

H-Bridge for DC-Motor Applications

TLE 5209 GP

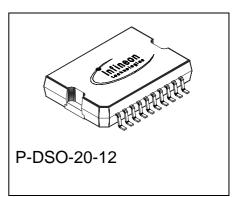
Data Sheet

Version 1.0

1 Overview

1.1 Features

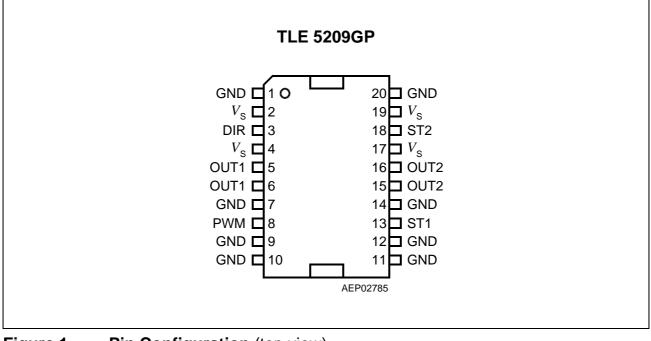
- Delivers up to 5 A continuous
- Current limit at max 7.5 A
- Optimized for DC motor management applications
- Operates at supply voltages from 5.2 V up to 40 V
- Very low R_{DS ON}; typ. 280 mΩ @ 25 °C per switch
- Output full short circuit protected
- · Overtemperature protection with hysteresis
- · Short circuit and open load diagnosis
- Undervoltage lockout
- CMOS/TTL compatible inputs with hysteresis
- Internal freewheeling diodes
- Wide temperature range; 40 °C < T_i < 150 °C


Description

The TLE 5209 GP is an integrated power H-bridge with DMOS output stages for driving DC-Motors and Torque-motors. The part is built using the Infineon multi-technology process SPT[®] which allows bipolar and CMOS control circuitry plus DMOS power MOS-FETs on the same monolithic structure. Operation modes forward (cw), reverse (ccw) and brake are invoked from the two control pins DIR and PWM with TTL/CMOS compatible levels.

A diagnostic logic recognizes three failures at the output stage: overcurrent, open load and overtemperature. These failures are shown at the two diagnostic outputs STATUS1 (non latched) and STATUS2 (latched).

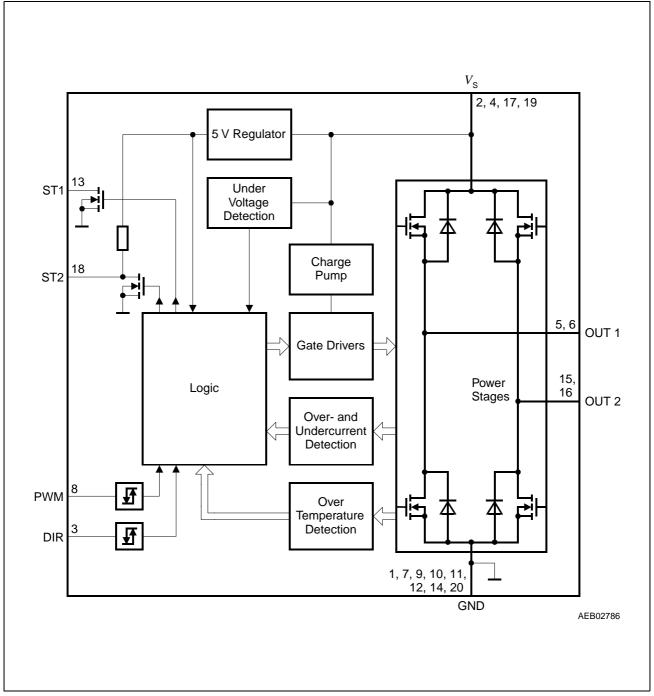
The combination of an extremely low $R_{\text{DS ON}}$ and the use of a power IC package with low thermal resistance leads to high permissible output currents. The DIR/PWM input interface minimises the effort of control signal generation and the integrated functionality reduces the external circuitry to a minimum.


