	2.5VLVTTLOutputPower Supply Voltage	1.8	1.95	V	
	$\mathrm{~V} T$	TerminationVoltage		V	

NOTE:

1. All power supplies should operate in tandem. If $V_{D D}$ or $V_{D D Q}$ is at maximum, then $V_{D D Q}$ or $V_{D D}$ (respectively) should be at maximum, and vice-versa.

PIN DESCRIPTION

Symbol	I/0	Type	Description
REF[1:0]	I	Adjustable ${ }^{(1)}$	Clock input. REF[1:0] is the "true" side of the differential clock input. If operating in single-ended mode, REF[1:0] is the clock input.
$\overline{\operatorname{REF}}[1: 0] /$ Vref[1:0]	I	Adjustable ${ }^{(1)}$	Complementary clockinput. $\overline{\operatorname{REF}}[1: 0] / V \operatorname{REF}[1: 0]$ is the "complementary" side of REF[1:0] ifthe inputis in differential mode. If operating in single-endedmode, $\overline{\operatorname{REF}[1: 0]} / V_{R E F[1: 0] ~ i s ~ l e f t f l o a t i n g . ~ F o r ~ s i n g l e-e n d e d ~ o p e r a t i o n ~ i n ~ d i f f e r e n t i a l ~ m o d e, ~}^{\operatorname{REF}[1: 0]} / V_{R E E[1: 0]}$ should be set to the desired toggle voltage for REF[1:0]:
FB	1	Adjustable ${ }^{(1)}$	Clockinput. FBisthe "true"side ofthe differential feedback clockinput. Ifoperating insingle-endedmode, FB isthefeedback clockinput.
$\overline{\mathrm{FB}} / \mathrm{V}_{\text {ReF2 }}$	1	Adjustable ${ }^{(1)}$	Complementary feedback clockinput. $\overline{\mathrm{FB}} / \mathrm{VREFF}^{2}$ isthe "complementary"side of FB ifthe inputis in differential mode. Ifoperating in singleendedmode, $\overline{\mathrm{FB}} / \mathrm{VREF2}^{2}$ is leftlloating. Forsingle-ended operation indifferential mode, $\overline{\mathrm{FB}} / V_{\text {REF2should be settothedesiredtoggle voltage }}$ for FB:

NOTE:

1. Inputs are capable of translating the following interface standards. User can select between:

Single-ended 2.5 V LVTTL levels
Single-ended 1.8 V LVTTL levels or

PIN DESCRIPTION,CONTINUED

Symbol	I/0	Type	Description
REF_SEL	1	LVTTL ${ }^{(1)}$	Reference clock select. When LOW, selects REF0 and $\overline{\text { REF }}$ 0/Vrefo. When HIGH, selects REF1 and $\overline{\text { REF1/ }}$ / ReF1.
$\overline{\text { nsOE }}$	1	LVTTL ${ }^{(1)}$	Synchronous outputenable. When $\overline{\mathrm{nsOE}}$ is $\mathrm{HIGH}, \mathrm{nQ}[1: 00$ are synchronously stopped. OMODE selects whether the outputs are gated LOW/HIGH or tri-stated. When OMODE is HIGH, PE determines the level at which the outputs stop. When PE is LOW/HIGH, the $\mathrm{nQ}[1: 0]$ is stopped in a HIGH/LOW state. When OMODE is LOW, the outputs are tri-stated. Set nsOE LOW for normal operation.
QFB	0	Adjustable ${ }^{(2)}$	Feedbackclockoutput
$\bar{Q} \bar{F} \bar{B}$	0	Adjustable ${ }^{(2)}$	Complementary feedback clock output
nQ[1:0]	0	Adjustable ${ }^{(2)}$	Five banks of two outputs
RxS	1	3-Level ${ }^{(3)}$	Selects single-ended 2.5V LVTTL (HIGH), 1.8V LVTTL (MID) REF clock input or differential (LOW) REF clock input
TxS	1	3-Level ${ }^{(3)}$	Sets the drive strength of the output drivers and feedbackinputs to be 2.5 VLVTTL (HIGH), 1.8VLVTTL(MID) or HSTL/eHSTL(LOW) compatible. Used in conjuction with VdDe to set the interface levels.
PE	1	LVTTL ${ }^{(1)}$	Selectable positiveornegativeedge control. WhenLOW/HIGHtheoutputsare synchronizedwiththenegative/positiveedge ofthe reference clock (has internal pull-up).
$\mathrm{nF}[2: 0]$	1	3-Level ${ }^{(3)}$	3 -level inputs for selecting 1 to 18 skew taps or frequency functions (See Control Summary table)
FBF[2:0]	1	3-Level ${ }^{(3)}$	3 -level inputs for selecting 1 to 18 skew taps or frequency functions (See Control Summary table)
FS	1	LVTTL ${ }^{(1)}$	Selects appropriate oscillator circuitbased on anticipated frequency range (See Programmable Skew Range)
DS[1:0]	1	3-Level ${ }^{(3)}$	3-level inputs for feedbackinputdivider selection(See Divide Selectiontable)
$\overline{\text { PLL_EN }}$	1	LVTTL ${ }^{(1)}$	PLLenable/disable control. SetLOW fornormal operation. When $\overline{\text { PLL_EN }}$ is HIGH, the PLL is disabled and REF[1:0] goes to all outputs.
$\overline{\mathrm{P}}$	1	LVTTL ${ }^{(1)}$	Power down control. When $\overline{\text { PD }}$ is LOW, the inputs are disabled and internal switching is stopped. OMODE selects whether the outputs are gated LOW/HIGH or tri-stated. When OMODE is HIGH, PE determines the level at which the outputs stop. When PE is LOW/ HIGH, the nQ[1:0] and QFB are stopped in a HIGH/LOW state, while the $\overline{\text { QFB }}$ is stopped in a LOW/HIGH state. When OMODE is LOW, the outputs are tri-stated. Set $\overline{\mathrm{PD}}$ HIGH for normal operation.
LOCK	0	LVTTL	PLL lock indication signal. HIGH indicates lock. LOW indicates that the PLL is notlocked and outputs may notbe synchronized to the inputs.
OMODE	1	LVTTL ${ }^{(1)}$	Outputdisable control. Determines the outputs' disable state. Usedin conjunction with $\overline{n s O E}$ and $\overline{\mathrm{PD}}$. (See OutputEnable/Disable and Powerdowntables.)
VDDQ		PWR	Power supply for output buffers. When using 2.5V LVTTL, VDDQ should be connected to VDD.
VDD		PWR	Power supply for phase locked loop, lock output, inputs, and other internal circuitry
GND		PWR	Ground

NOTES:

1. Pins listed as LVTTL inputs will accept 2.5 V signals under all conditions. If the output is operating at 1.8 V or 1.5 V , the LVTTL inputs will accept the 1.8 V LVTTL signals as well.
2. Outputs are user selectable to drive 2.5 V , 1.8 V LVTTL, eHSTL, or HSTL interface levels when used with the appropriate Vdde voltage.
3. 3-level inputs are static inputs and must be tied to VDD or GND or left floating. These inputs are not hot-insertable or over voltage tolerant.

OUTPUTENABLE/DISABLE

$\overline{\mathrm{nsOE}}$	OMODE	Output
L	X	Normal Operation
H	L	Tri-State
H	H	Gated $^{(1)}$

NOTE:

1. PE determines the level at which the outputs stop. When PE is LOW/HIGH, the $\mathrm{nQ}[1: 0]$ is stopped in a HIGH/LOW state.

POWERDOWN

$\overline{\mathrm{P}}$	OMODE	Output
H	X	Normal Operation
L	L	Tri-State
L	H	Gated $^{(1)}$

NOTE:

1. PE determines the level at which the outputs stop. When PE is LOW/HIGH, the $\mathrm{nQ}[1: 0]$ and QFB are stopped in a HIGH/LOW state, while the $\overline{\text { QFB }}$ is stopped in a LOW/HIGH state.

