3Phase spindle motor driver for CD-RW

BD6670FM

BD6670FM is a 3-phase spindle motor driver adopting 180° PWM direct driving system. Noise occurred from the motor driver when the disc is driver can be reduced. Low power consumption and low heat operation are achieved by using DMOS FET in output and driving directly.

- Applications

CD-RW

-Features

1) 180 degree Direct-PWM driving system.
2) Built in power save circuit.
3) Built in current limit circuit.
4) Built in FG-output.
5) Built in 3phase synthesized FG-output.
6) Built in hall bias circuit.
7) Built in reverse protection circuit.
8) Built in short brake circuit.
9) Low consumption by MOS-FET.
10) Built in capacitor for oscillator.
11) Built in gain switch and current limit switch.

- Absolute maximum ratings ($\mathrm{Ta}=25^{\circ} \mathrm{C}$)

Parameter	Symbol	Limits	Unit
Power supply voltage	V_{cc}	7	V
Supply voltage for motor	V_{M}	15	V
VG pin voltage	VG_{G}	20	V
Output current	lomax	$2500^{* 1}$	mA
Power dissipation	Pd	$2200^{* 2}$	mW
Junction temperature	TJMax	150	${ }^{\circ} \mathrm{C}$
Operating temperature range	Topr	$-20 \sim+75$	${ }^{\circ} \mathrm{C}$
Storage temperature range	Tstg	$-55 \sim+150$	${ }^{\circ} \mathrm{C}$

*1 However, do not exceed Pd, ASO and $\mathrm{Tj}=150^{\circ} \mathrm{C}$.
The current is guaranteed 3.0A in case of the current is turn on / off
in a duty-ratio of less than $1 / 10$ with a maximum on-time of 5 msec .
*2 $70 \mathrm{~mm} \times 70 \mathrm{~mm} \times 1.6 \mathrm{~mm}$ glass epoxy board.
Debating in done at $17.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for operating above $\mathrm{Ta}=25^{\circ} \mathrm{C}$.

- Recommended operating conditions

Parameter	Symbol	Min.	Typ.	Max.	Unit
Power supply voltage	V_{cc}	4.5	-	5.5	V
Supply voltage for motor	V_{M}	4.0	-	13.2	V
VG pin voltage	V_{G}	8.5	-	19	V

Fig. 1

Motor driver ICs

- Pin descriptions

Pin No.	Pin name	Function
1	$\mathrm{H}_{1}{ }^{+}$	Hall input AMP 1 positive input
2	$\mathrm{H}_{1}{ }^{-}$	Hall input AMP 1 negative input
3	$\mathrm{H}_{2}{ }^{+}$	Hall input AMP 2 positive input
4	$\mathrm{H}_{2}{ }^{-}$	Hall input AMP 2 negative input
5	$\mathrm{H}_{3}{ }^{+}$	Hall input AMP 3 positive input
6	$\mathrm{H}_{3}{ }^{-}$	Hall input AMP 3 negative input
7	GSW	Gain switch pin
8	GND	GND
9	CP1	Capacitor pin 1 for charge pump
10	CP2	Capacitor pin 2 for charge pump
11	VG	Capacitor connection pin for charge pump
12	CNF	Capacitor connection pin for phase compensation
13	SB	Short brake pin
14	Vcc	Power supply for signal division
15	Vм	Power supply for driver
16	ECR	Torque control standard voltage input terminal
17	EC	Torque control voltage input terminal
18	PS	Power save pin
19	RNF2	Resistor connection pin for current sense
20	A3	Output 3 for motor
21	RNF1	Resistor connection pin for current sense
22	A2	Output 2 for motor
23	RNF1	Resistor connection pin for current sense
24	A1	Output 1 for motor
25	Vм	Power supply for driver
26	VH	Hall bias pin
27	FG	FG output pin
28	FG3	FG3 output pin

Motor driver ICs

- Input output circuits

Hall input H1+ : Pin1, H1- : Pin2, H2+ : Pin3, H2- : Pin4, H3+ : Pin5, H3- : Pin6		Gain switch Pin7	CP1 output Pin9
CP2 / VG output CP2 : Pin10, VG: Pin11	$\begin{aligned} & \text { CNF } \\ & \text { Pin12 } \end{aligned}$		Short brake Pin13
Torque amplifier ECR : Pin16, EC : Pin17	Power save Pin18		RNF2 Pin19
Output pins A1 : Pin24, A2 : Pin22, A3 : Pin20	Hall bias Pin26		$\begin{aligned} & \text { FG / FG3 output } \\ & \text { FG : Pin27, FG3 : Pin28 } \end{aligned}$