Туре	Ordering Code	Package
TLE 5209 GP	Q67007-A9347	P-DSO-20-12

Overview

1.2 Pin Configuration

Figure 1 Pin Configuration (top view)


Overview

1.3	Pin Defin	nitions and Functions
Pin No.	Symbol	Function
1, 9, 10, 11, 12, 20	GND	Ground; internally connected to cooling tab; pins have to be connected to each other externally;
2, 4, 17, 19	Vs	Supply voltage; needs a blocking capacitor to GND; pins have to be connected to each other externally
3	DIR	Direction input; TTL/CMOS compatible input.
5, 6	OUT1	Output of Halfbridge 1; pins have to be connected to each other externally.
8	PWM	Pulse Width Modulation input; TTL/CMOS compatible input
13	ST1	Status flag output 1; open drain output, requires external pull- up; not latched.
15; 16	OUT2	Output of Halfbridge 2; pins have to be connected to each other externally.
18	ST2	Status flag output 1; open drain output with internal pull-up; latched, reset if DIR or PWM is toggled.

Overview

1.4 Functional Block Diagram

Figure 2 Block Diagram

Circuit Description

2 Circuit Description

2.1 Input Circuit

The control inputs DIR and PWM consist of TTL/CMOS-compatible schmitt-triggers with hysteresis. Buffer amplifiers are driven by this stages. Operation modes forward (CW), reverse (CCW) and brake are invoked by these two inputs. If the inputs are not connected, then the load between OUT1 and OUT2 is braked. (both highside switches ON). There's no need for synchronization of the input signals DIR and PWM.

2.2 Output Stages

The output stages consist of a DMOS H-bridge built by two highside switches and two lowside switches. Integrated circuits protect the outputs against overcurrent and overtemperature if there is a short-circuit to ground (SCG) or to the supply voltage (SCB) or short of the load (SCL).

Positive and negative voltage spikes, which occur when switching inductive loads, are limited by integrated freewheeling diodes. A monitoring circuit for each output transistor detects whether the particular transistor is active and in this case prevents the corresponding source transistor (sink transistor) from conducting in sink operation (source operation). Therefore no crossover currents can occur.

2.3 Input Logic Truth Table

DIR	PWM	OUT1	OUT2	Comments
L	L	Н	Н	Brake; both highside transistors switched ON.
L	Н	Н	L	Motor turns clockwise.
Н	L	Н	Н	Brake; both highside transistors are turned ON.
Н	Н	L	Н	Motor turns counterclockwise.

Table 1 Functional Truth Table

Table 2 Notes for Output Stage

Symbol	Value
L	Low side transistor is turned-ON. High side transistor is turned-OFF.
Н	High side transistor is turned-ON. Low side transistor is turned-OFF.

Circuit Description

2.4 Monitoring Functions

Undervoltage lockout (UVLO):

When $V_{\rm S}$ reaches the switch on voltage $V_{\rm UV ON}$ the IC becomes active with a hysteresis. All output transistors are switched off if the supply voltage $V_{\rm S}$ drops below the switch off voltage $V_{\rm UV OFF}$.

2.5 **Protective and Diagnostic Functions**

The device is fully protected against all kinds of shorts at the outputs and overtemperature and also detects open load.

a) Output Shorted to Ground Detection

If a high side transistor is switched on and the output current rises above the shutdown threshold I_{CS} for longer than the delay time t_{dCS} , all output transistors are switched OFF and the Status outputs are set.

b) Output Shorted to + V_s

If a low side transistor is switched on and the output current rises above the shutdown threshold I_{CS} for longer than the delay time t_{dCS} , all output transistors are switched OFF and the Status outputs are set.

c) Overload Detection

If a low side transistor and a hide side transistor is switched on and the current through the load rises above the shutdown threshold I_{CS} for longer than the delay time t_{dCS} , all output transistors are switched OFF and the Status outputs are set.

