P

]

leq

se

woanyiaay

WO MF1aYSEIRd Mk

DSP16/DSP16A DEVICE PROGRAMMING
Comments

4. DSP16/DSP16A DEVICE PROGRAMMING

This chapter discusses various aspects of programming the DSP16 and DSP16A devices. Many of
the topics are illustrated in the complete sample programs presented in Appendix B. Techniques
for programming the serial and parallel /O sections of the device may be found in Chapters 5 and
6, respectively.

Chapter 3 described the instruction set specific to the DSP16/DSP16A device. Programming
examples in this manual follow the assembler syntax of the WE DSP16/DSP16A Suppon
Software Library for DSP16/DSP16A source files. An overview of the DSP16/DSP16A
assembly language is provided in the following section.

4.1 DSP16/DSP16A ASSEMBLY-LANGUAGE NOTATION

A DSP16/DSP16A source file exists as a text file and contains DSP16/DSP16A instructions,
dircctives 1o allow the assembler to interpret the instructions and data, and comments to clarify
the use of the program. The syntax of the assembler directives is described in this chapter; also
described are conventions and nomenclature used throughout the remainder of this manual.
Appropriate formats for DSP16/DSP16A source files arc also discussed.

4.1.1 Integer Notation

Decimal, hexadecimal, or octal expressions may be freely mixed when specifying numerical data
in a source file. The syntax is identical to C-language programming.

.

Decimal. Any string of normal digits (0—9) is interpreted as a decimal number, provided it
does not have a leading zero.

Hexadecimal. A numerical string beginning with Ox is interpreted as a hexadecimal number
and may conlain the digits 0—9, a—T, or A—F. Forexample, 0x0 is the same as 0. 0x010 is
the same as 0x10, which is the decimal number 16. And OxFF or Oxff is the decimal number
127.

Octal. A numerical string beginning with the digit zero is interpreted as an octal number and
may contain the digits 0—7. For example, 07 is the decimal number 7 and 010 is the decimal
number 8.

Fixed-Point. Numbers with a decimal point are interpreted as binary fixed-point numbers by
the DSP16/DSP16A assembler. The number of binary digits to the right of the decimal point is
14 by default, but may be changed (see the WE® DSPI6 and DSPI6A Support Software
Library User Manual).

.

4.1.2 Comments
Comments may be placed in the source file to enhance readability and 10 provide information for

other users. A comment may be placed on a line by itself or may appear at the end of a line
containing an instruction. The following lines are examples of valid comments:

4-1

DSP16/DSP16A DEVICE PROGRAMMING
Labels

/* This is a wvalid comment =/
instruction
instruction /* this is a valid comment */

4.1.3 Labels

Labels in a source file serve two purposes: to give a descriplive name to a particular location and
1o provide a destination for a branch instruction. Labels may consist of upper- and/or lower-case
alphanumeric characters and the underscore, although the first character may not be numeric. A
label must be terminated with a colon. Labels may be as long as necessary (0 be descriptive;
however, only the first cight characters are significant. The following lines show examples of
valid labels:

start_1l: instruction /* "start_1" dis a wvalid label */
instruction
end: instruciion /* "end™ is a valid label =/

4.1.4 Data Stored in ROM

Data may be stored in a ROM location by using the int directive. The following lines of source
code are examples of how to store data in ROM:

table: int OxFF [I one RCM location &Y
2*int 0x10 0Oxa2 V£ four ROM locations =/
3eint 23 f* L thres HOM loca =/

fixed: int {* Ir two ROM loc &/

tab end: int f* Ir ene ROM location =/

As shown above, multiple ROM locations may be specified with a single statement. In the
second example, two ROM locations are replicated to initialize four ROM locations; however, in
the third example, 2ll three locations are initialized to the same value.

Following the label fixed, two ROM locations are initialized in a fixed-point notation. By default,
the DSP16/DSP16A assembler assumes that fixed-point numbers are to be assembled with 14 bits
of precision and 2 bits of magnitude. An environment variable, precision, may be changed to
allow other values of precision.

The last example demonstrates another method to specify the precision of a fixed-point format.
The suffix !N (where N is the desired precision) can be used to force different precision encodings
"on the fly." Inthis case, 3.721 is encoded with 6 magnitude bits and 10 precision bits.