Motor driver ICs

- Electrical characteristics (unless otherwise noted, $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{VcC}=5 \mathrm{~V}, \mathrm{Vm}=12 \mathrm{~V}$)

Parameter	Symbol	Min.	Typ.	Max.	Unit	Conditions	Test Circuit
<Total>							
Circuit current 1	Icc1	-	1	10	$\mu \mathrm{A}$	Stand by mode	Fig. 2
Circuit current 2	Icc2	7	12	17	mA		Fig. 2
<Power save>							
ON voltage range	Vpson	-	-	1.0	V	Stand by mode	Fig. 2
OFF voltage range	VPsoff	2.5	-	-	V		Fig. 2
<Hall bias>							
Hall bias voltage	Vнв	0.7	1.0	1.3	V	$\mathrm{I}_{\mathrm{HB}}=10 \mathrm{~mA}$	Fig. 2
<Hall AMP>							
In-phase input voltage range	$V_{\text {HAR }}$	1.4	-	3.6	V		Fig. 3
Minimum input level	VINH	80	-	-	mV PP	Oneside input level	Fig. 3
Hall hysteresis level (+)	V HYS $^{+}$	5	20	40	mV		Fig. 3
Hall hysteresis level (-)	$\mathrm{V}_{\text {HYS }}{ }^{-}$	-40	-20	-5	mV		Fig. 3
<Gain switch>							
Low voltage range	VGSWL	-	-	0.6	V		Fig. 4
High voltage range	VGswh	2.0	-	-	V		Fig. 4
Open voltage range	VGswop	-	1.3	-	V		Fig. 4
<Torque control>							
Input voltage range	Ec, Ecr	0	-	5	V	Linear range : $0.5 \mathrm{~V} \sim 3.0 \mathrm{~V}$	Fig. 6
Offset voltage (+)	Ecofs ${ }^{+}$	5	50	100	mV		Fig. 6
Offset voltage (-)	Ecofs-	-100	-50	5	mV		Fig. 6
Input current	Ecin	-11	-2.5	0	$\mu \mathrm{A}$	$\mathrm{Ec}_{\mathrm{c}}=\mathrm{Ecr}^{\text {c }} 1.65 \mathrm{~V}$	Fig. 6
Input / Output gain L	Gecl	0.28	0.35	0.42	A/V	GSL=L, RNF=0.5 Ω	Fig. 7
Input / Output gain M	Gecm	0.56	0.70	0.84	A/V	GSL=M, RNF=0.5 Ω	Fig. 7
Input / Output gain H	GeCh	1.12	1.40	1.68	A/V	GSL=H, RNF= 0.5Ω	Fig. 7
<Output>							
Output ON-resistance	Ron	-	1.0	1.35	Ω	$\mathrm{l}= \pm \pm 600 \mathrm{~mA}$ (Upper+Lower)	Fig. 8
Torque limit current L	ItLL	340	400	460	mA	$\mathrm{GSW}=\mathrm{L}, \mathrm{R} \mathrm{NF}=0.5 \Omega$	Fig. 4
Torque limit current M	Itlm	680	800	920	mA	GSW=M, RNF=0.5	Fig. 4
Torque limit current H	ITLH	1020	1200	1380	mA	GSW=H, RNF=0.5 Ω	Fig. 4
<FG / FG3 output>							
High voltage	Vfgh	4.6	-	-	V	$\mathrm{IFG}_{\text {F }}=-100 \mu \mathrm{~A}$	Fig. 5
Low voltage	VfgL	-	-	0.4	V	$\mathrm{IFG}=+100 \mu \mathrm{~A}$	Fig. 5
<Charge pump voltage>							
Charge pump output voltage	VPUMP	12.5	17	19	V	Vcc=5V, Vm=12V, CP1=CP2=0.1 $\mu \mathrm{F}$	Fig. 9
<CP1 output>							
Upper saturation voltage	VcP1H	0.25	0.45	0.65	V	$I C P 1=-4 \mathrm{~mA}$	Fig. 10
Lower saturation voltage	V $\mathrm{CP1L}$	0.2	0.4	0.6	V	$\mathrm{ICP} 1=+4 \mathrm{~mA}$	Fig. 10
<CP2 output>							
Upper saturation voltage	V'P2H	0.4	0.6	0.8	V	ICP2 $=-4 \mathrm{~mA}$	Fig. 11
Lower saturation voltage	V CP 2 L	0.15	0.35	0.55	V	ICP2 $=+4 \mathrm{~mA}$	Fig. 11

- Measuring circuit

Fig. 2

Icc1: Value of A

Icc2 : Value of A
Vps=High

Vpson : Range of Vps that output pins become Input-output table

VPSoff : Range of VPs that output become open
$V_{\text {hb }}$: Value of A
VPS $=5 \mathrm{~V}$
$\mathrm{IvH}=10 \mathrm{~mA}$