The diagnostic behaviour at short circuit is shown schematically in Figure 4.

d) Overtemperature protection

At a junction temperature higher than T_{OFF} the thermal shutdown turns OFF all four output stages commonly and the Status outputs are set.

e) Open Load Detection

If the current through the low side transistor is lower than the reference current I_{dOL} in the ON-state, a timer is started. After a filter time t_{dOL} an open load failure will be recognized and the Status outputs are set. If the current exceeds the reference current I_{dOL} the open load timer is reset. If the H-bridge is switched to OFF-state (PWM = L) during the open load filter time, the timer is stopped. The timer continues if the H-bridge is switched in ON-state again. There is no reset of the open load timer if the direction is changed using the DIR input in open load condition. This is shown schematically in **Figure 3**.

2.6 Diagnosis Truth Table

Various errors as listed in the table "Diagnosis" are detected. Short circuits and overload result in turning off the output stages after a delay. ST1 is active as long as the error exists, but at least 10 μ s. ST2 provides a latched output, this means if a fault occurs it is active until at least one of the inputs DIR or PWM are toggled.

Circuit Description

Table 3

Flag	DIR	PWM	OUT1	OUT2	ST1	ST2	Remark	No
Normal	0	0	Н	Н	1	1	_	1
operation	0	1	Н	L	1	1		2
	1	0	Н	Н	1	1		3
	1	1	L	н	1	1		4
Open circuit	0	0	Н	Н	1	1	Not detectable	5
between OUT1	0	1	Н	L	0	0	Detected	6
and OUT2	1	0	Н	Н	1	1	Not detectable	7
	1	1	L	Н	0	0	Detected	8
Short circuit of	0	0	Н	Н	1	1	Not detectable	9
OUT1 to OUT2	0	1	Z	Z	0	0	Detected	10
	1	0	Н	Н	1	1	Not detectable	11
	1	1	Z	Z	0	0	Detected	12
Short circuit of	0	0	Z	Z	0	0	Detected	13
OUT1 to GND	0	1	Z	Z	0	0	Detected	14
	1	0	Z	Z	0	0	Detected	15
	1	1	L	Н	1	1	Not detectable	16
Short circuit of	0	0	Z	Z	0	0	Detected	17
OUT2 to GND	0	1	Н	L	1	1	Not detectable	18
	1	0	Z	Z	0	0	Detected	19
	1	1	Z	Z	0	0	Detected	20
Short circuit of	0	0	Н	Н	1	1	Not detectable	21
OUT1 to $V_{\rm S}$	0	1	Н	L	1	1	Not detectable	22
C C	1	0	Н	Н	1	1	Not detectable	23
	1	1	Z	Z	0	0	Detected	24
Short circuit of	0	0	Н	Н	1	1	Not detectable	25
OUT2 to V _S	0	1	Z	Z	0	0	Detected	26
	1	0	Н	Н	1	1	Not detectable	27
	1	1	L	Н	1	1	Not detectable	28
Overtempera-	0	0	Z	Z	0	0	Detected	29
ture or	0	1	Z	Z	0	0	Detected	30
undervoltage	1	0	Z	Z	0	0	Detected	31
C C	1	1	Z	Z	0	0	Detected	32
IN:	OUT:	•				·	Status:	•
					_			