PROGRAMMABLE SKEW

Output skew with respect to the $\operatorname{REF}[1: 0]$ and $\overline{\operatorname{REF}}[1: 0] / \operatorname{REF}[1: 0]$ input is adjustable to compensate for PCB trace delays, backplane propagation delays or to accommodate requirements for special timing relationships between clocked components. Skew is selectable as a multiple of a time unit (tu) which ranges from 250ps to 1.25 ns (see Programmable Skew Range and Resolution Table). There are 18 skew/divide configurations available for each output pair. These configurations are chosen

EXTERNAL DIFFERENTIALFEEDBACK

By providing a dedicated external differential feedback, the IDT5T9010 gives users flexibility with regard to skew adjustment. The FB and $\overline{F B} /$ VREF2 signals are compared with the input REF[1:0] and $\overline{\operatorname{REF}}[1: 0] / V \operatorname{REF}[1: 0]$ signals at the phase detector in order to drive the VCO. Phase differences cause the VCO of the PLL to adjust upwards or downwards accordingly.
by the $n F[2: 0] / F B F_{[2: 0]}$ control pins. In order to minimize the number of control pins, 3 -level inputs (HIGH-MID-LOW) are used, they are intended for but not restricted to hard-wiring. Undriven 3-level inputs default to the MID level. The Control Summary Table shows how to select specific skew taps by using the $\mathrm{nF}[2: 0] / \mathrm{FBF}[2: 0]$ control pins.

An internal loop filter moderates the response of the VCO to the phase detector. The loop filter transfer function has been chosen to provide minimal jitter (or frequency variation) while still providing accurate responses to input frequency changes.

PROGRAMMABLE SKEW RANGE AND RESOLUTION TABLE

	FS = LOW	FS $=$ HIGH	Comments
Timing Unit Calculation(tu)	1/(16 x FNom)	1/(16 x FNom)	
VCO Frequency Range (FNom) ${ }^{(1,2)}$	50 to 125 MHz	100 to 250MHz	
SkewAdjustmentRange ${ }^{(3)}$ MaxAdjustment:	$\pm 8.75 \mathrm{~ns}$	$\pm 4.375 \mathrm{~ns}$	ns
	$\pm 157.5^{\circ}$	$\pm 157.5^{\circ}$	Phase Degrees
	$\pm 43.75 \%$	$\pm 43.75 \%$	\% of Cycle Time
Example 1, FNom $=50 \mathrm{MHz}$	$\mathrm{tu}=1.25 \mathrm{~ns}$	-	
Example 2, FNom $=75 \mathrm{MHz}$	$\mathrm{tu}=0.833 \mathrm{~ns}$	-	
Example 3, FNom $=100 \mathrm{MHz}$	$\mathrm{tu}=0.625 \mathrm{~ns}$	$\mathrm{tu}=0.625 \mathrm{~ns}$	
Example 4, FNom $=150 \mathrm{MHz}$	-	$\mathrm{tu}=0.417 \mathrm{~ns}$	
Example 5, FNom $=200 \mathrm{MHz}$	-	$\mathrm{tu}=0.313 \mathrm{~ns}$	
Example 6, FNom $=250 \mathrm{MHz}$	-	$\mathrm{tu}=0.25 \mathrm{~ns}$	

NOTES:

1. The device may be operated outside recommended frequency ranges without damage, but functional operation is not guaranteed.
2. The level to be set on FS is determined by the nominal operating frequency of the VCO and Time Unit Generator. The VCO frequency always appears at nQ[1:0] outputs when they are operated in their undivided modes. The frequency appearing at the $\operatorname{REF}[1: 0]$ and $\overline{\operatorname{REF}}[1: 0] / \operatorname{REF}[1: 0]$ and FB and $\overline{\mathrm{FB} / V R E F 2}$ inputs will be FNom when the QFB and $\overline{\mathrm{QFB}}$ are undivided and $\operatorname{DS}[1: 0]=M M$. The frequency of the $\operatorname{REF}[1: 0]$ and $\overline{\operatorname{REF}}[1: 0] / V \operatorname{REF}[1: 0]$ and FB and $\overline{\mathrm{FB} / V_{R E F}}$ inputs will be Fnom $/ 2$ or Fnom $/ 4$ when the part is configured for frequency multiplication by using a divided QFB and $\overline{\text { QFB }}$ and setting $\mathrm{DS}[1: 0]=\mathrm{MM}$. Using the $\mathrm{DS}[1: 0]$ inputs allows a different method for frequency multiplication (see Divide Selection Table).
3. Skew adjustment range assumes that a zero skew output is used for feedback. If a skewed QFB and $\overline{Q F B}$ output is used for feedback, then adjustment range will be greater. For example if a 4tu skewed output is used for feedback, all other outputs will be skewed -4tu in addition to whatever skew value is programmed for those outputs. 'Max adjustment' range applies to all output pairs where ± 7 tu skew adjustment is possible and at the lowest Fnom value.

DIVIDE SELECTION TABLE

DS[1:0]	Divide-by-n	Permitted Output Divide-by-n connected to FB and FB/VREF2 ${ }^{(1)}$
\amalg	2	1,2
LM	3	1
LH	4	1,2
ML	5	1,2
MH	1	$1,2,4$
HL	6	1,2
HH	8	1

NOTE:

1. Permissible output division ratios connected to FB and $\overline{\mathrm{FB}} / V_{R E F 2}$. The frequencies of the $\operatorname{REF}[1: 0]$ and $\overline{\operatorname{REF}}[1: 0] / V_{R E F}[1: 0]$ inputs will be Fnom/N when the parts are configured for frequency multiplication by using an undivided output for $F B$ and $\overline{F B} / V_{R E F}$ and setting $D S[1: 0]$ to $N(N=1-6,8,10,12)$.

CONTROL SUMMARY TABLE FOR ALL OUTPUTS ${ }^{(1)}$

nF2/FBF2	nF1/FBF1	nFolFBF0	Output Skew
L	L	L	Divide by 2
L	L	M	+7tu
L	L	H	+6tu
L	M	L	+5tu
L	M	M	+4tu
L	M	H	+3tu
L	H	L	+2tu
L	H	M	+1tu
L	H	H	Zero Skew
H	L	L	Inverted
H	L	M	-1tu
H	L	H	-2tu
H	M	L	-3tu
H	M	M	-4tu
H	M	H	-5tu
H	H	L	-6tu
H	H	M	-7tu
H	H	H	Divide by 4

NOTE:

1. When $\overline{\text { PLL_EN }}$ is HIGH, the PLL is disabled and the device is put into test mode. In test mode, $5 \mathrm{~F}[2: 0]$ must be set to MHL, the REF[1:0]/ $\overline{\operatorname{REF}[1: 0] ~ i n p u t ~ f r e q u e n c y ~ m u s t ~ b e ~ s e t ~}$ to 1 MHz or less, and $\mathrm{nF}[2: 0] / \mathrm{FBF}[2: 0]$ pins should be set to LHH.

INPUT/OUTPUT SELECTION ${ }^{(1)}$

Input	Output	Input	Output
2.5V LVTTL SE	2.5VLVTTL	2.5V LVTTL SE	eHSTL
1.8V LVTTL SE		1.8V LVTTL SE	
2.5V LVTTL DSE		2.5V LVTTL DSE	
1.8V LVTTL DSE		1.8V LVTTL DSE	
LVEPECL DSE		LVEPECL DSE	
eHSTL DSE		eHSTL DSE	
HSTL DSE		HSTL DSE	
2.5VLVTTL DIF		2.5V LVTTL DIF	
1.8V LVTTL DIF		1.8V LVTTL DIF	
LVEPECL DIF		LVEPECL DIF	
eHSTL DIF		eHSTL DIF	
HSTL DIF		HSTL DIF	
2.5V LVTTL SE	1.8VLVTTL	2.5V LVTTL SE	HSTL
1.8V LVTTL SE		1.8V LVTTL SE	
2.5V LVTTL DSE		2.5V LVTTL DSE	
1.8V LVTTL DSE		1.8V LVTTL DSE	
LVEPECL DSE		LVEPECL DSE	
eHSTL DSE		eHSTL DSE	
HSTL DSE		HSTL DSE	
2.5VLVTTLDIF		2.5VLVTTL DIF	
1.8VLVTTL DIF		1.8V LVTTL DIF	
LVEPECL DIF		LVEPECL DIF	
eHSTL DIF		eHSTL DIF	
HSTL DIF		HSTL DIF	

NOTE:

1. The INPUT/OUTPUT SELECTION Table describes the total possible combinations of input and output interfaces. Single-Ended (SE) inputs in a single-ended mode require the $\overline{\operatorname{REF}}_{[1: 0]} / V_{\text {ref[1:0] }}$ and $\overline{\mathrm{FB}} / V_{\text {ref2 }}$ pins to be left floating. Differential Single-Ended (DSE) is for single-ended operation in differential mode, requiring VREF[1:0] and Vref2. Differential (DIF) inputs are used only in differential mode.