VHAR : Hall in-phase input voltage range that output pins become Input-output table

Vinh : Hall minimum input level that output pins become Input-output table

V $\mathrm{HYS}^{+} /-$: Voltage difference $\mathrm{H} 3+$ from H3at the point that FG voltage changes

Fig. 3

Fig. 4

VGswop : Value of V

$\mathrm{V}_{\mathrm{FGH}}: \mathrm{I}_{\mathrm{FG}(\mathrm{IFG} 3)}=$ Value of $\mathrm{V} 2(\mathrm{~V} 3)$ at $\mathrm{I}_{\mathrm{FG}}(\mathrm{IFG} 3)=-100 \mu \mathrm{~A}$
$\mathrm{H} 1+=\mathrm{L}, \mathrm{H} 2+=\mathrm{M}, \mathrm{H} 3+=\mathrm{H}$
H1-=M, H2-=M, H3-=M (for FG)
$\mathrm{H} 1+=\mathrm{L}, \mathrm{H} 2+=\mathrm{H}, \mathrm{H} 3+=\mathrm{H}$
$\mathrm{H} 1-=\mathrm{M}, \mathrm{H} 2-=\mathrm{M}, \mathrm{H} 3-=\mathrm{M}$ (for FG3)

VFGL : IfG (IFG3) $=$ Value of $\mathrm{V} 2(\mathrm{~V} 3)$ at $\mathrm{I}_{\mathrm{FG}}(\mathrm{IFG} 3)=100 \mu \mathrm{~A}$
$\mathrm{H} 1+=\mathrm{M}, \mathrm{H} 2+=\mathrm{H}, \mathrm{H} 3+=\mathrm{L}$
$\mathrm{H} 1-=\mathrm{M}, \mathrm{H} 2-=\mathrm{M}, \mathrm{H} 3-=\mathrm{M}$ (for FG)
$\mathrm{H} 1+=\mathrm{L}, \mathrm{H} 2+=\mathrm{H}, \mathrm{H} 3+=\mathrm{L}$
$\mathrm{H} 1-=\mathrm{M}, \mathrm{H} 2-=\mathrm{M}, \mathrm{H} 3-=\mathrm{M}$ (for FG3)

Fig. 5

Ec / Ecr: Torque control operating range
Ecofs + / - : EC voltage range that V_{m} current is 0A monitor $V_{\text {RNF1 }}$

Ecin : Value of A 1 and A 2 at $\mathrm{EC}=\mathrm{ECR}=1.65 \mathrm{~V}$

Fig. 6

Gecl : Defining V1 as value of V at $\mathrm{EC}=1.2 \mathrm{~V}$ and V 2 as value of V at $\mathrm{EC}=1.5 \mathrm{~V}$ on condition that $\mathrm{GSW}=0 \mathrm{~V}$,
GECL=\{(V1-V2) / (1.5-1.2) $/ 0.5$

GECM : Defining V1 as value of V at $\mathrm{EC}=1.2 \mathrm{~V}$ and V 2 as value of V at $\mathrm{EC}=1.5 \mathrm{~V}$ on condition that GSW=open,
$\mathrm{G}_{\mathrm{ECL}}=\{(\mathrm{V} 1-\mathrm{V} 2) /(1.5-1.2)\} / 0.5$
$\mathrm{Gecн}$: Defining V1 as value of V at $\mathrm{EC}=1.2 \mathrm{~V}$ and V 2 as value of V at $\mathrm{EC}=1.5 \mathrm{~V}$ on condition that $\mathrm{GSW}=5 \mathrm{~V}$,
$\mathrm{G}_{\mathrm{ECL}}=\{(\mathrm{V} 1-\mathrm{V} 2) /(1.5-1.2)\} / 0.5$

Fig. 7

Vон : Value of V on condition that output pin is H and $\mathrm{I}=-600 \mathrm{~mA}$

Vol : Value of V on condition that output pin is L and $\mathrm{IO}=600 \mathrm{~mA}$

Ron : Ron $=(\mathrm{VOH}+\mathrm{VoL}) / 0.6$

Measurement of V oH
Measurement of VoL

Fig. 8

Fig. 9

$\mathrm{V}_{\text {CP1H }}$: Value of V on condition that CP 1 is H and $\mathrm{ICP}_{1}=-4 \mathrm{~mA}$
$V_{\text {CP1L }}$: Value of V on condition that $C P 1$ is L and $\mathrm{ICP} 1=4 \mathrm{~mA}$