0 = Logic LOW

Z = Both output transistors OFF

1 = Logic HIGH L = Low-side transistor ON

H = High-side transistor ON

1 = high, no error

0 = low, error

Circuit Description

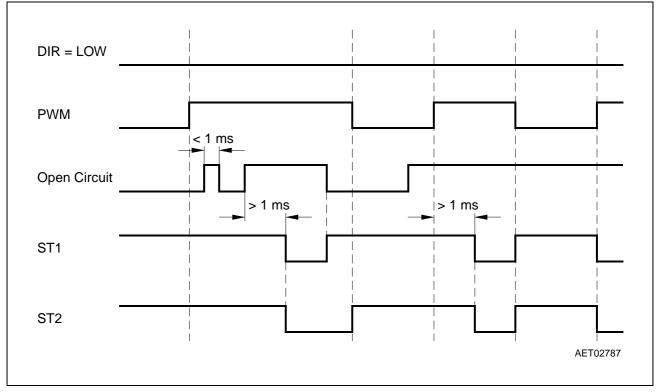
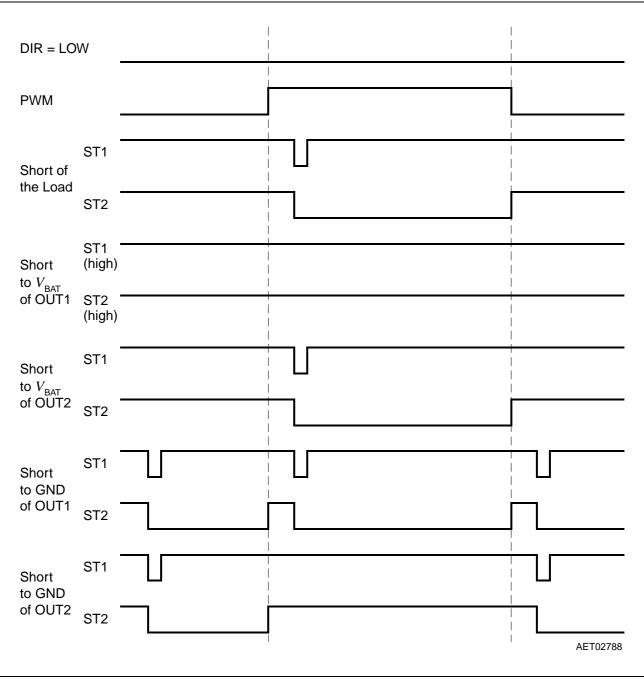



Figure 3 Open Load Diagnosis

Circuit Description

3 Characteristics

3.1 Absolute Maximum Ratings

 $-40 \ ^{\circ}\text{C} < T_{j} < 150 \ ^{\circ}\text{C}$

Parameter	Symbol	Limit Values		Unit	Remarks
		min.	max.		

Voltages

Supply voltage	Vs	- 0.3	40	V	-
		- 1	40	V	$t < 0.5 \text{ s}; I_{\text{S}} > -5 \text{ A}$
Logic input voltage	$V_{ m DIR,} \ V_{ m PWM}$	- 0.3	7	V	0 V < V _S < 40 V
Diagnostics output voltage	V _{ST1, 2}	- 0.3	7	V	-

Currents of DMOS-Transistors and Freewheeling Diodes

Output current (cont.)	I _{OUT1, 2}	- 5	5	А	-
Output current (peak)	I _{OUT1, 2}	-10	10	А	<i>t</i> < 2 ms

Temperatures

Junction temperature	T _j	- 40	150	°C	-
Storage temperature	T _{stg}	- 50	150	°C	_

Thermal Resistances

Junction case	R _{thjC}	-	4	K/W	-
Junction ambient	R _{thjA}	_	65	K/W	-

Note: Maximum ratings are absolute ratings; exceeding any one of these values may cause irreversible damage to the integrated circuit.

3.2 Operating Range

Parameter	ameter Symbol Limit Values		/alues	Unit	Remarks
		min.	max.		
Supply voltage	V _S	$V_{\rm UVOFF}$	40	V	After $V_{\rm S}$ rising above $V_{\rm UV \ ON}$
Supply voltage increasing	1	- 0.3	$V_{\rm UV ON}$	V	Outputs in tristate
Supply voltage decreasing	1	- 0.3	$V_{\rm UVOFF}$	V	condition
Logic input voltage	$V_{ m DIR,} \ V_{ m PWM}$	- 0.3	7	V	_
Status1 input current	I _{ST1}	_	500	μA	Status active
Junction temperature	T _j	- 40	150	°C	-
Input frequency (PWM, DIR)	$f_{\sf IN}$	—	1000	Hz	-

Note: The following restrictions for the operation frequency and the duty cycle have to be considered:

a) switching power dissipation

b) diagnostic filter time

c) switching characteristics

3.3 Electrical Characteristics

6 V < $V_{\rm S}$ < 18 V; $I_{\rm OUT1, 2}$ = 0 A (No load); – 40 °C < $T_{\rm j}$ < 150 °C; unless otherwise specified

Parameter	Symbol	Limit Values			Unit	Test Condition
		min.	typ.	max.		

