Low Voltage Precision Adjustable Shunt Regulator

The TLV431A series are precision low voltage shunt regulators that are programmable over a wide voltage range of 1.24 V to 16 V. This series features a guaranteed reference accuracy of $\pm 1.0\%$ at 25°C and $\pm 2.0\%$ over the entire industrial temperature range of -40°C to 85°C. These devices exhibit a sharp low current turn–on characteristic with a low dynamic impedance of 0.20 Ω over an operating current range of 100 μ A to 20 mA. This combination of features makes this series an excellent replacement for zener diodes in numerous applications circuits that require a precise reference voltage. When combined with an optocoupler, the TLV431A can be used as an error amplifier for controlling the feedback loop in isolated low output voltage (3.0 V to 3.3 V) switching power supplies. These devices are available in economical TSOP–5 and TO–92 packages.

Features

- Programmable Output Voltage Range of 1.24 V to 16 V
- Voltage Reference Tolerance $\pm 1.0\%$
- Sharp Low Current Turn–On Characteristic
- Low Dynamic Output Impedance of 0.20 Ω from 100 μA to 20 mA
- Wide Operating Current Range of 50 µA to 20 mA
- Micro Miniature TSOP–5 and TO–92 Packages

Applications

- Low Output Voltage (3.0 V to 3.3 V) Switching Power Supply Error Amplifier
- Adjustable Voltage or Current Linear and Switching Power Supplies
- Voltage Monitoring
- Current Source and Sink Circuits
- Analog and Digital Circuits Requiring Precision References
- Low Voltage Zener Diode Replacements

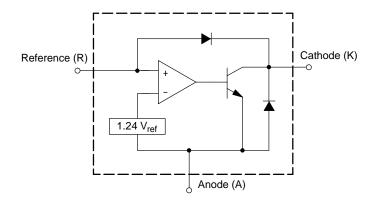
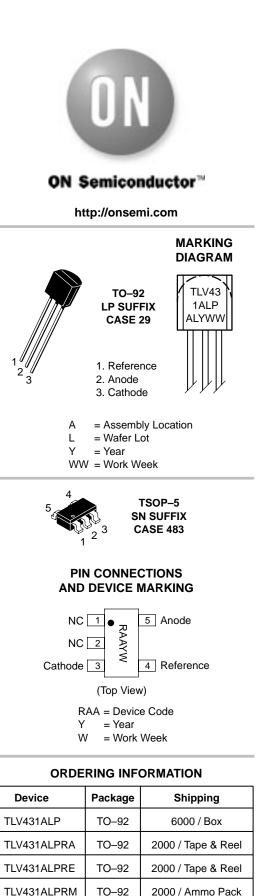
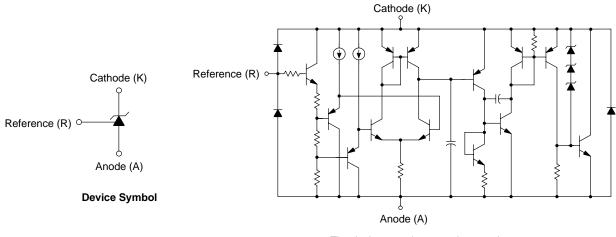



Figure 1. Representative Block Diagram

TLV431ALPRP


TLV431ASNT1

TO-92

TSOP-5

2000 / Ammo Pack

3000 / Tape & Reel

The device contains 13 active transistors.

Figure 2. Representative Device Symbol and Schematic Diagram

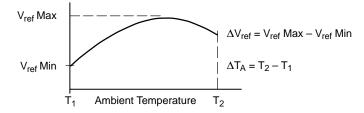
MAXIMUM RATINGS (Full operating ambient temperature range applies, unless otherwise noted)

Rating	Symbol	Value	Unit
Cathode to Anode Voltage	V _{KA}	18	V
Cathode Current Range, Continuous (Note 1)	۱ _K	-20 to 25	mA
Reference Input Current Range, Continuous	I _{ref}	-0.05 to 10	mA
Thermal Characteristics LP Suffix Package Thermal Resistance, Junction-to-Ambient Thermal Resistance, Junction-to-Case SN Suffix Package Thermal Resistance, Junction-to-Ambient	R _{θJA} R _{θJC} R _{θJA}	178 83 226	°C/W
Operating Junction Temperature	TJ	150	°C
Operating Ambient Temperature Range (Note 1)	T _A	- 40 to 85	°C
Storage Temperature Range	T _{stg}	-65 to 150	°C

1. Maximum package power dissipation limits must not be exceeded.

$$P_{D} = \frac{T_{J(max)} - T_{A}}{R_{\theta JA}}$$

NOTE: This device series contains ESD protection and exceeds the following tests: Human Body Model 2000 V per MIL–STD–883, Method 3015. Machine Model Method 200 V.


