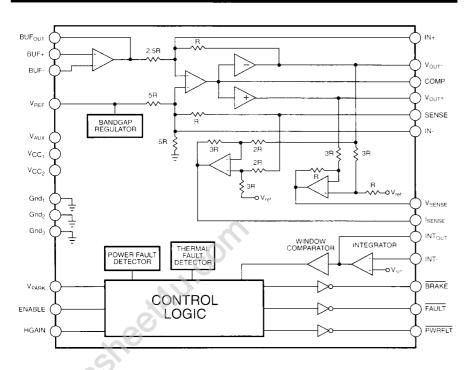
CS-7102

CS-7102

5V, 250mA Voice Coil Motor Driver with H-bridge and 4:1 Gain Switch


Description

The CS-7102 is a voice coil power driver intended for use in 5V 2.5 inch hard disk servo systems. The CS-7102 contains the complete H-Bridge power amplifier, including the 4 power transistors, and all control functions. Head retraction circuitrv is provided to allow for a controlled shutdown of the drive. Power Fault, Over Velocity Fault, and Thermal Fault Detection are also included. A gain switch provides for a 4:1 change in transconductance.

Absolute Maximum Ratings

V_{CC_1} , V_{CC_2}	10V
Auxiliary Supply, V _{AUX}	
Logic Input Voltage	0.3V to V _{ALX}
Logic Output Voltage	
Maximum Junction Temperature	
Maximum Power Dissipation	
H-Bridge Output Current	
Storage Temperature	
Operating Temperature	

Block Diagram

Features

4:1 Gain Swilds in Error Amplifier

Single 5 Volt Fower Supply

Full 250mA H-Bridge

On Chip Transient Protection

Low System Offset Current (<1mA)

Low Supply Current (6mA)

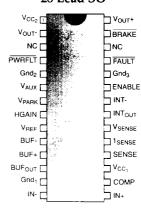
Low Current Standby Mode

All Amplifiers Internally Compensated

No Crossover Distortion

Programmable Retract Voltage

Programmable System Bandwidth


Bandgap-based Power Fault Detector

Over Velocity Detection

On Chip Thermal Protection

Package Options

28 Lead SO

Cherry Semiconductor Corporation 2000 South County Trail East Greenwich, Rhode Island 02515 Tel: (401)885-3600 Fax (401)885-5786

PARAMETER	TEST CONDITIONS	MIZ	TYP	MAX	
Power Supply		RECURS COMMON REQUIREMENT AND ADMINISTRATION OF			E-MARIE CONTRACTOR
Supply Voltage Range		4.5	5.0	5.5	V
V_{CC_1} and V_{CC_2}				0.0	·
Total Supply Current					
$(I_{CC} + I_{AUX})$					
V _{ENABLE} = 2.0V (Track Following)			6.0	15.0	n
$V_{\text{ENABLE}} = 0.8V$			0.0	2	n
Auxiliary Voltage, V _{AUX}		2.0		15.0	V
Auxiliary Current, I _{AUX}				15	n
$V_{CC} = 0, V_{AUX} = 5.0V$					
Logic I/O					
Logic HI Input Current	$V_{IN} = 2.0V$			100	μ
Logic LOW Input Current	$V_{IN} = 0.8V$			-100	μ
Logic HI Input Voltage			1.5	2.0	V
Logic LOW Input Voltage		0.8	1.5		V
BRAKE	l_{OUT} = 100 μA referenced to V_{AUX}			0.4	V
FAULT	$I_{OUT} = 100 \mu A$			0.4	V
PWRFLT	$I_{OUT} = 100 \mu A$			0.4	V
Voltage Reference					
V_{REF}		2.40	2.50	2.60	V
Output Current		2.0			n
PSRR		40			d
Closed Loop System (R _{SENS}	$G_{\rm E} = 2\Omega$)				
Transconductance					
(Buffer amplifier set for Gair	n = 1.0)				
(T _A = 25°C) I _{OUT} = 200mA, H Gain =	2 0V	237	250	263	
$I_{OUT} = 200 \text{mA}$, H Gain =		59.3	62.5	465.7	n n
1001 - 2001111, 11 00111 -	0.0 v	37.3	02.1	03.7	11
$(T_A = 0 \text{ to } 70^{\circ}\text{C})$ $I_{OUT} = 200\text{mA}$, H Gain =	2.0V	232	250	240	
$I_{OUT} = 200 \text{mA}$, H Gain =		58.0	62.5	268 67.0	n n
Output Offset Current	$T_A = 25^{\circ}C$	30.0	02.5	1.00	
•				1.00	n
Output Offset Current	$T_A = 0$ to 70° C			1.25	n
Input Voltage Range		0.00		3.50	V
Frequency Response		30			k
H-Bridge Amplifier					
Voltage Gain			14		7
		60			k.
Frequency Response	•				
Frequency Response Bridge Output Current		250			m