Outputs OUT1, 2 Static Drain-Source-On Resistance

High-side transistor	R _{DS ON H}	_	280	600	mΩ	<i>T</i> _j = 25 °C
$I_{\rm OUT} = -1$ A; 5.2V < $V_{\rm S}$ < 6 V		_	-	870	mΩ	-
High-side transistor	R _{DS ON H}	_	260	430	mΩ	<i>T</i> _j = 25 °C
$I_{\rm OUT}$ = - 3 A; 6 V < $V_{\rm S}$ < 9 V		_	-	640	mΩ	-
High-side transistor	R _{DS ON H}	-	250	340	mΩ	<i>T</i> _j = 25 °C
$I_{\rm OUT}$ = - 3 A; 9 V < $V_{\rm S}$ < 24 V		_	-	560	mΩ	-
Low-side transistor	R _{DS ON L}	_	280	550	mΩ	<i>T</i> _j = 25 °C
$I_{\rm OUT}$ = 1 A; 5.2V < $V_{\rm S}$ < 6 V		_	-	850	mΩ	-
Low-side transistor	R _{DS ON L}	_	260	380	mΩ	<i>T</i> _j = 25 °C
$I_{\rm OUT}$ = 3 A; 6 V < $V_{\rm S}$ < 9 V		_	-	620	mΩ	-
Low-side transistor	R _{DS ON L}	_	250	340	mΩ	<i>T</i> _j = 25 °C
$I_{\rm OUT}$ = 3 A; 9 V < $V_{\rm S}$ < 24 V		_	_	560	mΩ	-

Short Circuit Protection

Shutdown current threshold 5.2 V< $V_{\rm S}$ < 6V	I _{CS5}	4.5	_	7.5	A	$t < t_{dCS}$
Shutdown current threshold $6 < V_{\rm S} < 9 \rm V$	I _{CS6}	4.8	_	7.5	A	$t < t_{dCS}$
Shutdown current threshold 9 < $V_{\rm S}$ < 24 V	I _{CS9}	5.0	_	7.5	A	$t < t_{dCS}$
Delaytime for overcurrent shutdown	t _{dCS}	5	18	28	μs	_

3.3 Electrical Characteristics (cont'd)

6 V < $V_{\rm S}$ < 18 V; $I_{\rm OUT1, 2}$ = 0 A (No load); – 40 °C < $T_{\rm j}$ < 150 °C; unless otherwise specified

Parameter	Symbol	Limit Values			Unit	Test Condition
		min.	typ.	max.		

Logic Control Inputs DIR, PWM; $V_{IN} = V_{DIR}$, V_{PWM} ; $I_{IN} = I_{DIR}$, I_{PWM}

H-input voltage threshold	V_{INH}	_	_	3.5	V	$V_{\rm IN}$ rising
L-input voltage threshold	V_{INL}	1.0	-	-	V	$V_{\rm IN}$ falling
Hysteresis of input voltage	$V_{\rm INHY}$	0.3	1	-	V	-
H-input current	I _{INH}	20	-	100	μA	$V_{\rm IN}$ = 3.5 V
L-input current	I _{INL}	20	_	100	μA	$V_{\rm IN}$ = 1 V

Status Outputs; $V_{ST} = V_{ST1}$, V_{ST2} ; $I_{ST} = I_{ST1}$, I_{ST2}

ST1, ST2 Low output voltage	V _{STL}	_	_	0.4	V	<i>I</i> _{ST} = 100 μA
ST2 High output voltage	V _{ST2H}	3.9	_	5.4	V	I _{ST2} = – 20 μA
ST1 Output Leakage current	I _{ST1(OFF)}	_	_	5	μA	$V_{\rm ST1}$ = 5 V

Open Load Detection

Detection current	I _{dOL}	10	40	100	mA	5.2 V $< V_{\rm S}$ <18 V
Filter time	t _{dOL}	1	5	10	ms	

Under Voltage Lockout

UV-Switch-ON voltage	$V_{\rm UV ON}$	4.5	_	5.2	V	$V_{\rm S}$ increasing
UV-Switch-OFF voltage	$V_{\rm UVOFF}$	4.0	-	5.1	V	$V_{\rm S}$ decreasing
UV-ON/OFF-Hysteresis	$V_{\rm UVHY}$	_	0.15	_	V	$V_{\rm UVON}-V_{\rm UVOFF}$

Current Consumption

Supply current	Is	_	4	20	mA	PWM = high
----------------	----	---	---	----	----	------------

3.3 Electrical Characteristics (cont'd)

6 V < $V_{\rm S}$ < 18 V; $I_{\rm OUT1, 2}$ = 0 A (No load); – 40 °C < $T_{\rm j}$ < 150 °C; unless otherwise specified

Parameter	Symbol	Limit Values			Unit	Test Condition
		min.	typ.	max.		