4.1.5 RAM Variables

RAM variables can be allocated similarly to data stored in ROM by surrounding the int directives

with the .ram and .endram directives. Note that RAM locations are allocated without being
initialized. The following sequence allocates six RAM variables:

4-2

WO MF1aYSEIRd Mk

DSP16/DSP16A DEVICE PROGRAMMING
Instruction Set Ambiguities

Lam

datal: int /* allgecate 1 RAM v
data2: 2+intc /* allocate Z RAM v
datad: 3tint /= allocate 3 RAM
.endram

4.1.6 DSP16/DSP16A Source-File Format

A DSP16/DSPI16A source file is prepared as a text file by using a text editor with the UNIX
Operating System or MS-DOS Operating System. (See Appendix B for complete
DSP16/DSP16A program listings.) When creating a source file, the following conventions
should be observed:

» The source file name must end with ".s".

Directives beginning with *." (such as..ram and .endram) must begin in the first column.

.

White space is used to separate the ficlds of instructions. Either a space or a tab character
constitutes white space. Using tabs to separate and align the fields improves the readability of
source files.

« Labels normally begin in the first column to enhance readability, but may be indented if
desired.

Tt is customary, but not required, to place the title and a brief description of the program at the
top of the file for reference.

4.2 PROGRAMMING TECHNIQUES

The following sections describe problems commonly encountered when programming the
DSP16/DSP16A device and their possible solutions. In general, many of the problems
encountered when programming other digital signal processors (such as latency and pipeline
effects) have been eliminated by the design of the DSP16 and DSP16A devices.

.2.1 Instruction Set Ambiguities

Several instructions, which normally would be written identically, can be interpreted as various
types of instructions. This interpretation of the instructions determines the number of ROM
locations used 1o store the instruction, the number of instruction cycles used to execute the
instruction, and whether or not the instruction affects the flags. Hence, the interpretation can be
critical. For example, the instruction

a0 = v

could be a multiply/ALU, special function, or data move instruction. When the instruction is
interpreted as a multiply/ALU or special function instruction, the instruction requires one ROM
location and executes in one instruction cycle. When the instruction is interpreted as a data move
instruction, the instruction requires one ROM location and exccutes in two instruction cycles.
The interpretation of the instruction is critical if conditional testing based on the results of the
instruction execution is performed. The DSP16/DSP16A flags are affected by the multiply/ALU
and special function instructions, but not by the data move instructions.

4-3

DSP16/DSP16A DEVICE PROGRAMMING
Polling for YO

The W._E DSP} 6/DSP16A Support Software Library provides optional mnemonics that may be
uscd'wnh an instruction 10 specify its type. Table 4-1 shows the mnemonics that can be used 1o
specify the type of instruction. For example, the instruction

au al =y

is interpreted as a multiply/ALU instruction.

Table 4-1. Optional Mnemonics

Use To Specify
au Muldply/ALU instruction
iftrue | Special function instruction
set Short immediate instruction
move | Data move instruction

If an instruction may be encoded several ways, the assembler chooses the encoding based on the
following priority:

1. Special function
Multiply/ALU

(]

Shont immediate

3
4. Datamove
4.2.2 Polling for O

When not using interrupt driven /O, polling for input and output conditions is the simplest means
of mng /O timing. The following segment of code continuously polls the pioc register to
dcz_cz"mme if the condition IBF is true, meaning that there is data in the serial input register
waiting 1o be processed. When data is loaded into the serial input buffer from an extemal device,
program execution continues below the wait loop.

‘ ¥y = 0x010 /* place mask into y register =/
wait: af = pioc /* check pioc register for IBF &/
al & ¥y /* - lock only at bit 4 =/
if eg goto wait /* - iIf ne input; wait. *f

x] = sdx / move data into RAM */

This same code fragment can be used to poll any I/O condition by changin g2 the value in register
¥, which is uscd to mask the unwanted bits of the pioc register. For example, use 0x04 to check
only the condition PIDS, which indicates that a parallel input was performed.

4-4

WO MF1aYSEIRd Mk

DSP16/DSP16A DEVICE PROGRAMMING
Programming Tips

4.2.3 Modulo Addressing

Modulo addressing is provided to allow efficient implementation of cyclical memory accesses. To
use modulo addressing, the first RAM address of the modulo must be loaded into register rb and
the last RAM address into re. The register being used as the memory pointer must be
postincremented by +1. Each time the pointer is used, its value is compared with the contents of
register re (before the postincrement is performed). If the two values are equal, the value of
register rb is loaded into the register being used to address the RAM and the cycle repeats.