HINTERARAN DER EN EN	The respective of the second s				
H-Bridge Amplifier (conti					
Bridge Saturation Voltage,	nueu)			0.25	V
$l_{OUT} = 100 \text{mA}$, $T_A = 25^{\circ}\text{C}$				0.23	v
Bridge Saturation Voltage,				0.50	V
$I_{OUT} = 200 \text{mA}, T_A = 25^{\circ}\text{C}$					
Bridge Saturation Voltage, I_{OUT} =200mA, $(T_{\Delta}$ = 0 to 70	°C)			0.60	V
Thermal Shutdown Temp.			150		°C
Buffer Amplifier					
Open Loop Gain		60			ΠD
Input Offset Voltage		60		5	dB mV
Input Bias Current				5.0	
Unity Gain Bandwidth		300	500	5.0	μΑ kH _Z
PSRR		50 50	300		dB
Input Common Mode Rang	7e	0.0		3.5	V
Output Voltage Range		0.1		3.5	V
Current Sensing Amplifie	r				
Closed Loop Gain	$V_{IN} = (V_{OUT}) - (SENSE)$	1.45	1.50	1.55	V/V
Input Offset Voltage	110 (001) ()		2.00	5	mV
Voltage Sensing Amplifie	r				
Closed Loop Gain	$V_{IN} = (V_{OUT}) - (SENSE)$	0.322	0.333	0.344	V/V
Input Offset Voltage				5	mV
Summer/Integrator Ampli	fier				
Open Loop Gain		60			dВ
Unity Gain Bandwidth		300	500		kH_Z
Input Offset Voltage				5	mV
Common Mode Range		0.5		4.0	V
Fault Comparator					
Upper Threshold	$T_A = 25^{\circ}C$	0.63	0.70	0.77	V_{i}
V _{UPPER} - V _{REF}	Th. 0.700				
Lower Threshold V_{REF} - V_{LOWER}	$T_A = 25^{\circ}C$	0.63	0.70	0.77	∇
Temperature Coefficient			-0.33		°o/C
Power Fault Level					
V_{FAULT}		3.75	4.00	4.25	V
Hysteresis		23, 0	100	200	mV

7102	Electrical Characteristics: co	Electrical Characteristics: continued					
PARAMETER	TEST CONDITIONS	MINE	TYE	MAX			
■ Head Park							
V _{PARK} Output Current	$R_{\mathrm{PARK}} = 5k\Omega$	0.4 10	0.5	0.6	V mA		
■ Head Brake							
V _{OUT} + Brake V _{OUT} - Brake	$I_{OUT} = 50 \text{mA}$ $I_{OUT} = 50 \text{mA}$			0.3 0.3	V V		

Package Pin Description						
PACKAGE PIN #	PIN SYMBOL	FUNCTION				
28 Lead SO						
17	V_{CC_1}	Positive power supply, 4.5V to 5.5V.				
13	Gnd_1	Analog ground.				
6	V_{AUX}	Auxiliary power supply for head park during supply line failure.				
1	V_{CC_2}	Positive power supply for the H-Bridge driver.				
5	Gnd_2	Ground for the H-Bridge driver.				
24	Gnd_3	Ground for the H-Bridge driver.				
9	V_{REF}	Internal voltage reference for external DAC.				
7	V_{PARK}	Voltage that is programmed by an external resistor and is applied across the VCM during park.				
12	BUF _{OUT}	Output of the buffer amplifier and input to the transconductance amplifier.				
10	BUF-	Negative input to the buffer amplifier.				
11	BUF+	Positive input to the buffer amplifier.				
23	ENABLE	Digital input to select standby of full power mode.				
8	HGAIN	Digital input to select high or low transconductance.				
25	FAULT	Open collector NPN output. A digital output signaling an over velocity or a thermal fault condition. Reset by the ENABLE pin.				
27	BRAKE	Open collector NPN output. A digital output to brake the spin motor. LOW indicates brake.				
4	PWRFLT	Open Collector NPN output. Low indicates power fault.				
21	INT _{OUT}	Output of the velocity integration amplifier.				
22	INT-	Negative input of the velocity integration amplifier.				
20	V_{SENSE}	Output of the amplifier sensing the total bridge voltage.				
19	I _{SENSE}	Output of the amplifier sensing the VCM current.				
14	IN-	Negative input of the transconductance amplifier.				
15	IN+	Positive input of the transconductance amplifier.				
2	V _{OUT} -	Negative output of H-Bridge.				
28	V_{OUT} +	Positive output of H-Bridge.				
18	SENSE	Current sense input from the current sense resistor.				
16	COMP	Compensation node for the transconductance amplifier.				
3, 26	NC	No connection				

Circuit Description

Power Supply

Power supply pins V_{CC_1} and V_{CC_2} must be connected together externally. V_{AUX} can be connected to V_{CC} or to a Park voltage source. During normal operation where the Park source is not active, the V_{AUX} is internally powered from the V_{CC} line. Gnd₁, Gnd₂, and Gnd₃ must all be connected to system ground.