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Symbol	Parameter		est Conditions	Min.	Max	Unit
V H H	Input HIGH Voltage Level ${ }^{(1)}$	3-Level Input		VDD -0.4	-	V
Vimm	Input MID Voltage Level ${ }^{(1)}$	3-Level Input		Vdo/2-0.2	$\mathrm{Vdo} / 2+0.2$	V
VILL	InputLOW Voltage Level ${ }^{(1)}$	3-Level Inputs Only		-	0.4	V
13	3-Level Input DC Current (RxS, TxS, nF[2:0], FBF[2:0], DS[1:0])	VIN $=\mathrm{V}_{\text {d }}$	HIGH Level	-	200	$\mu \mathrm{A}$
		V IN $=$ VDD/2	MID Level	-50	+50	
		VIN = GND	LOW Level	-200	-	
IPU	Input Pull-Up Current (PE)	$\mathrm{V}_{\mathrm{DD}}=$ Max., $\mathrm{V}_{\text {IN }}=\mathrm{GND}$		-100	-	$\mu \mathrm{A}$

NOTE:

1. These inputs are normally wired to $\mathrm{VDD}, \mathrm{GND}$, or left floating. Internal termination resistors bias unconnected inputs to $\mathrm{VDD} / 2$. If these inputs are switched dynamically after powerup, the function and timing of the outputs may be glitched, and the PLL may require additional toock time before all datasheet limits are achieved.

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE FOR HSTL(1)

Symbol	Parameter	Test Conditions	Min.	Typ. ${ }^{(7)}$	Max	Unit
Input Characteristics						
ІІ	Input HIGH Current	$\mathrm{V} D \mathrm{D}=2.7 \mathrm{~V} \quad \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\text {DDQ }} / \mathrm{GND}$	-	-	± 5	$\mu \mathrm{A}$
11.	InputLOW Current	$\mathrm{VDD}=2.7 \mathrm{~V} \quad \mathrm{~V}_{\mathrm{I}}=\mathrm{GND} / \mathrm{VDDQ}$	-	-	± 5	
VIK	Clamp Diode Voltage	$\mathrm{V}_{\mathrm{DD}}=2.3 \mathrm{~V}, \mathrm{lin}=-18 \mathrm{~mA}$	-	-0.7	-1.2	V
Vin	DC Input Voltage		-0.3		+3.6	V
VDIF	DCDifferential Voltage ${ }^{(2,8)}$		0.2		-	V
Vcm	DC Common Mode Input Voltage ${ }^{(3,8)}$		680	750	900	mV
VIH	DC Input HIGH ${ }^{(4,5,8)}$		VREF +100		-	mV
VIL	DC Input LOW ${ }^{(4,6,8)}$		-		Vref -100	mV
VREF	Single-Ended Reference Voltage ${ }^{(4,8)}$		-	750	-	mV

OutputCharacteristics

Vor	Output HIGH Voltage	Іон $=-8 \mathrm{~mA}$	VDDQ - 0.4		-	V
		Іон $=-100 \mu \mathrm{~A}$	VDDQ - 0.1		-	
Vol	OutputLOWVoltage	$\mathrm{loL}=8 \mathrm{~mA}$	-		0.4	V
		$\mathrm{loL}=100 \mu \mathrm{~A}$	-		0.1	
Vox	FB//FB Output Crossing Point		Vdoq/2-150	Vdop/2	VDDo/2 +150	mV

NOTES:

1. See RECOMMENDED OPERATING RANGE table.
2. VDIF specifies the minimum input differential voltage ($\mathrm{V}_{T R}-\mathrm{V}_{C P}$) required for switching where $\mathrm{V}_{T R}$ is the "true" input level and V_{CP} is the "complement" input level. Differential mode only. The DC differential voltage must be maintained to guarantee retaining the existing HIGH or LOW input. The AC differential voltage must be achieved to guarantee switching to a new state.
3. $V_{C M}$ specifies the maximum allowable range of $\left(V_{T R}+V_{C P}\right) / 2$. Differential mode only.
4. For single-ended operation, in differential mode, $\overline{\operatorname{REF}}_{[1: 0]} / \operatorname{VREF}[1: 0]$ is tied to the $D C$ voltage $\operatorname{Vref}[1: 0]$.
5. Voltage required to maintain a logic HIGH, single-ended operation in differential mode.
6. Voltage required to maintain a logic LOW, single-ended operation in differential mode.
7. Typical values are at $\mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DDQ}}=1.5 \mathrm{~V},+25^{\circ} \mathrm{C}$ ambient.
8. The reference clock input is capable of HSTL, eHSTL, LVEPECL, 1.8 V or 2.5 V LVTTL operation independent of the device output. (See Input/Output Selection table.)

POWER SUPPLY CHARACTERISTICS FOR HSTL OUTPUTS ${ }^{(1)}$

Symbol	Parameter	Test Conditions ${ }^{(2)}$	Typ.	Max	Unit
IDDQ	Quiescent Vdo Power Supply Current ${ }^{(3)}$	$\begin{aligned} & \text { VDDQ }=\text { Max., REF }=\operatorname{LOW}, \overline{\mathrm{PD}}=\mathrm{HIGH}, \overline{\mathrm{nSOE}}=\mathrm{LOW}, \\ & \overline{\mathrm{PLL} _E N}=\mathrm{HIGH}, \mathrm{DS}[1: 0]=\mathrm{MM}, \mathrm{nF}[2: 0]=\mathrm{LHH}, \\ & \mathrm{FBF}[2: 0]=\mathrm{LHH}, \text { Outputs enabled, All outputs unloaded } \end{aligned}$	-	-	mA
IDDQQ	Quiescent VdDQ Power Supply Current ${ }^{(3)}$	$\begin{aligned} & \text { VDDQ }=\text { Max., REF }=\operatorname{LOW}, \overline{\text { PD }}=\mathrm{HIGH}, \overline{\mathrm{nSOE}}=\mathrm{LOW}, \\ & \overline{\mathrm{PLL} _E N}=\mathrm{HIGH}, \mathrm{DS}[1: 0]=\mathrm{MM}, \mathrm{nF}[2: 0]=\mathrm{LHH}, \\ & \text { FBF[2:0] }=\mathrm{LHH}, \text { Outputs enabled, All outputs unloaded } \end{aligned}$	-	-	mA
IDDPD	Power Down Current	VDD $=$ Max., $\overline{\mathrm{PD}}=$ LOW, $\overline{\mathrm{nSOE}}=$ LOW, $\overline{\mathrm{PLL}}$-EN $=$ HIGH	-	-	$\mu \mathrm{A}$
IDDD	Dynamic VdD Power Supply Currentper Output	$V_{D D}=$ Max., $V_{\text {ddQ }}=$ Max., $C_{L}=0 \mathrm{pF}$	-	-	$\mu \mathrm{A} / \mathrm{MHz}$
IDDDQ	Dynamic Vdop Power Supply Currentper Output	$V_{\text {dD }}=$ Max., $\mathrm{V}_{\mathrm{DDQ}}=\mathrm{Max} ., \mathrm{CL}=0 \mathrm{pF}$	-	-	$\mu \mathrm{A} / \mathrm{MHz}$
Ітот	Total Power VdD Supply Current ${ }^{(4)}$	$\mathrm{V}_{\text {DDQ }}=1.5 \mathrm{~V}, \mathrm{FvCo}=100 \mathrm{MHz}, \mathrm{CL}_{\text {L }}=15 \mathrm{pF}$	-	-	mA
		VdDQ $=1.5 \mathrm{~V}, \mathrm{Fvco}=250 \mathrm{MHz}, \mathrm{CL}=15 \mathrm{pF}$	-	-	
ITote	Total Power VdDQ Supply Current ${ }^{(4)}$	VDDQ $=1.5 \mathrm{~V}$, Fvco $=100 \mathrm{MHz}, \mathrm{CL}=15 \mathrm{pF}$	-	-	mA
		VDDQ $=1.5 \mathrm{~V}, \mathrm{FvCo}=250 \mathrm{MHz}, \mathrm{CL}=15 \mathrm{pF}$	-	-	

NOTES:

1. These power consumption characteristics are for all the valid input interfaces and cover the worst case input and output interface combinations.
2. The termination resistors are excluded from these measurements.
3. If the differential input interface is used, the true input is held LOW and the complementary input is held HIGH.
4. $\mathrm{FS}=\mathrm{HIGH}$

DIFFERENTIAL INPUT AC TEST CONDITIONS FOR HSTL

Symbol	Parameter	Value	Units
VDIF	Input Signal Swing ${ }^{(1)}$	1	V
Vx	Differential InputSignal Crossing Point ${ }^{(2)}$	750	mV
VTHI	Input Timing Measurement Reference Level ${ }^{(3)}$	Crossing Point	V
tr, tF	Input Signal Edge Rate ${ }^{(4)}$	1	V/ns

NOTES:

1. The 1 V peak-to-peak input pulse level is specified to allow consistent, repeatable results in an automatic test equipment (ATE) environment. This device meets the Volf (AC) specification under actual use conditions.
2. A 750 mV crossing point level is specified to allow consistent, repeatable results in an automatic test equipment (ATE) environment. This device meets the $V x$ specification under actual use conditions.
3. In all cases, input waveform timing is marked at the differential cross-point of the input signals.
4. The input signal edge rate of $1 \mathrm{~V} / \mathrm{ns}$ or greater is to be maintained in the 20% to 80% range of the input waveform.