RECOMMENDED OPERATING CONDITIONS

Condition	Symbol	Min	Мах	Unit
Cathode to Anode Voltage	V _{KA}	V _{ref}	16	V
Cathode Current	I _K	0.1	20	mA

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
Reference Voltage (Figure 3) $(V_{KA} = V_{ref}, I_K = 10 \text{ mA}, T_A = 25^{\circ}\text{C})$ $(T_A = T_{low} \text{ to } T_{high}, \text{ Note } 2)$	V _{ref}	1.228 1.215	1.240 —	1.252 1.265	V
Reference Input Voltage Deviation Over Temperature (Figure 3) ($V_{KA} = V_{ref}$, $I_K = 10$ mA, $T_A = T_{low}$ to T_{high} , Notes 2, 3)	ΔV_{ref}	_	7.2	20	mV
Ratio of Reference Input Voltage Change to Cathode Voltage Change (Figure 4) (V_{KA} = V_{ref} to 16 V, I_K = 10 mA)	$\frac{\Delta V_{ref}}{\Delta V_{KA}}$	1	-0.6	- 1.5	$\frac{mV}{V}$
Reference Terminal Current (Figure 4) $(I_K = 10 \text{ mA}, R1 = 10 \text{ k}\Omega, R2 = \text{open})$	I _{ref}	-	0.15	0.3	μA
Reference Input Current Deviation Over Temperature (Figure 4) $(I_{K} = 10 \text{ mA}, \text{ R1} = 10 \text{ k}\Omega, \text{ R2} = \text{Open}, \text{ Notes 2, 3})$	ΔI_{ref}	-	0.04	0.08	μA
Minimum Cathode Current for Regulation (Figure 3)	I _{K(min)}	-	55	80	μA
Off–State Cathode Current (Figure 5) $(V_{KA} = 6.0 \text{ V}, V_{ref} = 0)$ $(V_{KA} = 16 \text{ V}, V_{ref} = 0)$	I _{K(off)}		0.01 0.012	0.04 0.05	μA
Dynamic Impedance (Figure 3) (V _{KA} = V _{ref} , I _K = 0.1 mA to 20 mA, f \leq 1.0 kHz, Note 4)	Z _{KA}	-	0.25	0.4	Ω

Ambient temperature range: T_{low} = -40°C, T_{high} = 85°C.
 The deviation parameters ΔV_{ref} and ΔI_{ref} are defined as the difference between the maximum value and minimum value obtained over the full operating ambient temperature range that applied.

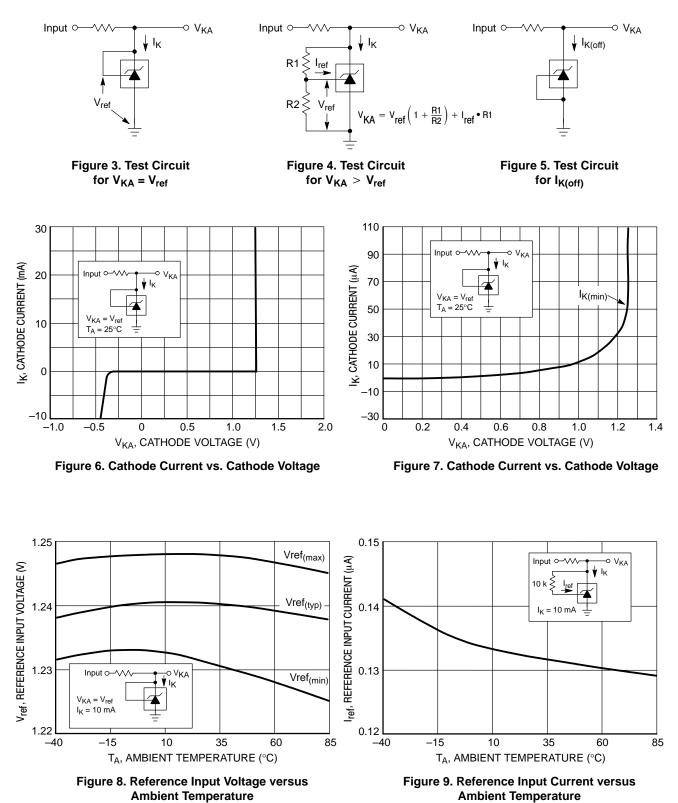
The average temperature coefficient of the reference input voltage, αV_{ref} is defined as:

