

AQ120

SOT23-5 Package

LDO Regulator Controller

Preliminary Specification

Revision 1.2

April 1, 2006

General Description

The AQ120 is a low cost LDO controller. The AQ120 flexibility allows the setting of the output voltage and controls up to 2 Amps of output current with a minimum number of external components.

The open collector output is capable of driving an external PNP transistor. A temperature stable bandgap reference (1.25 V) controls the output voltage and is programmable through two external resistors. The AQ120 if offered in the very small SOT23-5 package.

Applications

- Graphic cards
- PC motherboards
- Switching power supply post-regulation
- Telecom equipment
- DVD video player

Features

- 1.25V reference with 1.5% accuracy
- Low current consumption
- Offered in small SOT23-5 package
- Wide Vin range: 2.5V to 18V
- 20mA drive current sink
- RoHS compliant available

Block Diagram

Pin Configuration

Typical Application

Note: The values of R1and R2 set the output voltage. The typical Vref is 1.25V

Pin Descriptions

Pin	Pin Name	Function
1	DRIVE	Output of error amplifier. 20 mA sink capability to drive PNP pass element
2	GND	Ground
3	GND BIAS	Must connect to GND for proper operation as an LDO Controller
4	VCC	Positive supply
5	VREF	Voltage programming pin; has a threshold of 1.25V.

Ordering Information

Device	Operating Tj	%Tol	Pkg Type	νουτ	Wrap	Order Number	
AQ120	-40C° ≤ 85C°	1.5	SOT-23-5	1.25V	T&R	AQ120EX-M5-AJ-TR	
AQ120	-40C° ≤ 85C°	1.5	SOT-23-5	1.25V	T&R	AQ120EX-M5-AJ-TRL	
The TDL parts are Load Free and DoUS compliant							

Note: The TRL parts are Lead Free and RoHS compliant.

Absolute Maximum Ratings

Parameter	Value	Units	
V _{CC} Voltage	18	V	
DRIVE Voltage	18	V	
REF Voltage	18	V	
VCC, DRIVE, REF Current	50	mA	
Operating Junction Temperature	150	°C	
Lead Temperature (soldering 10 seconds)	300	°C	
Storage Temperature Range	-80 to +150	°C	

Electrical Specifications

Electrical characteristics are guaranteed over the full temperature range $-40^{\circ}C < Tj < 85^{\circ}C$. Ambient temperature must be de-rated based upon power dissipation and package thermal characteristics. Unless otherwise stated, test conditions are VCC = 5V, VDRIVE = 4.3V, V_{GND BIAS} = GND.

Symbol	Parameter Conditions		Min	Тур	Мах	Units
Vcc	Supply Voltage Range		2.5	5	18	V
lcc	Vcc Quiescent Supply Current	VREF= VCC= VDRIVE= 5V		150	300	μA
VREF	Reference Voltage Ta=25°C		1.231	1.250	1.268	V
TC REF	Reference Temperature Deviation	-40°C <tj<85°c< td=""><td></td><td>0.5</td><td>1</td><td>%</td></tj<85°c<>		0.5	1	%
Lnreg	Output variation with Supply Voltage	VCC=2.5V to 18V IDRIVE = 500 μA		0.3	1.0	mV/V
Ldreg	Vref variation with Drive Current	IDRIVE = 0.1mA to 10 mA		0.15	0.20	%/mA
I REF	Reference input current	VREF = 0V	-50	-20		nA
VDRVIOW	Output Saturation Voltage	Idrive = 10 mA, Vref = 0V		1.8	2.2	V
I DRIVE	Drive Current	V drive = 5V, Vref = V _{gnd bias} = GND	20	25		mA
I LEAK Output Leakage Current		VDRIVE = VREF = VCC = 18V		200	400	nA

VIN+

APPLICATION

GENERAL DESCRIPTION

The AQ120 is a linear LDO voltage regulator controller. It drives a discrete PNP transistor while comparing the output to a 1.25V reference. The output voltage is programmable through an external resistor divider. VOUT can be set to any value above 1.25 Volts. The collector of the external PNP transistor provides the output current to the load. Vin range is 2.5V to 18V. The Maximum Load current is Beta of the PNP times IDRIVE. IDRIVE range is 0.1 mA to 20 mA (max).