Fig. 10

VCP2H : Value of V on condition that CP 2 is H and $\mathrm{IcP} 2=-4 \mathrm{~mA}$

Vcp2L : Value of V on condition that CP 2 is L and $\mathrm{IcP} 2=4 \mathrm{~mA}$

Fig. 11

- Circuit operation

1. Application
(1) Input-output table

	Input condition						Output condition					
							$\mathrm{E}_{\mathrm{c}}<\mathrm{E}_{\text {cr }}$			Ec>Ecr		
Pin No.	1	2	3	4	5	6	24	22	20	24	22	20
	$\mathrm{H}_{1}{ }^{+}$	$\mathrm{H}_{1}{ }^{-}$	$\mathrm{H}_{2}{ }^{+}$	$\mathrm{H}_{2}{ }^{-}$	$\mathrm{H}_{3}{ }^{+}$	$\mathrm{H}_{3}{ }^{-}$	A_{1}	A_{2}	A_{3}	A_{1}	A2	A_{3}
Condition 1	L	M	H	M	M	M	H	L	L	L	H	H
Condition 2	H	M	L	M	M	M	L	H	H	H	L	L
Condition 3	M	M	L	M	H	M	L	H	L	H	L	H
Condition 4	M	M	H	M	L	M	H	L	H	L	H	L
Condition 5	H	M	M	M	L	M	L	L	H	H	H	L
Condition 6	L	M	M	M	H	M	H	H	L	L	L	H

(2) Hall input

Hall element can be used with both series and parallel connection. Determining R1 and R2, make sure to leave an adequate margin for temperature and dispertion in order to satisfy in-phase input voltage range and minimum input level.
A motor doesn't reach the regular number of rotation, if hall input decrease under high temperature.

Fig. 12
(3) Torque voltage

By the voltage difference between EC and ECR, the current driving motor changes as shown in Fig. 13 below.

Fig. 13

The gain of the current driving motor for the voltage of EC can be changed by the resistance of RNF and the voltage of GSW.

GECL=0.175/RNF [A/V] (GSW=L)
GECM=0.35/RNF [A/V] (GSW=M)
Gech=0.70 / RNF [A/V] (GSW=H)
(4) Current limit

The maximum value of the current driving motor can be changed by the resistance of RNF and the voltage of GSW.

ItLL=0.2 / RNF [A] (GSW=L)
ITLM=0.4 / RNF [A] (GSW=M)
ITL내=0.6 / RNF [A] (GSW=H)
(5) Short brake

The short brake is switched by SB pin and its operation is shown in table below.

$S B$	EC $<$ ECR	EC $>$ ECR
L	Rotating forward	Reverse brake
H	Short brake	Short brake

Output upper (3phase) FET turn off and lower (3phase) FET turn on in short brake mode, as shown Fig. 14.

Fig. 14
(6) Reverse detection

Reverse detection is constructed as shown in Fig.15. Output is opened when EC>ECR and the motor is rotating reverse.

Fig. 15

Motor rotation at reverse detection

(7) Timing chart

Fig. 16

- Application example

-Operation notes

1. Absolute maximum ratings

Absolute maximum ratings are those values which, if exceeded, may cause the life of a device to become significantly shorted. Moreover, the exact failure mode cannot be defined, such as a short or an open. Physical countermeasures, such as fuse, need to be considered when using a device beyond its maximum ratings.

2. GND potential

The GND terminal should be the location of the lowest voltage on the chip. All other terminals should never go under this GND level, even in transition.

Motor driver ICs

3. Thermal design

The thermal design should allow enough margin for actual power dissipation.

4. Mounting failures

Mounting failures, such as misdirection or mismounts, may destroy the device.
5. Electromagnetic fields

A strong electromagnetic field may cause malfunctions.
6. Coil current flowing into Vm

A coil current flows from motor into V_{M} when torque control input changes from $E C<E C R$ into $E C>E C R$, and $V m$ voltage rises if V_{M} voltage source doesn't have an ability of current drain. A protect circuit turns on and a current (40 mA (typ.)) flows from Vm to GND when Vm voltage reaches to 15 V (Typ.).
Make sure that surrounding circuits work correctly and aren't destroyed, when VM voltage rises.
Physical countermeasures, such as a diode for voltage clamp, need to be considered under these conditions.
7. CNF pin

An appropriate capacitor (100pF (typ.)) at CNF pin make motor current smooth. Make sure the motor current doesn't oscillate, even in transition.

-Electrical characteristics curve

$*$ Debating in done at $17.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for operating above $\mathrm{Ta}=25^{\circ} \mathrm{C}$.
Fig. 18 Power dissipation curve

- External dimensions (Units : mm)