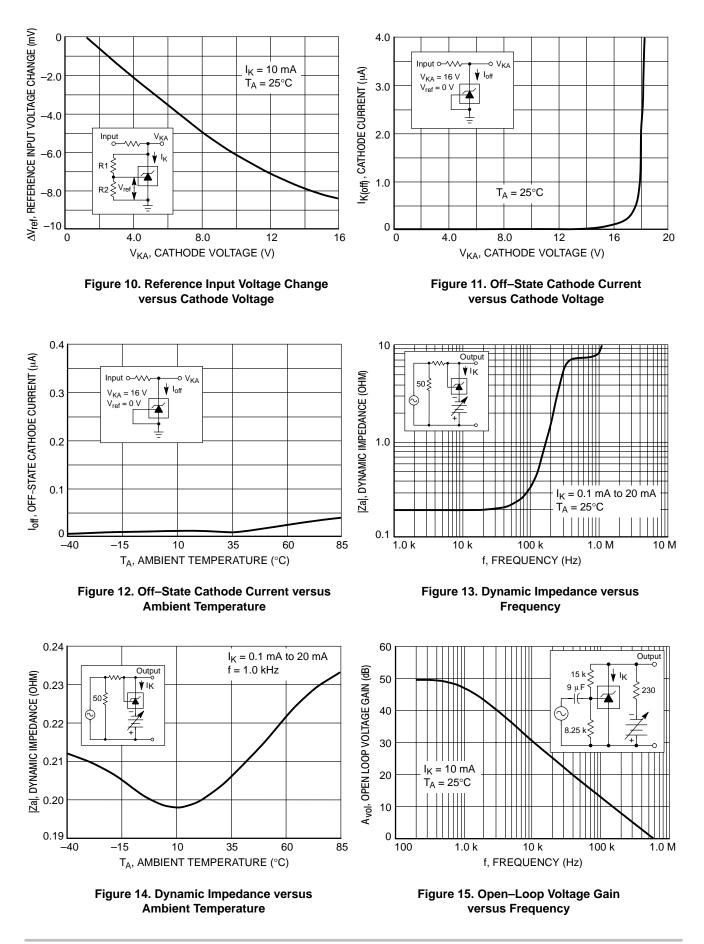
$$\alpha V_{ref} \left(\frac{ppm}{^{\circ}C} \right) = \frac{\left(\frac{(\Delta V_{ref})}{V_{ref} (T_{A} = 25^{\circ}C)} \times 10^{6} \right)}{\Delta T_{A}}$$

 αV_{ref} can be positive or negative depending on whether V_{ref} Min or V_{ref} Max occurs at the lower ambient temperature, refer to Figure 8. Example: ΔV_{ref} = 7.2 mV and the slope is positive,

V_{ref} @ 25°C = 1.241 V

 $\Delta T_A = 125^{\circ}C$


$$\alpha V_{ref}\left(\frac{ppm}{^{\circ}C}\right) = \frac{\frac{0.0072}{1.241} \times 10^{6}}{125} = 46 \text{ ppm/}^{\circ}C$$


4. The dynamic impedance Z_{KA} is defined as:

$$|Z_{KA}| = \frac{\Delta V_{KA}}{\Delta I_{K}}$$

When the device is operating with two external resistors, R1 and R2, (refer to Figure 4) the total dynamic impedance of the circuit is given by:

$$|Z_{\text{KA}'}| = |Z_{\text{KA}}| \times \left(1 + \frac{\text{R1}}{\text{R2}}\right)$$