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE FOR eHSTL(1)

Symbol	Parameter	Test Conditions	Min.	Typ. ${ }^{(7)}$	Max	Unit
Input Characteristics						
ІІн	Input HIGH Current	$\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V} \quad \mathrm{~V}_{1}=\mathrm{VDDQ}^{\prime} / \mathrm{GND}$	-	-	± 5	$\mu \mathrm{A}$
IIL	InputLOW Current	$\mathrm{VDD}=2.7 \mathrm{~V} \quad \mathrm{~V}_{\mathrm{I}}=\mathrm{GND} / \mathrm{VDDQ}$	-	-	± 5	
VIK	Clamp Diode Voltage	$\mathrm{V}_{\mathrm{DD}}=2.3 \mathrm{~V}, \mathrm{l} \mathrm{IN}=-18 \mathrm{~mA}$	-	-0.7	-1.2	V
Vin	DC Input Voltage		-0.3		+3.6	V
VDIF	DCDifferential Voltage ${ }^{(2,8)}$		0.2		-	V
Vcm	DC Common Mode Input Voltage ${ }^{(3,8)}$		800	900	1000	mV
VIH	DC Input HIGH ${ }^{(4,5,8)}$		Vref +100		-	mV
VIL	DC Input LOW ${ }^{(4,6,8)}$		-		Vref - 100	mV
$V_{\text {ReF }}$	Single-EndedReference Voltage ${ }^{(4,8)}$		-	900	-	mV

OutputCharacteristics

Vor	Output HIGH Voltage	ІО $=-8 \mathrm{~mA}$	VDDQ - 0.4		-	V
		Іон $=-100 \mu \mathrm{~A}$	VDDQ - 0.1		-	V
VoL	OutputLOWVoltage	lol $=8 \mathrm{~mA}$	-		0.4	V
		$\mathrm{loL}=100 \mu \mathrm{~A}$	-		0.1	V
Vox	FB/FB Output Crossing Point		Vdoq/2-150	VdDq/2	Vodol2 + 150	mV

NOTES:

1. See RECOMMENDED OPERATING RANGE table.
2. Vdif specifies the minimum input differential voltage ($V_{T R}-V_{C P}$) required for switching where $V_{T R}$ is the "true" input level and V cp is the "complement" input level. Differential mode only. The DC differential voltage must be maintained to guarantee retaining the existing HIGH or LOW input. The AC differential voltage must be achieved to guarantee switching to a new state.
3. Vcm specifies the maximum allowable range of $\left(V_{T R}+V_{C P}\right) / 2$. Differential mode only.
4. For single-ended operation, in a differential mode, $\overline{\operatorname{REF}}_{[1: 0]} / \operatorname{Vref}[1: 0]$ is tied to the $D C$ voltage $\operatorname{VREF[1:0].}$
5. Voltage required to maintain a logic HIGH, single-ended operation in differential mode.
6. Voltage required to maintain a logic LOW, single-ended operation in differential mode.
7. Typical values are at $\mathrm{V}_{\mathrm{dD}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{dDQ}}=1.8 \mathrm{~V},+25^{\circ} \mathrm{C}$ ambient.
8. The reference clock input is capable of HSTL, eHSTL, LVEPECL, 1.8 V or 2.5 V LVTTL operation independent of the device output. (See Input/Output Selection table.)

POWER SUPPLY CHARACTERISTICS FOR eHSTL OUTPUTS ${ }^{(1)}$

Symbol	Parameter	Test Conditions ${ }^{(2)}$	Typ.	Max	Unit
IDDQ	Quiescent Vdo Power Supply Current ${ }^{(3)}$	$\begin{aligned} & \text { VDDQ }=\text { Max., REF }=\text { LOW, } \overline{\text { PD }}=\mathrm{HIGH}, \overline{\mathrm{nSOE}}=\mathrm{LOW}, \\ & \overline{\mathrm{PLL} _E N}=\mathrm{HIGH}, \mathrm{DS}[1: 0]=\mathrm{MM}, \mathrm{nF}[2: 0]=\mathrm{LHH}, \\ & \text { FBF[2:0] }=\mathrm{LHH}, \text { Outputs enabled, All outputs unloaded } \end{aligned}$	-	-	mA
IDDQQ	Quiescent VdoQ Power Supply Current ${ }^{(3)}$	$\begin{aligned} & \text { VDDQ }=\text { Max., REF }=\text { LOW, } \overline{\text { PD }}=\mathrm{HIGH}, \overline{\mathrm{nSOE}}=\mathrm{LOW}, \\ & \text { PLL_EN }=\mathrm{HIGH}, \mathrm{DS}[1: 0]=\mathrm{MM}, \mathrm{nF}[2: 0]=\mathrm{LHH}, \\ & \text { FBF[2:0] }=\mathrm{LHH}, \text { Outputs enabled, All outputs unloaded } \end{aligned}$	-	-	mA
IDDPD	Power Down Current	$\mathrm{V}_{\mathrm{DD}}=$ Max., $\overline{\mathrm{PD}}=$ LOW, $\overline{\mathrm{nSOE}}=$ LOW, $\overline{\mathrm{PLL}}$ EN $=$ HIGH	-	-	$\mu \mathrm{A}$
IDDD	Dynamic Vod Power Supply Currentper Output	$V_{D D}=$ Max., $V_{\text {dDQ }}=$ Max., $C L=0 p F$	-	-	$\mu \mathrm{A} / \mathrm{MHz}$
IDDDQ	Dynamic Vode Power Supply Currentper Output	$\mathrm{V}_{\mathrm{DD}}=$ Max., $\mathrm{V}_{\mathrm{DDQ}}=\mathrm{Max} ., \mathrm{CL}=0 \mathrm{pF}$	-	-	$\mu \mathrm{A} / \mathrm{MHz}$
Iтот	Total Power Vdd Supply Current ${ }^{(4)}$	VDDQ $=1.8 \mathrm{~V}, \mathrm{FvCo}=100 \mathrm{MHz}, \mathrm{CL}^{2}=15 \mathrm{pF}$	-	-	mA
		VDDQ $=1.8 \mathrm{~V}, \mathrm{Fvco}=250 \mathrm{MHz}, \mathrm{CL}=15 \mathrm{pF}$	-	-	
ITotQ	Total Power Vodo Supply Current ${ }^{(4)}$	VDDQ $=1.8 \mathrm{~V}, \mathrm{Fvco}=100 \mathrm{MHz}, \mathrm{CL}=15 \mathrm{pF}$	-	-	mA
		VDDQ $=1.8 \mathrm{~V}, \mathrm{Fvco}=250 \mathrm{MHz}, \mathrm{CL}=15 \mathrm{pF}$	-	-	

NOTES:

1. These power consumption characteristics are for all the valid input interfaces and cover the worst case input and output interface combinations.
2. The termination resistors are excluded from these measurements.
3. If the differential input interface is used, the true input is held LOW and the complementary input is held HIGH.
4. $F S=H I G H$.

DIFFERENTIAL INPUT AC TEST CONDITIONS FOR eHSTL

Symbol	Parameter	Value	Units
VDIF	InputSignal Swing ${ }^{(1)}$	1	V
Vx	Differential Input Signal Crossing Point ${ }^{(2)}$	900	mV
VTHI	Input Timing Measurement Reference Level ${ }^{(3)}$	Crossing Point	V
tr, tF	Input Signal Edge Rate ${ }^{(4)}$	1	V/ns

NOTES:

1. The 1V peak-to-peak input pulse level is specified to allow consistent, repeatable results in an automatic test equipment (ATE) environment. This device meets the Volf (AC) specification under actual use conditions.
2. A 900 mV crossing point level is specified to allow consistent, repeatable results in an automatic test equipment (ATE) environment. This device meets the Vx specification under actual use conditions.
3. In all cases, input waveform timing is marked at the differential cross-point of the input signals.
4. The input signal edge rate of $1 \mathrm{~V} / \mathrm{ns}$ or greater is to be maintained in the 20% to 80% range of the input waveform.