It is important to note that whenever register re contains a value not equal 1o zero, modulo
addressing is active. On reset, the value of re is zero. Whenever modulo addressing is not used,
this register should contain zero and should not be used 10 store any number other than the
address of the end of a modulo.

4.2.4 Random Number Generation

The DAU includes a 10-state pscudorandom binary sequence (PRBS) generator, which is used to
toggle a bitin the DAU. The status of this bit may be determined by testing for the "heads” or
"tails” condition. The following segment of code generates a 16-bit random number in the high
half of accumilator 20 by randomly setnting each of the 16 bits:

do 16 |{
if heads a0h = adh + 1 /* if heads, set bit to I =/
al = al << X /* shife left 1 pesitien */

]

The pseudorandom sequence is incremented each time it is tested and may be resct by writing any
value 1o the pi register (writing to the pi register does not affect its contents except when in an
interrupt service routine). (See Section 4.2.5.)

4.2.5 Programming Tips
The following section describes several practical programming tips that may not be obvious to a
new user of the DSP16/DSP16A.

1) When loading coun: values into ¢0 and c1, the count value is 1 — count, where count is the
desired number of times the loop is to be executed. An easy way to assemble the loop counter
load is to let the assembler compute the 1 — count value. For example, if aloopistobe
repeated 10 times, the following code could be used:

el =1 - 10
loop:

if €01t goto loop

The assembler correctly computes 1 — count, and the code is easier to read.

4-5

DSP16/DSP16A DEVICE PROGRAMMING
Programming Tips

2) Ifextra 16-bit registers are needed, there are several possible ways 10 "create” them.

a) If not using interrupts or development system breakpoints, an icall instruction may be
placed at location 0. This causes a branch to location 2 (where program execution begins)
and makes the DSP16/DSP16A “think” that it is in an interrupt service routine (ISR).
While in an ISR, the DSP16/DSP16A no longer updates the pi register cach time the pc
register changes, and the pi register may be written to (writes to pi do not affect its contents
when not in an ISR, but writing the pi register resets the pseudorandom sequence
generator). When in an ISR, the pi register is not used by the DSP16/DSP16A and is free
for use as a general-purpose 16-bit register.

b) While not in a subroutine, the pr register is available as a general-purpose 16-bit register.

€) While not doing ROM table lookups, the pt register is available as a general-purpose 16-bit
register. It can easily be incremented or modificd using:

fy =X, ¥=aT, Z : ¥} x = *pr++ I3

lgad of y necessary when =/
/* loading x from ROM o
or
i=N /* or =N =/
ly = ¥, ¥ = aTf, 2 ¢y} x = zpt++i

Note: The XAAU adder is only 12 bits wide, therefore, modifying as above is modulo 4K,

ie.,
ot = 4085
ly =¥, ¥Y=2aT, Z : yl =x = =pt++
/* ot i3 now 0Q, */
/* not 4096 (2e+:2) =/
However,
al = pt
alh = a0h + 1
ot = al

is no problem, except above 32767 unless saturation logic is disabled on a0 (since a value
above 32767 appears 1o be an overflowed 2's complement value),

3) Wh_ile not using modulo addressing (re = 0), the rb register is available as a general-purpose
register. The re register is not available since a non-zero value enables modulo addressing.
Note that all YAAU register are 9 bits wide in the DSP16 and 16 bits wide in the DSP16A.

4) Ifa write of 0 to a RAM location is required. and modulo addressing is not being used, the re
register can be used (re is zero by definition). '

N [++; ==, #+j] = xe

clears the RAM location pointed 1o by rN with no setup required.

46

WO MF1aYSEIRd Mk

DSP16/DSP16A DEVICE PROGRAMMING
Concurrent Interrupts

5) Ifadding and subtracting accumulators without using y is desired, the following instructions
could be used to perform an add (zssuming that only the high half of an accumulator is being
used or the high half is a whole number and the low half is a fraction):

al = al >> 4

alh = afh + 1

al = al << 4 /* adds 16 (2+**4)
/* {similarly, <<

o al
adds 258) */

8

ald = -al
aQh = ath + 1
a0 = -al /* subtracts 1 from al */

Shifting left and adding can be used to add fractions.
6) The following two-cycle data move instructions can be coded as a single-cycle multiply/ALU
instruction (when executing in the cache) by doing a dummy load to x.

do 40
aN /* 2-cycle data move ®/

=g e
L}

This takes 81 machine cycles, while:
do 40 {
¥y = aN x = *pt++ /* single-cycle when in cache */

}

takes only 43 machine cycles (2 when it is loaded the first time and 2 the last ime it is
executed). In both cases, the do instruction requires 1 cycle. Note that this is a trivial
example to make the cycle counts more obvious. This “trick” is most useful when the kemnel
of an operation is in the cache and a result needs to be multiplicd by a coefficient or operated
on by the ALU.

