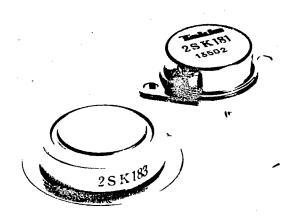
www.DataSheet4U.d

YOSH 1940;

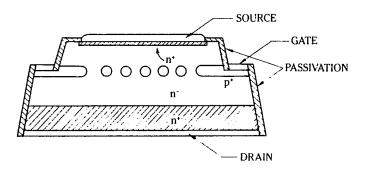
YOSHINO INTERNATIONAL, INC. 19401 S. VERMONT AVE., SUITE B 204 YORRANCE, CALIF. 90502 (213) 929-4137

Introduction

A new high-power, vertical field effect (FET), static induction transistor (SIT) has been developed by TOKIN, Tohoku Metal Industries, Ltd. In high-frequency-level and high-power applications, this TOKIN SIT offers a number of advantages over comparable transistors.


Features

- High voltage carrying capacity
 The TOKIN SIT can carry 600 ~ 1500 V, and can be used in direct commutation equipment at 100 ~ 240 V.
- Good switching characteristics
 Due to its high-speed switching characteristics, the TOKIN SIT can be used in both high-frequency and high-power applications.
- 3. Good heat-proof design and a negative temperature coefficient


 The TOKIN SIT's design eliminates spot concentrations of current.
- 4. High power amplification The TOKIN SIT has a higher input impedance level than comparable transistors and is able to control power of over 1kW with very low power.
- High reliability
 Like all TOKIN transistors, the TOKIN SIT is designed to provide reliable, long-lasting performance.

Main applications

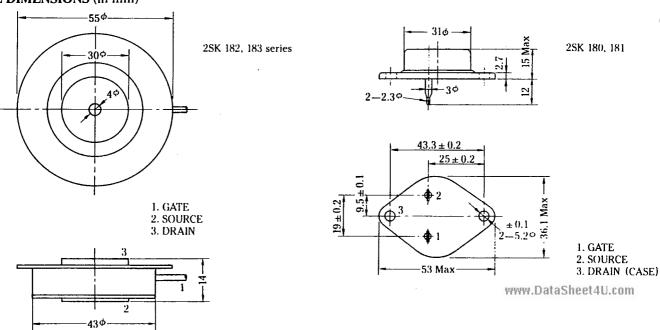
- 1. Ultrasonic generators
- 2. High-frequency power oscillators
- 3. Power supplies
 - a) Switching-mode regulators
 - b) Series regulators
- 4. Broadcasting equipment
- 5. Vacuum tube replacement (Compared to traditional vacuum tubes, the TOKIN SIT offers solid-state performance, smaller size, longer life, and higher reliability).

Power SIT

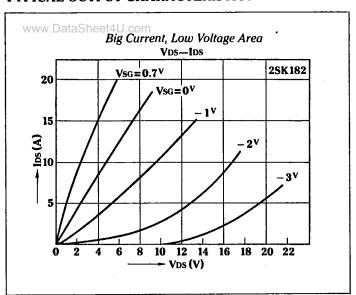
www.DataSheet4U.com

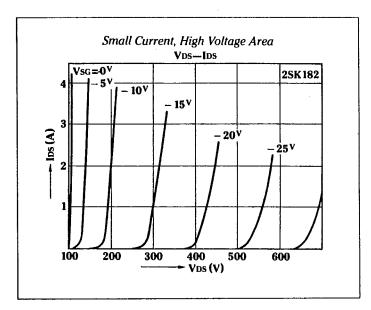
STRUCTURE OF SIT

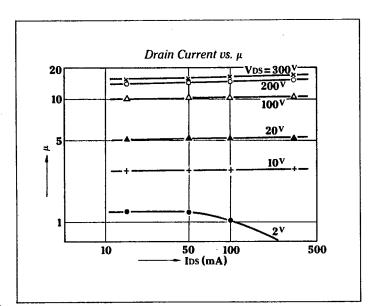
ABSOLUTE MAXIMUM RATINGS (Ta=25°C)

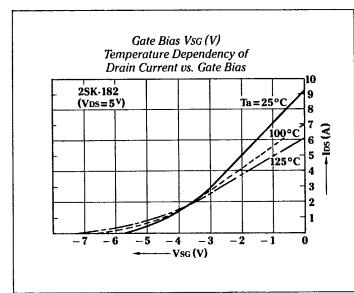

Term	Symbol	Condition	2SK180	2SK181	2SK182	2SK183	28K183H	2SK183V		
Storage Temperature	T _{stg}		−50 ~ +150° C							
Operating Junction Temperature	Тј		+150°C							
Gate to Source Voltage	VGSO		70V							
Gate to Drain Voltage	VGDO		600V	800V	600V	800V	1200V	1500V		
Gate Current	IG	VGS = 1V	0.5A							
Drain Current	iD		20A		60A					
Total Power Dissipation	РТ	Ta = 25° C	300W		1000W					