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE FOR LVEPECL ${ }^{(1)}$

NOTES:

1. See RECOMMENDED OPERATING RANGE table.
2. Typical values are at $\mathrm{V}_{\mathrm{dD}}=2.5 \mathrm{~V},+25^{\circ} \mathrm{C}$ ambient.
3. Vcm specifies the maximum allowable range of $\left(V_{T R}+V_{C P}\right) / 2$. Differential mode only.
4. For single-ended operation while in differential mode, $\overline{\operatorname{REF}}[1: 0] / V_{\operatorname{REF}}[1: 0]$ is tied to the DC voltage $\mathrm{V}_{\operatorname{REF}}[1: 0]$.
5. The reference clock input is capable of HSTL, eHSTL, LVEPECL, 1.8 V or 2.5 V LVTTL operation independent of the device output. (See Input/Output Selection table.)

DIFFERENTIAL INPUT AC TEST CONDITIONS FOR LVEPECL

Symbol	Parameter	Value	Units
$V_{\text {DIF }}$	InputSignal Swing ${ }^{(1)}$	732	mV
V_{x}	Differential InputSignal Crossing Point ${ }^{(2)}$	1082	mV
$\mathrm{V}_{\text {THI }}$	InputTiming MeasurementReferenceLevel $^{(3)}$	Crossing Point	V
$\mathrm{t}_{\mathrm{R}, \mathrm{tF}}$	InputSignal Edge Rate $^{(4)}$	1	$\mathrm{~V} / \mathrm{ns}$

NOTES:

1. The 732 mV peak-to-peak input pulse level is specified to allow consistent, repeatable results in an automatic test equipment (ATE) environment. This device meets the Volf (AC) specification under actual use conditions.
2. A 1082 mV crossing point level is specified to allow consistent, repeatable results in an automatic test equipment (ATE) environment. This device meets the Vx specification under actual use conditions.
3. In all cases, input waveform timing is marked at the differential cross-point of the input signals.
4. The input signal edge rate of $1 \mathrm{~V} / \mathrm{ns}$ or greater is to be maintained in the 20% to 80% range of the input waveform.

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE FOR 2.5V LVTTL ${ }^{(1)}$

Symbol	Parameter		ons	Min.	Typ. ${ }^{(8)}$	Max	Unit
Input Characteristics							
ІІ	Input HIGH Current	$\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$	$\mathrm{V}_{1}=\mathrm{VDDQ}^{\text {/ }}$ GND	-	-	± 5	$\mu \mathrm{A}$
IIL	InputLOWCurrent	$\mathrm{V}_{\mathrm{dD}}=2.7 \mathrm{~V}$	$\mathrm{V}_{\mathrm{I}}=\mathrm{GND} / \mathrm{VDDQ}$	-	-	± 5	
VIK	Clamp Diode Voltage	$V_{D D}=2.3 \mathrm{~V}, \mathrm{lin}=-18 \mathrm{~mA}$		-	-0.7	-1.2	V
VIN	DC Input Voltage			-0.3		+3.6	V

Single-Ended Inputs ${ }^{(2)}$

V_{IH}	DC Input HIGH		1.7		-	V
V_{IL}	DC Input LOW		-		0.7	V

Differential Inputs

VDIF	DCDifferential Voltage ${ }^{(3,9)}$		0.2		-	V
Vcm	DC Common Mode Input Voltage ${ }^{(4,9)}$		1150	1250	1350	mV
VIH	DC Input HIGH ${ }^{(5,6,9)}$		Vref +100		-	mV
VIL	DC Input LOW ${ }^{(5,7,9)}$		-		Vref -100	mV
Vref	Single-Ended Reference Voltage ${ }^{(5,9)}$		-	1250	-	mV

Output Characteristics

NOTES:

1. See RECOMMENDED OPERATING RANGE table.
2. For 2.5 V LVTTL single-ended operation, the RxS pin is tied HIGH and $\overline{\operatorname{REF}}_{[1: 0} / \operatorname{VREF}[1: 0]$ is left floating. If TxS is HIGH, $\overline{\mathrm{FB}} / V_{\text {ref2 }}$ should be left floating.
3. Volf specifies the minimum input differential voltage ($\mathrm{V}_{\mathrm{TR}}-\mathrm{V}_{\mathrm{CP}}$) required for switching where $\mathrm{V}_{\text {tr }}$ is the "true" input level and V_{cp} is the "complement" input level. Differential mode only. The DC differential voltage must be maintained to guarantee retaining the existing HIGH or LOW input. The AC differential voltage must be achieved to guarantee switching to a new state.
4. Vcm specifies the maximum allowable range of $\left(\mathrm{V}_{T R}+\mathrm{V}_{\mathrm{CP}}\right) / 2$. Differential mode only.
5. For single-ended operation, in differential mode, $\overline{\operatorname{REF}}[1: 0] / V_{\operatorname{REF}}[1: 0]$ is tied to the $D C$ voltage $V_{R E F}[1: 0]$.
6. Voltage required to maintain a logic HIGH, single-ended operation in differential mode.
7. Voltage required to maintain a logic LOW, single-ended operation in differential mode.
8. Typical values are at $V_{D D}=2.5 \mathrm{~V}, V_{D D Q}=\mathrm{VDD},+25^{\circ} \mathrm{C}$ ambient.
9. The reference clock input is capable of HSTL, eHSTL, LVEPECL, 1.8 V or 2.5 V LVTTL operation independent of the device output. (See Input/Output Selection table.)

POWER SUPPLY CHARACTERISTICS FOR 2.5V LVTTL OUTPUTS ${ }^{(1)}$

Symbol	Parameter	Test Conditions ${ }^{(2)}$	Typ.	Max	Unit
IDDQ	Quiescent VdD Power Supply Current ${ }^{(3)}$	$\begin{aligned} & \text { VDDQ }=\text { Max., REF }=\operatorname{LOW}, \overline{\mathrm{PD}}=\mathrm{HIGH}, \overline{\mathrm{nSOE}}=\mathrm{LOW}, \\ & \overline{\mathrm{PLL} _E N}=\mathrm{HIGH}, \mathrm{DS}[1: 0]=\mathrm{MM}, \mathrm{nF}[2: 0]=\mathrm{LHH}, \\ & \mathrm{FBF}[2: 0]=\mathrm{LHH}, \text { Outputs enabled, All outputs unloaded } \end{aligned}$	-	-	mA
IDDQQ	Quiescent VddQ Power Supply Current ${ }^{(3)}$	$\begin{aligned} & \text { VDDQ = Max., REF }=\text { LOW, } \overline{\text { PD }}=\mathrm{HIGH}, \overline{\mathrm{nSOE}}=\mathrm{LOW}, \\ & \overline{\mathrm{PLL} _E N}=\mathrm{HIGH}, \mathrm{DS}[1: 0]=\mathrm{MM}, \mathrm{nF}[2: 0]=\mathrm{LHH}, \\ & \text { FBF[2:0] }=\mathrm{LHH}, \text { Outputs enabled, All outputs unloaded } \end{aligned}$	-	-	mA
IDDPD	Power Down Current	$\mathrm{V}_{\mathrm{DD}}=$ Max., $\overline{\mathrm{PD}}=$ LOW, $\overline{\mathrm{nSOE}}=$ LOW, $\overline{\mathrm{PLL}}$ EN $=$ HIGH	-	-	$\mu \mathrm{A}$
IdDD	Dynamic Vdo Power Supply Currentper Output	$V_{\text {do }}=$ Max., $\mathrm{V}_{\text {dDQ }}=$ Max., $\mathrm{CL}=0 \mathrm{pF}$	-	-	$\mu \mathrm{A} / \mathrm{MHz}$
IDDDQ	Dynamic Vdop Power Supply Currentper Output	$\mathrm{V}_{\mathrm{dD}}=$ Max., $\mathrm{V}_{\text {dDQ }}=$ Max., $\mathrm{CL}=0 \mathrm{pF}$	-	-	$\mu \mathrm{A} / \mathrm{MHz}$
Ітот	Total Power Vod Supply Current ${ }^{(4)}$	VDDQ $=2.5 \mathrm{~V}$., Fvco $=100 \mathrm{MHz}, \mathrm{CL}=15 \mathrm{pF}$	-	-	mA
		$\mathrm{V}_{\text {DDQ }}=2.5 \mathrm{~V}$., Fvco $=250 \mathrm{MHz}, \mathrm{CL}=15 \mathrm{pF}$	-	-	
IToтQ	Total Power VddQ Supply Current ${ }^{(4)}$	VDDQ $=2.5 \mathrm{~V}$., Fvco $=100 \mathrm{MHz}, \mathrm{CL}=15 \mathrm{pF}$	-	-	mA
		$\mathrm{VDDQ}^{\text {a }}$ 2. 5 V ., Fvco $=250 \mathrm{MHz}, \mathrm{CL}=15 \mathrm{pF}$	-	-	