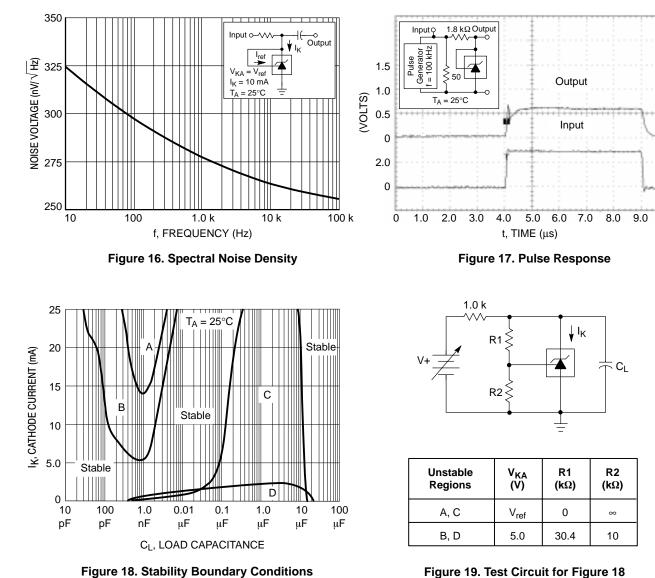
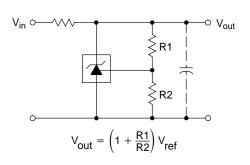


Figure 18. Stability Boundary Conditions


Stability

Figures 18 and 19 show the stability boundaries and circuit configurations for the worst case conditions with the load capacitance mounted as close as possible to the device. The required load capacitance for stable operation can vary depending on the operating temperature and capacitor

equivalent series resistance (ESR). Ceramic or tantalum surface mount capacitors are recommended for both temperature and ESR. The application circuit stability should be verified over the anticipated operating current and temperature ranges.

10.0

TYPICAL APPLICATIONS

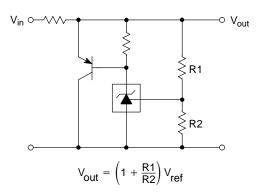
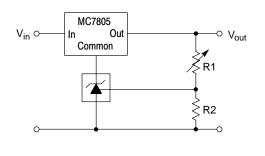



Figure 20. Shunt Regulator

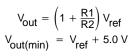


Figure 22. Output Control for a Three Terminal Fixed Regulator

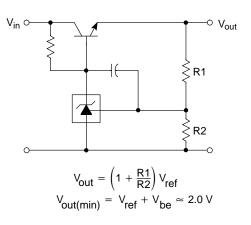
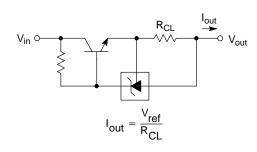



Figure 23. Series Pass Regulator

V_{in} I_{sink} V_{ref} V_{in} I_{sink} $= \frac{V_{ref}}{R_S}$

Figure 24. Constant Current Source

Figure 25. Constant Current Sink

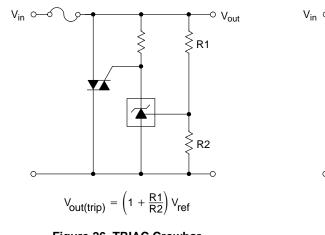
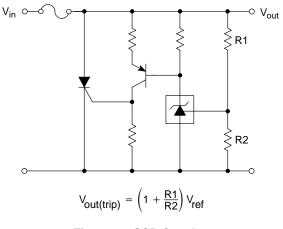
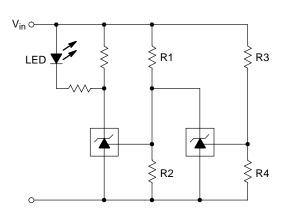
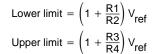
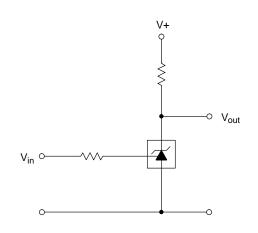