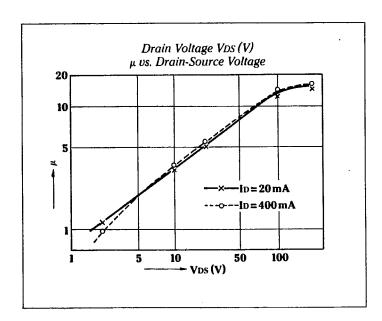
ELECTRICAL CHARACTERISTICS (Ta = 25°C)

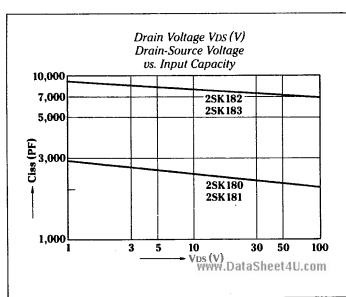

Gate to Source Breakdown Voltage	V(BR)GSO	iG = 0.1mA	80V min.						
Gate Leak Current	IGSS	VGS = -40V	100μA max.						
Drain Cut-Off Current	ID (off)	VGS =50V	100μA max.						
Drain Current	IDSS	VGS = 0 VDS = 10V	8A*	5A*	18A*	10A*			
Gate to Source Cut-Off Voltage	VGS (off)	VDS = 300V ID = 1mA	30V*						
Gate to Drain Breakdown Voltage	V(BR)GDO	ID = 0.1mA	600V min.	800V min.	600V min.	800V min.	1200V min.	1500V min.	
Insertion Gain	μ	VDS = 50V IDS = 2A		10	10* 12*				
Input Capacitance	Ciss	V = 10V f = 1MHz	2500	2500PF* 8000PF*					
Cut-Off Frequency	f _T	V = 20V ID = 2A	10MHz* 10MHz*						
Drain to Source ON Resistance	ron	VGS = 0 ID = 2A	1.5Ω max.	2Ω max.	1.0Ω max.	1.5Ω max.			
Drain to Source OFF Resistance	roff	VDS = 300V VGS = -50V	1MΩ min.						
Turn-On TIME	ton	ID = 1.5A	200	200 ns* 250) ns*		
Turn-Off TIME	t _{off}	VDS = 50V	250 ns*		300 ns*				

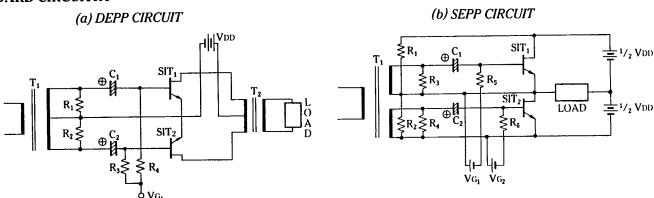

Note: * nominal value

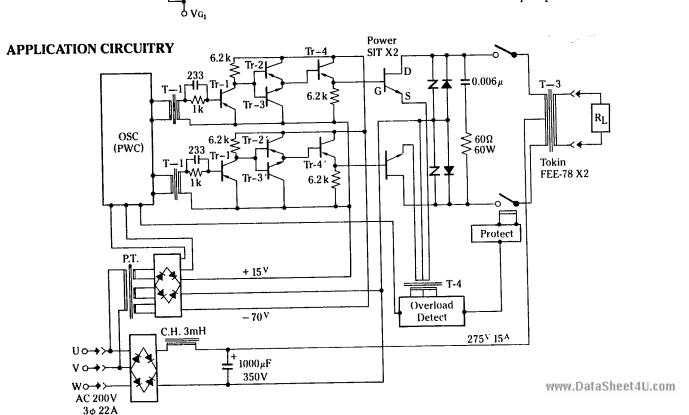

PACKAGE DIMENSIONS (in mm)




TYPICAL OUTPUT CHARACTERISTICS







Before using the TOKIN SIT, please note the following points:

- 1. When there is no voltage to the gate bias, it will become a short-circuit between the source and the drain. If any voltage is added to the drain at that time, the current will be too high. Therefore, voltage must be added to the gate bias before it is added to the drain.
- 2. The voltage to the gate bias must be fully applied in order to be able to cut off the drain current.
- 3. When a flat-type case is being used, the fasten-pressure between the source and drain must be approximately 200 ~ 300 kg.
- 4. When the TOKIN SIT is being used as a voltage-control element, its high-speed switching characteristics produce voltage spikes while switching. Therefore, special precautions must be taken.
- 5. When the TOKIN SIT is to be used with very high power, proper heat dissipation must be ensured.

STANDARD CIRCUITRY