NOTES:

1. These power consumption characteristics are for all the valid input interfaces and cover the worst case input and output interface combinations.
2. The termination resistors are excluded from these measurements.
3. If the differential input interface is used, the true input is held LOW and the complementary input is held HIGH.
4. $\mathrm{FS}=\mathrm{HIGH}$

DIFFERENTIAL INPUT AC TEST CONDITIONS FOR 2.5V LVTTL

Symbol	Parameter	Value	Units
VDIF	Input Signal Swing ${ }^{(1)}$	VDD	V
Vx	Differential Input Signal Crossing Point ${ }^{(2)}$	Vdo/2	V
VTHI	Input Timing MeasurementReference Level\| ${ }^{(3)}$	Crossing Point	V
tr, tF	InputSignal Edge Rate ${ }^{(4)}$	2.5	V/ns

NOTES:

1. A nominal 2.5 V peak-to-peak input pulse level is specified to allow consistent, repeatable results in an automatic test equipment (ATE) environment. This device meets the Volf (AC) specification under actual use conditions.
2. A nominal 1.25 V crossing point level is specified to allow consistent, repeatable results in an automatic test equipment (ATE) environment. This device meets the Vx specification under actual use conditions.
3. In all cases, input waveform timing is marked at the differential cross-point of the input signals.
4. The input signal edge rate of $2.5 \mathrm{~V} / \mathrm{ns}$ or greater is to be maintained in the 20% to 80% range of the input waveform.

SINGLE-ENDED INPUT AC TEST CONDITIONS FOR 2.5V LVTTL

Symbol	Parameter	Value	Units
V_{IH}	Input HIGH Voltage	VDD	V
V_{IL}	InputLOWVoltage	0	V
$\mathrm{~V}_{\text {THI }}$	InputTiming MeasurementReferenceLevel ${ }^{(1)}$	$\mathrm{VDD} / 2$	V
tr, tF	InputSignalEdge Rate ${ }^{(2)}$	2	$\mathrm{~V} / \mathrm{ns}$

NOTES:

1. A nominal 1.25 V timing measurement reference level is specified to allow constant, repeatable results in an automatic test equipment (ATE) environment.
2. The input signal edge rate of $2 \mathrm{~V} / \mathrm{ns}$ or greater is to be maintained in the 10% to 90% range of the input waveform.

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE FOR 1.8V LVTTL ${ }^{(1)}$

Symbol	Parameter		ions	Min.	Typ. ${ }^{(8)}$	Max	Unit
Input Characteristics							
ІІн	Input HIGH Current	$\mathrm{V} \mathrm{DD}=2.7 \mathrm{~V}$	$\mathrm{V}_{1}=\mathrm{VDDO}^{\prime} / \mathrm{GND}$	-	-	± 5	$\mu \mathrm{A}$
IIL	InputLOWCurrent	$\mathrm{VDD}=2.7 \mathrm{~V}$	$\mathrm{V}_{\mathrm{I}}=\mathrm{GND} / \mathrm{VDDQ}^{2}$	-	-	± 5	
VIK	Clamp Diode Voltage	$\mathrm{V}_{\mathrm{DD}}=2.3 \mathrm{~V}, \mathrm{lin}=-18 \mathrm{~mA}$		-	-0.7	-1.2	V
VIN	DC Input Voltage			-0.3		VDDQ +0.3	V

Single-Ended Inputs ${ }^{(2)}$

V_{IH}	DC Input HIGH		$1.073^{(10)}$		-	V
V_{IL}	DC Input LOW		-		$0.683^{(11)}$	V

Differential Inputs

VoIF	DC Differential Voltage ${ }^{(3,9)}$		0.2		-	V
Vcm	DC Common Mode Input Voltage ${ }^{(4,9)}$		825	900	975	mV
VIH	DC Input HIGH ${ }^{(5,6,9)}$		Vref +100		-	mV
VIL	DC Input LOW ${ }^{(5,7,9)}$		-		Vref - 100	mV
Vref	Single-Ended Reference Voltage ${ }^{(5,9)}$		-	900	-	mV

OutputCharacteristics

Voн	Output HIGH Voltage	Іон $=-6 \mathrm{~mA}$	VDDQ - 0.4	-	V
		Іон $=-100 \mu \mathrm{~A}$	VDDQ - 0.1	-	V
Vol	OutputLOWVoltage	loL $=6 \mathrm{~mA}$	-	0.4	V
		$\mathrm{loL}=100 \mu \mathrm{~A}$	-	0.1	V

NOTES:

1. See RECOMMENDED OPERATING RANGE table,
2. For 1.8 V LVTTL single-ended operation, the RxS pin is MID and $\left.\overline{\operatorname{REF}}[1: 0] / V_{\text {REF }} 1: 0\right]$ is left floating. If TXS is MID, $\overline{\mathrm{FB}} / V_{\text {REF2 }}$ should be left floating.
 only. The DC differential voltage must be maintained to guarantee retaining the existing HIGH or LOW input. The AC differential voltage must be achieved to guarantee switching to a new state.
3. $V_{C M}$ specifies the maximum allowable range of $\left(V_{T R}+V_{C P}\right) / 2$. Differential mode only.
 is constrained within +600 mV and $\mathrm{VDDI}-600 \mathrm{mV}$, where Vod is the nominal 1.8 V power supply of the device driving the $\mathrm{REF}[1: 0]$ input. To guarantee switching in voltage range specified in the JEDEC 1.8 V LVTTL interface specification, VREF[1:0] must be maintained at 900 mV with appropriate tolerances.
4. Voltage required to maintain a logic HIGH, single-ended operation in differential mode.
5. Voltage required to maintain a logic LOW, single-ended operation in differential mode.
6. Typical values are at $\mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DDQ}}=1.8 \mathrm{~V},+25^{\circ} \mathrm{C}$ ambient.
7. The reference clock input is capable of HSTL, eHSTL, LVEPECL, 1.8V or 2.5 V LVTTL operation independent of the device output. (See Input/Output Selection table.)
8. This value is the worst case minimum V_{IH} over the specification range of the 1.8 V power supply. The 1.8 V LVTTL specification is $\mathrm{V}_{\mathrm{IH}}=0.65 * \mathrm{~V}_{\mathrm{DD}}$ where V_{DD} is $1.8 \mathrm{~V} \pm 0.15 \mathrm{~V}$. However, the LVTTL translator is supplied by a 2.5 V nominal supply on this part. To ensure compliance with the specification, the translator was designed to accept the calculated worst case value ($\mathrm{V}_{\boldsymbol{H}}=0.65 *[1.8-0.15 \mathrm{~V}]$) rather than reference against a nominal 1.8 V supply.
9. This value is the worst case maximum VIL over the specification range of the 1.8 V power supply. The 1.8 V LVTTL specification is $\mathrm{VIL}=0.35 * \mathrm{VDD}$ where VDD is $1.8 \mathrm{~V} \pm 0.15 \mathrm{~V}$. However, the LVTTL translator is supplied by a 2.5 V nominal supply on this part. To ensure compliance with the specification, the translator was designed to accept the calculated worst case value ($\mathrm{V}_{\mathrm{IL}}=0.35 *[1.8+0.15 \mathrm{~V}]$) rather than reference against a nominal 1.8 V supply.