Output Timing (device active for $t > 100 \ \mu s$)

Output low-to-high switching time	t _{ON H}	_	_	100	μs	resistive load of 12 Ω ; $V_{\rm S}$ = 13 V; PWM H -> L
Output high-to-low switching time	t _{ON L}	_	_	100	μs	resistive load of 12 $\Omega; V_S = 13 V;$ PWM L -> H
Slew rate rising; 30% - 80%	$(dV/dt)_R$	0.8	-	6	V/µs	resistive load of 12 $\Omega; V_{\rm S}$ = 13 V
Slew rate falling; 30% - 80%	$(dV/dt)_F$	0.8	-	6	V/µs	resistive load of 12 $\Omega; V_{\rm S}$ = 13 V
Setup time after power up on $V_{\rm S}$	t _{ds}	-	-	100	μs	_

Note: Setup time is guaranteed by design.

3.3 Electrical Characteristics (cont'd)

6 V < $V_{\rm S}$ < 18 V; $I_{\rm OUT1, 2}$ = 0 A (No load); – 40 °C < $T_{\rm j}$ < 150 °C; unless otherwise specified

Parameter	Symbol	Limit Values			Unit	Test Condition
		min.	typ.	max.		

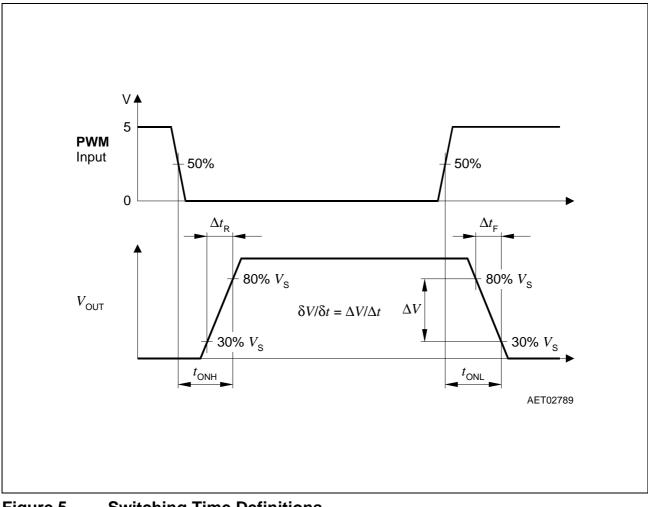
Clamp Diodes Forward Voltage

High-side transistor	V_{FH}	_	_	2	V	<i>I</i> _{FH} = 5 Α
Low-side transistor	V_{FL}	_		2	V	<i>I</i> _{FL} = 5 A

Leakage Current (all Output Transistors OFF)

High-side transistor	I _{LKH}	- 200	_	_	μA	$V_{OUT} = 0;$ $V_{S} = 14 \text{ V}$
Low-side transistor	$I_{\rm LKL}$	_	_	200	μΑ	$V_{\rm OUT}$ = $V_{\rm S}$ = 14 V

Thermal Shutdown


Thermal shutdown junction temperature	$T_{\rm jSD}$	150	_	200	°C	_
Thermal switch-on junction temperature	T _{jSO}	120	_	170	°C	_
Temperature hysteresis	ΔT	-	30	-	К	-

Note: Temperatures are guaranteed by design.