Over Velocity Control

The over velocity control loop consists of three operational amplifiers and a dual level detector with internally controlled thresholds. One amplifier provides a voltage which tracks the VCM current, one amplifier provides a voltage which tracks the H-Bridge output voltage. The third amplifier is configured as a summer or an integrator. The output of the integrator is compared to preset limits, and when an over velocity condition occurs, a latched state is set that shuts down the power amplifier and initiates a head brake. This latched condition can be reset by toggling the ENABLE pin low then high.

The current sensing amplifier provides a voltage which is 1.5 times the voltage across R_{SENSE} and is referenced to V_{REF} . The gain of this amplifier is set by internal resistors.

The voltage sensing amplifier provides a voltage which is one third the voltage across the H-Bridge and is referenced to V_{REF} . The gain of this amplifier is set by internal resistors.

The integrator amplifier is configured to sum and integrate the voltages from the voltage and current sensing amplifiers and provide an output to the comparators. External components control the gain and time constant of the integrator.

The fault comparator is used to compare the output of the integrator amplifier to a pair of voltages that represent over velocity. If either limit is exceeded, the fault latch is set and a head brake is initiated. The comparator threshold voltage is set internally.

Transconductance Loop:

The transconductance loop consists of a full H-Bridge output stage, a low offset error amplifier, precision internal gain setting resistors, and an input buffer amplifier. A single current sense resistor is used to set the transconductance.

The buffer amplifier is a low offset operational amplifier which can be configured as a gain stage or as a second order low pass filter.

The error amplifier is a low offset operational amplifier. Access is provided to all three terminals to allow programming of the overall system response.

The power amplifier is a full H-Bridge with 250mA capability, and built in transient protection diodes. The differential voltage gain is 14. Class AB bias is used to eliminate crossover distortion.

The power amplifier is protected from overload by thermal shutdown circuitry. Should a thermal overload occur, the H-Bridge amplifier will turn off until the ENABLE line is toggled low then high.

Power Fault Detector

The power fault detector monitors the voltage <u>supply line</u>. Should an under voltage condition occur, the <u>PWRFLT</u> will switch low, a head park will occur and the <u>BRAKE</u> will switch low initiating a spin brake. If the power recovers during the sequence, the head park will complete its cycle, but the spin brake will be cancelled. An external capacitor can be used to delay application of the spin brake.

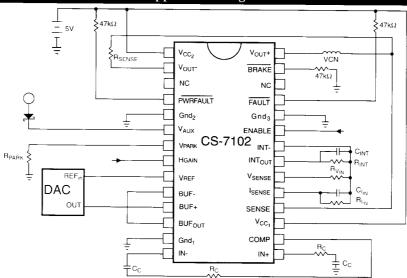
Head park can only occur due to a power fault. During head park, one side of the H-Bridge is pulled low and a voltage that is set at the V_{PARK} pin is applied across the VCM.

Logic

The ENABLE pin is used to select full power mode or standby mode. When ENABLE is high, the circuit is in the full power mode. When ENABLE is low, the circuit is in a standby mode with only the logic powered.

The HGAIN pin is used to select high or low transconductance.

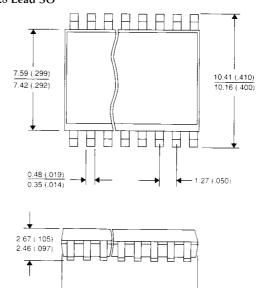
The BRAKE output is an open collector PNP transistor which is intended to drive an external FET spin brake circuit.

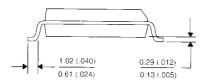

The FAULT line is an open collector NPN transistor which is intended to provide a system reset.

The PWRFLT line is an open collector NPN transistor which indicates a low power condition.

Voltage Reference

A bandgap voltage source is used to provide the reference for the power fault detector and for the 2.5V transconductance reference voltage.


Application Diagram



Package Specification

PACKAGE DIMENSIONS IN mm (INCHES)					PACKAGE THERMAL DATA			
			D		Thermal Data 28 Lead			
Lead Count	Me	tric	Eng	lish			SODW	
	Max	Min	Max	Min	$R\Theta_{JC}$	typ	15	°C/W
28 Lead SO	18.06	17.81	.711	.701	$R\Theta_{\mathrm{JA}}$	typ	75	°C/W

28 Lead SO

- D

Ontaine Information

Part Number CS-7102DW28 **Description** SO Wide

Preliminary Statement

This product is in the preproduction stages of the design process. The data sheet contains preliminary data. CSC reserves the right to make changes to the specifications without notice. Please contact CSC for the latest available information.

Cherry Semiconductor Corporation 2000 South County Trail East Greenwich, Rhode Island 02818 Tel: (401)885-3600 Fax (401)885-5786 Telex WUI 6817157

1992 Cherry Semiconductor Corporation