POWER SUPPLY CHARACTERISTICS FOR 1.8V LVTTL OUTPUTS ${ }^{(1)}$

Symbol	Parameter	Test Conditions ${ }^{(2)}$	Typ.	Max	Unit
IDDQ	Quiescent Vdo Power Supply Current ${ }^{(3)}$	$\begin{aligned} & \text { VDDQ }=\text { Max., REF }=\operatorname{LOW}, \overline{\mathrm{PD}}=\mathrm{HIGH}, \overline{\mathrm{nSOE}}=\mathrm{LOW}, \\ & \mathrm{PLL} _\mathrm{EN}=\mathrm{HIGH}, \mathrm{DS}[1: 0]=\mathrm{MM}, \mathrm{nF}[2: 0]=\mathrm{LHH}, \\ & \mathrm{FBF}[2: 0]=\mathrm{LHH}, \text { Outputs enabled, All outputs unloaded } \end{aligned}$	-	-	mA
IDDQQ	Quiescent VdoQ Power Supply Current ${ }^{(3)}$	$\begin{aligned} & \text { VDDQ = Max., REF = LOW, } \overline{\text { PD }}=\mathrm{HIGH}, \overline{\mathrm{nSOE}}=\mathrm{LOW}, \\ & \overline{\mathrm{PLL} _E N}=\mathrm{HIGH}, \mathrm{DS}[1: 0]=\mathrm{MM}, \mathrm{nF}[2: 0]=\mathrm{LHH}, \\ & \text { FBF[2:0] }=\mathrm{LHH}, \text { Outputs enabled, All outputs unloaded } \end{aligned}$	-	-	mA
IDDPD	Power Down Current	VDD $=$ Max., $\overline{\mathrm{PD}}=$ LOW, $\overline{\mathrm{nSOE}}=$ LOW, $\overline{\text { PLL_EN }}=$ HIGH	-	-	$\mu \mathrm{A}$
IDDD	Dynamic Vod Power Supply Currentper Output	$V_{\text {dD }}=$ Max., $\mathrm{V}_{\text {dDQ }}=$ Max., $\mathrm{CL}=0 \mathrm{pF}$	-	-	$\mu \mathrm{A} / \mathrm{MHz}$
IDDDQ	Dynamic Vdop Power Supply Currentper Output	$V_{\text {dD }}=$ Max., $\mathrm{V}_{\text {dDQ }}=$ Max., $\mathrm{CL}=0 \mathrm{pF}$	-	-	$\mu \mathrm{A} / \mathrm{MHz}$
ITOT	Total Power Vod Supply Current ${ }^{(4)}$	VDDQ $=1.8 \mathrm{~V}$., FVCO $=100 \mathrm{MHz}, \mathrm{CL}=15 \mathrm{pF}$	-	-	mA
		VDDQ $=1.8 \mathrm{~V}$., Fvco $=250 \mathrm{MHz}, \mathrm{CL}=15 \mathrm{pF}$	-	-	
ITOTQ	Total Power Vddo Supply Current ${ }^{(4)}$	VDDQ $=1.8 \mathrm{~V}$., Fvco $=100 \mathrm{MHz}, \mathrm{CL}=15 \mathrm{pF}$	-	-	mA
		VdDQ $=1.8 \mathrm{~V}$., Fvco $=250 \mathrm{MHz}, \mathrm{CL}=15 \mathrm{pF}$	-	-	

NOTES:

1. These power consumption characteristics are for all the valid input interfaces and cover the worst case input and output interface combinations.
2. The termination resistors are excluded from these measurements.
3. If the differential input interface is used, the true input is held LOW and the complementary input is held HIGH.
4. $\mathrm{FS}=\mathrm{HIGH}$

DIFFERENTIAL INPUT AC TEST CONDITIONS FOR 1.8V LVTTL

Symbol	Parameter	Value	Units
VDIF	Input Signal Swing ${ }^{(1)}$	VDDI	V
Vx	Differential InputSignal Crossing Point ${ }^{(2)}$	Vdoi/2	mV
VTHI	Input Timing MeasurementReference Level ${ }^{(3)}$	Crossing Point	V
tr, tF	InputSignal Edge Rate ${ }^{(4)}$	1.8	V/ns

NOTES:

1. Vod is the nominal 1.8 V supply $(1.8 \mathrm{~V} \pm 0.15 \mathrm{~V})$ of the part or source driving the input. A nominal 1.8 V peak-to-peak input pulse level is specified to allow consistent, repeatable results in an automatic test equipment (ATE) environment. This device meets the VDIF (AC) specification under actual use conditions.
2. A nominal 900 mV crossing point level is specified to allow consistent, repeatable results in an automatic test equipment (ATE) environment. This device meets the $V x$ specification under actual use conditions.
3. In all cases, input waveform timing is marked at the differential cross-point of the input signals.
4. The input signal edge rate of $1.8 \mathrm{~V} / \mathrm{ns}$ or greater is to be maintained in the 20% to 80% range of the input waveform.

SINGLE-ENDED INPUT AC TEST CONDITIONS FOR 1.8V LVTTL

Symbol	Parameter	Value	Units
VIH	Input HIGH Voltage ${ }^{(1)}$	Vddi	V
VIL	InputLOW Voltage	0	V
VTHI	Input Timing MeasurementReference Level ${ }^{(2)}$	Vdol/2	mV
tR, tF	InputSignal Edge Rate ${ }^{(3)}$	2	V/ns

NOTES:

1. VDDI is the nominal 1.8 V supply $(1.8 \mathrm{~V} \pm 0.15 \mathrm{~V})$ of the part or source driving the input.
2. A nominal 900 mV timing measurement reference level is specified to allow constant, repeatable results in an automatic test equipment (ATE) environment.
3. The input signal edge rate of $2 \mathrm{~V} / \mathrm{ns}$ or greater is to be maintained in the 10% to 90% range of the input waveform.

AC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Symbol	Parameter		Min.	Typ.	Max	Unit
FNOM	VCO Frequency Range S		see Programmable Skew Range and Resolution Table			
tPPW	Reference Clock Pulse Width HIGH or LOW		1	-	-	ns
trpw	Feedback Input Pulse Width HIGH or LOW		1	-	-	ns
tu	Programmable Skew Time Unit		see Control Summary Table			
tsk(B)	Output Matched Pair Skew ${ }^{(1,2,4)}$		-	-	50	ps
tsk(0)	OutputSkew (Rise-Rise, Fall-Fall, Nominal) ${ }^{(1,3)}$		-	-	100	ps
tsk1(ω)	Multiple Frequency Skew (Rise-Rise, Fall-Fall, Nominal-Divided, Divided-Divided) ${ }^{(1,3,4)}$		-	-	100	ps
tsk2(ω)	Multiple Frequency Skew (Rise-Fall, Nominal-Divided, Divided-Divided) ${ }^{(1,3,4)}$		-	-	400	ps
tskı(Nv)	Inverting Skew (Nominal-Inverted) ${ }^{(1,3)}$		-	-	400	ps
tsk2(NNV)	Inverting Skew (Rise-Rise, Fall-Fall, Rise-Fall, Inverted-Divided) ${ }^{(1,3,4)}$		-	-	400	ps
tsk(Pr)	Process Skew ${ }^{(1,3.5)}$		-	-	300	ps
t(ϕ)	REF Input to FB Static Phase Offset ${ }^{(6)}$		-100	-	100	ps
todiv	Output Duty Cycle Variation from 50\%(7)	HSTL, eHSTL, 1.8V LVTTL	-375	-	375	ps
		2.5VLVTTL	-275	-	275	
torise	Output Rise Time ${ }^{(8)}$	HSTL, eHSTL, 1.8V LVTTL	-	-	1.2	ns
		2.5VLVTTL	-	-	1	
tofall	OutputFall Time ${ }^{(8)}$	HSTL, eHSTL, 1.8V LVTTL	-	-	1.2	ns
		2.5VLVTTL	-	-	1	
t	Power-up PLL Lock Time ${ }^{(9)}$		-	-	1	ms
tL (ω)	PLL Lock Time After Input Frequency Change ${ }^{(9)}$		-	-	1	ms
ti(REFSEL1)	PLL Lock Time After Change in REF_SEL ${ }^{(9,11)}$		-	-	100	$\mu \mathrm{S}$
tı(REFSEL2)	PLL Lock Time After Change in REF_SEL (REF1 and REF0 are different frequency) ${ }^{(9)}$		-	-	1	ms
tL(PD)	PLL Lock Time After Asserting $\overline{\text { PD Pin }}{ }^{(9)}$		-	-	1	ms
tut(cc)	Cycle-to-Cycle Output Jitter (peak-to-peak) ${ }^{(10)}$		-	50	75	ps
tIT(PER)	Period Jitter (peak-to-peak) ${ }^{(10)}$		-	-	75	ps
tut(HP)	Half Period Jitter (peak-to-peak, QFB/ $\overline{\text { QFB }})^{(10,12)}$		-	-	125	ps
tut(duty)	Duty Cycle Jitter (peak-to-peak)		-	-	100	ps
Vox	HSTL and eHSTL Differential True and Complementary Output Crossing Voltage Level, QFB/ $\overline{\mathrm{QFB}}$ only ${ }^{(12)}$		Vddol2 - 150	VdDo/2	Vddo/2 + 150	mV

NOTES:

1. Skew is the time between the earliest and latest output transition among all outputs for which the same tu delay has been selected, and when all outputs are loaded with the specified load.
2. $\operatorname{tsk}(\mathrm{B})$ is the skew between a pair of outputs (nQO and $\mathrm{nQ1}$) when all outputs are selected as the same class.
3. The measurement is made at $\mathrm{VDdo} / 2$.
4. There are three classes of outputs: nominal (multiple of tu delay), inverted, and divided (divide-by-2 or divide-by-4 mode).
5. tsk(PR) is the output to corresponding output skew between any two devices operating under the same conditions (Vdd and Vdde, ambient temperature, air flow, etc.).
6. $t(\phi)$ is measured with REF and FB the same type of input, the same rise and fall times. For TxS/RxS = MID or HIGH, the measurement is taken from $\mathrm{V}_{T \boldsymbol{}}$ on REF to $\mathrm{V}_{T H}$ on FB. For TxS/RxS = LOW, the measurement is taken from the crosspoint of REF/REF to the crosspoint of FB/FB . All outputs are set to Otu, FB input divider set to divide-byone, and FS = HIGH.
7. todev is measured with all outputs selected for Otu.
8. Output rise and fall times are measured between 20% to 80% of the actual output voltage swing.
9. $\quad \mathrm{LL}, \mathrm{tL}(\omega)$, tL (REFSEL1), $\mathrm{tL}($ REFSEL2), and $\mathrm{LL}(P D)$ are the times that are required before the synchronization is achieved. These specifications are valid only after VdD/VDDQ is stable and within the normal operating limits. These parameters are measured from the application of a new signal at REF or FB, or after $\overline{\mathrm{PD}}$ is (re)asserted until $\mathrm{t}(\phi)$ is within specified limits.
10. The jitter parameters are measured with all outputs selected for Otu, FB input divider is set to divide-by-one, and FS $=$ HIGH.
11. Both REF inputs must be the same frequency, but up to $\pm 180^{\circ}$ out of phase.
12. For HSTL/eHSTL outputs only.

AC DIFFERENTIALINPUT SPECIFICATIONS ${ }^{(1)}$

Symbol	Parameter	Min.	Typ.	Max	Unit
tw	Reference/Feedback Input Clock Pulse Width HIGH or LOW (HSTL/eHSTL outputs) ${ }^{(2)}$	1	-	-	ns
	Reference/Feedback Input Clock Pulse Width HIGH or LOW (2.5V/1.8V LVTTLL outputs) ${ }^{(2)}$	1	-	-	

HSTL/eHSTL/1.8V LVTTLI2.5V LVTTL

$\mathrm{V}_{\mathrm{DIF}}$	ACDifferential Voltage $^{(3)}$	400	-	-	mV
V_{IH}	AC Input $\mathrm{HIGH}^{(4,5)}$	$\mathrm{Vx}+200$	-	-	mV
V_{IL}	AC Input LOWW				
$(4,6)$	-	-	$\mathrm{Vx}-200$	mV	

LVEPECL

VDIF	AC Differential Voltage ${ }^{(3)}$	400	-	-	mV
VIH	AC Input HIGH ${ }^{(4)}$	1275	-	-	mV
VIL	AC Input LOW ${ }^{(4)}$	-	-	875	mV

NOTES:

1. For differential input mode, RxS is tied to GND.
2. Both differential input signals should not be driven to the same level simultaneously. The input will not change state until the inputs have crossed and the voltage range defined by Voif has been met or exceeded.
3. Differential mode only. VoIf specifies the minimum input voltage ($V_{T R}-V_{C P}$) required for switching where $V_{T R}$ is the "true" input level and $V_{c P}$ is the "complement" input level. The AC differential voltage must be achieved to guarantee switching to a new state.
4. For single-ended operation, $\overline{\operatorname{REF}}[1: 0] / V_{\operatorname{REF}}[1: 0]$ is tied to the $D C$ voltage $\mathrm{V}_{\mathrm{REF}}[1: 0]$. Refer to each input interface's $D C$ specification for the correct $V_{R E F[1: 0] ~ r a n g e . ~}^{\text {r }}$
5. Voltage required to switch to a logic HIGH, single-ended operation only.
6. Voltage required to switch to a logic LOW, single-ended operation only.

AC TIMING DIAGRAM

NOTE:

1. The AC TIMING DIAGRAM applies to $P E=V D D$. For $P E=G N D$, the negative edge of $F B$ aligns with the negative edge of $R E F[1: 0]$, divided outputs change on the negative edge of $\operatorname{REF}[1: 0]$, and the positive edges of the divide-by-2 and divide-by-4 signals align.

J ITTER AND OFFSET TIMING WAVEFORMS

$\overline{\text { QFB }}$
nQ[1:0], Qfb

$$
\mathrm{t}_{\mathrm{jit} \mathrm{t}}(\mathrm{cc})=\mid \mathrm{t} \text { cycle } \mathrm{n}-\mathrm{t}_{\text {cycle }} \mathrm{n}+1 \mid
$$

Cycle-to-Cycle jitter

$$
t(\varnothing)=\frac{\sum_{1}^{n=N}}{\mathrm{t}(\varnothing) \mathrm{n}}
$$

(N is a large number of samples)
NOTE:

1. Diagram for $P E=H$ and $T x S / R x S=L$.

Static Phase Offset
$\overline{\text { QFB }}$
$n Q[1: 0]$, Qfb

$$
\mathrm{tJIT}(\mathrm{DUTY})=|\mathrm{tw}(\mathrm{MAX})-\mathrm{tw}(\mathrm{MIN})|
$$

$\mathrm{t}_{\mathrm{jit}}($ per $)=\mid$ tcycle $\left.\mathrm{n}-\frac{1}{\mathrm{f}_{\mathrm{o}}} \right\rvert\,$

Period jitter

NOTE:

1. 1/fo = average period.

$\mathrm{t}_{\mathrm{jit}}($ hper $)=\mid$ thalf period $\left.\mathrm{n}-\frac{1}{2^{*} \mathrm{f}_{\mathrm{o}}} \right\rvert\,$

TEST CIRCUITS AND CONDITIONS

Test Circuit for Differential Input ${ }^{(1)}$

DIFFERENTIALINPUTTEST CONDITIONS

Symbol	$\mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V} \pm 0.2 \mathrm{~V}$	Unit
R1	100	Ω
R2	100	Ω
VDDI	Vсм*2	V
VTHI	HSTL: Crossing of REF[1:0] and $\overline{\operatorname{REF}}[1: 0]$ eHSTL: Crossing of REF[1:0] and $\overline{\operatorname{REF}}[1: 0]$ LVEPECL: Crossing of REF[1:0] and $\overline{\operatorname{REF}}_{[1: 0]}$ 1.8V LVTTL: VDoI/2 2.5V LVTTL: Vdo/2	V

NOTE:

1. This input configuration is used for all input interfaces. For single-ended testing, the $\overline{\operatorname{REF}}[1: 0]$ must be left floating. For testing single-ended in differential input mode, the $\overline{\mathrm{VIN}}$ should be floating.

Test Circuit for Outputs

OUTPUTTEST CONDITIONS

Symbol	VDD $=2.5 \mathrm{~V} \pm 0.2 \mathrm{~V}$ VDDQ $=$ Interface Specified	Unit
CL	15	pF
R 1	100	Ω
R 2	100	Ω
$\mathrm{~V}_{\text {THO }}$	$\mathrm{VDDQ} / 2$	V
SW1	$\mathrm{TXS}=\mathrm{MID}$ or HIGH	Open
	TXS $=\mathrm{LOW}$	Closed

Test Circuit for Differential Feedback
DIFFERENTIALFEEDBACK TEST CONDITIONS

Symbol	$\begin{gathered} \mathrm{VDD}=2.5 \mathrm{~V} \pm 0.2 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{DDQ}}=\text { Interface Specified } \end{gathered}$	Unit
CL	15	pF
R1	100	Ω
R2	100	Ω
Vox	HSTL: Crossing of QFB and $\overline{Q F B}$ eHSTL: Crossing of QFB and $\overline{\text { QFB }}$	V
Vтно	1.8V LVTTL: Vdop/2 2.5V LVTTL: Vddo/2	V
SW1	TxS = MID or HIGH	Open
	TxS = LOW	Closed

ORDERINGINFORMATION

IDT $\frac{\text { XXXXX }}{\text { Device Type }}$
$\frac{X X}{\text { Package }} \quad \frac{X}{\text { Package }}$

l $\quad-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Industrial)
BB
Plastic Ball Grid Array
5T9010 2.5V Programmable Skew PLL Clock Driver Teraclock

CORPORATE HEADQUARTERS
2975 Stender Way
Santa Clara, CA 95054
for SALES:
800-345-7015 or 408-727-6116
fax: 408-492-8674
unw.idt.com
for Tech Support: logichelp@idt.com (408) 654-6459