Diagrams

4 Diagrams

Figure 5 **Switching Time Definitions**

DIR	high	low
V _{OUT} =	V _{OUT1}	V _{OUT2}

Diagrams

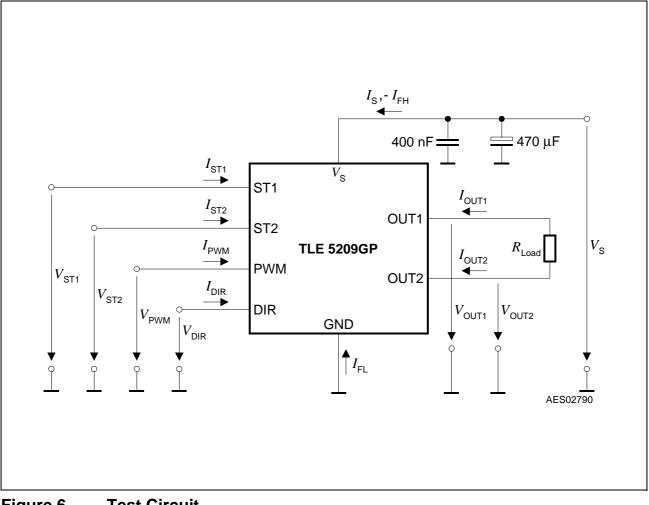


Figure 6 **Test Circuit**

	Overcurrent high-side, short to GND	Overcurrent low-side, short to Vs	Open Load
I _{OUT}	$-I_{CS}$	I _{CS}	I _{dOL}

Diagrams

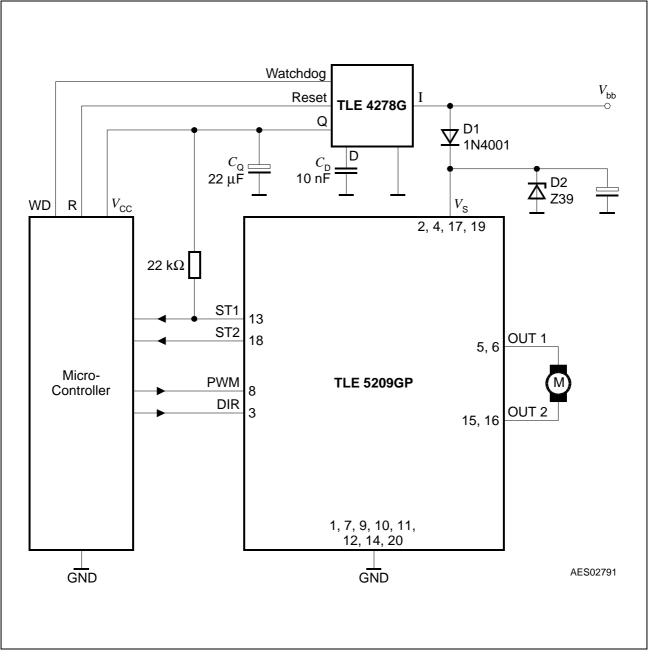
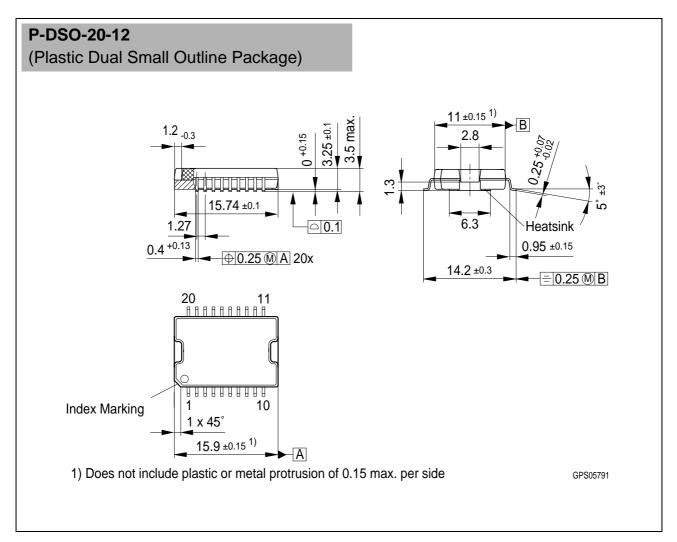



Figure 7 Application Circuit

Package Outlines

Package Outlines 5

Sorts of Packing Package outlines for tubes, trays etc. are contained in our Data Book "Package Information".

SMD = Surface Mounted Device

Dimensions in mm