(Figure 1)

SETTING THE OUTPUT VOLTAGE

The AQ120 VREF pin is the input to an amplifier comparing to a precision 1.25V reference. With VREF tied back to the output, it will drive the base of the external PNP to maintain output voltage with changing load current and VCC. The regulated output voltage can be set by selecting the proper ratio of R1 and R2.

The Output Voltage is set by:

$$Vout = V_{REF} * \frac{R1 + R2}{R2} = 1.25V * \left(1 + \frac{R1}{R2}\right)$$

4

Acutechnology Semiconductor Inc.

SELECTION OF PNP PASS DEVICE

In the application of (figure 1) above, an FMMT549 SOT223 package was used. However, selection of the PNP pass device is based on Vin max, lout max, and Power dissipation for your particular application.

VIN max

BVCEO and BVCBO minimum rating of the PNP transistor must exceed the maximum Vin of the application. The AQ120 will stand off 18V max. Therefore the maximum voltage the PNP will experience is 18V.

lout max

Beta of the PNP transistor will dictate the maximum output current as per the equation:

Iout max = *Idrive* max(20*mA*) * *BetaExt.PNP*

Higher beta of the PNP will improve the Vout variation due to change in load (load reg.) Minimizing the Idrive required will also minimize the Load reg. as Vout will decrease by .15% per mA of Idrive. Therefore, delta 10mA of Idrive will cause a delta 1.5% of Vout.

Power dissipation

Selection of the external PNP package is based on size requirements and power dissipation. Consult the transistor data sheet for power considerations.

Contact Information

Acutechnology Semiconductor Inc.	TEL:	(408) 259-2300
3487 McKee Rd. Suite 52	FAX:	(408) 259-9160
San Jose CA, USA 95127	website:	www.acutechnology.com

Disclaimer

The information furnished by Acutechnology in this data sheet is believed to be accurate and reliable. However, Acutechnology assumes no responsibility for its use. Acutechnology reserves the right to change circuitry and specifications at any time without notification to the customer.

Life Support Policy

Acutechnology Products are not designed or authorized for use as components in life support devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user.

Package Dimensions

SOT23-3, SOT23-4, SOT23-5, SOT23-6

OPTION FOR 4LD

SEE VIEW A

	SYMBO	COMMON						
		DIMENSIONS MILLIMETER			DIMENSIONS INCH			
	Ľ	MIN.	NDM.	MAX.	MIN.	NDM.	MAX.	
	Α	1.20	1.30	1.40	0.047	0.051	0.055	
	A1	0.05	-	0.15	0.002	-	0.006	
	A2	0.90	1.15	1.30	0.035	0.045	0.051	
	b	0.35	-	0.50	0.013	-	0.020	
	b1	0.35	0.40	0.45	0.013	0.015	0.017	
	с	0.08 - 0.08 0.13		0.22	0.003	-	0.008	
	c1			0.20	0.003	0.005		
	D		2.90 B	SC	0.114 BSC			
	Ε		2.80 B	SC	0.110 BSC			
	E1		1.60 BS	C	0.062 BSC			
	6		0.95 B	SC	0.037 BSC			
	e1	1.90 BSC			0.074 BSC			
	L	0.35	0.45	0.55	0.013	0.017	0.021	
	L1	0.60 REF.			0.023 REF.			
	θ	0*	0* 4*		0*	4•	8•	
	0 1	10° TYP			10° TYP			

NOTE :

- Dimensioning and tolerancing per ASME Y 14.5 M 1994. Dimensions are in millimeters. Converted inch dimension 1. 2.
- Dimensions are in millimeters.Converted inch dimension are not necessarily exact. Dimension D does not include mold flash, protrusions or gate burrs. Mold flash, protrusion or gate burrs shall not exceed 0.15 mm per side. Dimension El does not include interlead flash or protrusion. Interlead flash or protrusion shall not exceed 0.15 mm per side. Top package may be smaller than the bottom package Dimension D and El are deternine at the outermost extremes of the plastic body exclusive of mold flash gate burrs and interlead flash. Terminal numbers are shown for reference only. Die is facing up for molding. Die is facing down for trim/form. A
- <u>A</u>
- 5. trim/form.