Figure 26. TRIAC Crowbar


Figure 27. SCR Crowbar

L.E.D. indicator is 'ON' when V_{in} is between the upper and lower limits,

V _{in}	V _{out}
<v<sub>ref</v<sub>	V+
> V _{ref}	≈ 0.74 V

Figure 29. Single–Supply Comparator with Temperature–Compensated Threshold

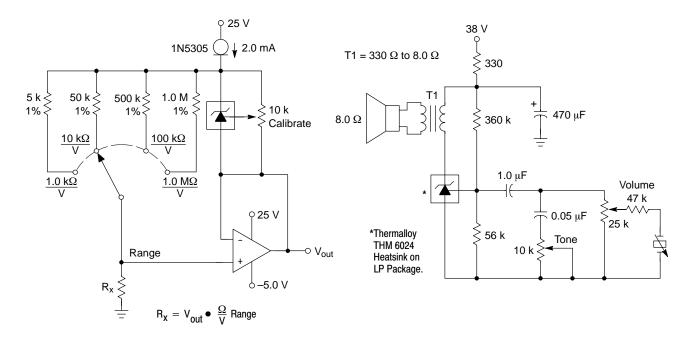
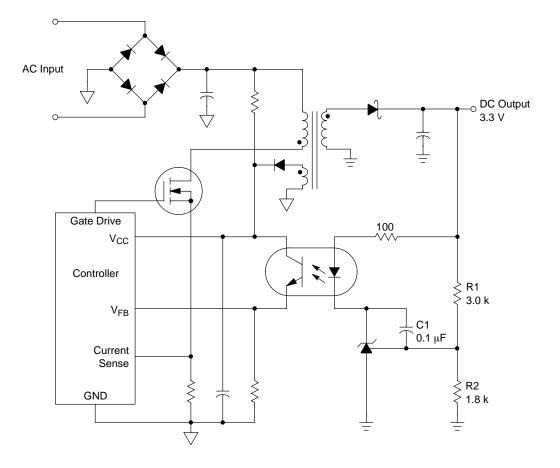



Figure 30. Linear Ohmmeter

Figure 31. Simple 400 mW Phono Amplifier

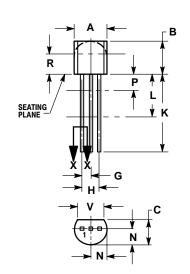
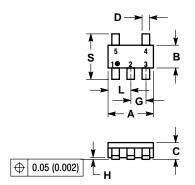


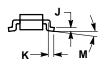
Figure 32. Isolated Output Line Powered Switching Power Supply

The above circuit shows the TLV431A as a compensated amplifier controlling the feedback loop of an isolated output line powered switching regulator. The output voltage is programmed to 3.3 V by the resistors values selected for R1 and R2. The minimum output voltage that can be programmed with this circuit is 2.64 V, and is limited by the sum of the reference voltage (1.24 V) and the forward drop of the optocoupler light emitting diode (1.4 V). Capacitor C1 provides loop compensation.

PACKAGE DIMENSIONS

TO-92 LP SUFFIX PLASTIC PACKAGE CASE 29-11 **ISSUE AL**

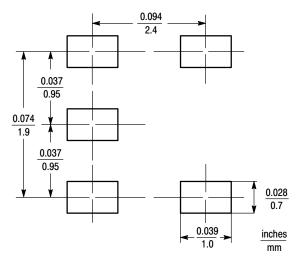



NOTES:

- NOTES:
 DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: INCH.
 CONTOUR OF PACKAGE BEYOND DIMENSION R IS UNCONTROLLED.
 LEAD DIMENSION IS UNCONTROLLED IN P AND BEYOND DIMENSION K MINIMUM.

	INCHES		MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.175	0.205	4.45	5.20
В	0.170	0.210	4.32	5.33
С	0.125	0.165	3.18	4.19
D	0.016	0.021	0.407	0.533
G	0.045	0.055	1.15	1.39
Н	0.095	0.105	2.42	2.66
J	0.015	0.020	0.39	0.50
K	0.500		12.70	
L	0.250		6.35	
Ν	0.080	0.105	2.04	2.66
Ρ		0.100		2.54
R	0.115		2.93	
٧	0.135		3.43	

TSOP-5 **SN SUFFIX** PLASTIC PACKAGE CASE 483-01 ISSUE B


NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.

	MILLIMETERS		INCHES	
DIM	MIN	MAX	MIN	MAX
Α	2.90	3.10	0.1142	0.1220
В	1.30	1.70	0.0512	0.0669
С	0.90	1.10	0.0354	0.0433
D	0.25	0.50	0.0098	0.0197
G	0.85	1.05	0.0335	0.0413
Н	0.013	0.100	0.0005	0.0040
J	0.10	0.26	0.0040	0.0102
K	0.20	0.60	0.0079	0.0236
L	1.25	1.55	0.0493	0.0610
М	0 °	10°	0°	10 °
S	2.50	3.00	0.0985	0.1181

MINIMUM RECOMMENDED FOOTPRINT FOR SURFACE MOUNTED APPLICATIONS

Surface mount board layout is a critical portion of the total design. The footprint for the semiconductor packages must be the correct size to insure proper solder connection

interface between the board and the package. With the correct pad geometry, the packages will self align when subjected to a solder reflow process.

TSOP–5 (Footprint Compatible with SOT–23–5)

ON Semiconductor and without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: ONlit@hibbertco.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

JAPAN: ON Semiconductor, Japan Customer Focus Center 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031 Phone: 81–3–5740–2700 Email: r14525@onsemi.com

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local Sales Representative.