7) The above assumes that pt has already been set and that postincrementing pt does not affect
anything. If this is not true (postincrementing pt is not desired), the following can be done:

=49
do 40
y = aN x = *pt++i /* postincrement by 0 */

H
This does not alter the value of pt.

4.2.6 Concurrent Interrupts

Consideration must be given to situations in which multiple interrupting conditions occur. The
DSP16/DSP16A device does not allow nesting of interrupts: however, there are other ways lo
cuarantee that all interrupts can be recognized and serviced.

4-7

DSP16/DSP16A DEVICE PROGRAMMING
Concurrent Interrupts

Case 1

If an intemal and external im(:'rrup(request occur at nearly the same time and before the execution
of Lhe brimg{wom (start of interrupt service routine), the status field in the pioc register can be
examined. In this case, the status will indicate that both interrupts are pending. Th

serviced accordingly. b ¥ 5y nle

RULE: .§n interrupt occurring after an intemnal interrupt occurs and before TACK is asserted
(in TESpOnse 10 the intemal interrupt) causes the INT bit in the pioc register (bit 0) to
be set, providing that INT meets its assertion time requirements. .

The INT signal is ncgated on the rising edge of TACK.

(9]

i
—|-

oy
P

-— >
z <
=l x
f\‘
-
| e P L

A. Branch-10-one instruction executed. Beginning

of interrupt service responding 1o negation of PIDS.
B. pioc register has PIDS and INT status bits set.

iretum instruction exceuted. End of interrupt service routine.
D. Next interruptible instruction.

Figure 4-1. Case 1 - Internal Interrupt (PIDS) and INT
Occur Before Assertion of IACK

48

WO MF1aYSEIRd Mk

DSP16/DSP16A DEVICE PROGRAMMING
Concurrent Interrupts

Case 2

If INT is asserted (high) when TACK is already asserted (i.e., when the DSP16 device is servicing
another interrupt), then INT must remain asserted until the next rising edge of IACK. This is
because the internal interrupt request is cleared on the falling edge of IACK. This guarantees that
the interrupt request (assertion of INT) will be serviced at the next interruptible instruction after
the currently executing interrupt service routine has finished.

RULE: To guarantee recognition of INT when it is asseried during an interrupt service
routine (IACK high), INT should not be negated until the next rising edge of TACK,
providing that INT assertion time is met.

m

(3]

S I |
N — |
m

)

A. Branch-to-one instruction executed in resp 0
internal interrupt (PIDS).

pioc register has PIDS status bit set.

iretumn instruction executed.

B.

(=

D. Nexi interruptible instruction.

E. Branch-wo-one instruction execuled in response to INT.
F.

pioc register has INT status bit set.

Figure 4-2. Case 2 — INT Asserted During Service of Internal
Interrupt After pioc Status is Checked

49

DSP16/DSP16A DEVICE PROGRAMMING

Concurrent Interrupts

Case 3

Internal interrupt requests remain pending until the respective pdx or sdx registers are serviced.
Hence, if an extemnal interrupt is being serviced and another intemal interrupt request is
generated, the internal interrupt request remains pending and causes a second interrupt to be taken
at the next interruptible instruction. In this way, the intemal interrupt is not missed if it occurs
during the servicing of another extemal interrupt.

el
w

-

e)
m

mn

_——
———

N

)
[¥]
o

|
i

Branch-10-one instruction.

pice register has INT status bit set.
Read of pioc register status.

pioc register has PIDS status bit set.
ireturn instruction executed.

Next interruptible instruction.

Branch-10-oné instruction. Begin to service intemal intemupt.

T o mmo oWy

Service internal interrupt,

Figure 4-3. Case 3 — Internal Interrupt Asserted While
Servicing an External Interrupt

WO MF1aYSEIRd Mk

DSP16/DSP16A DEVICE PROGRAMMING
Interrupt Latency

Case 4

If it is possible for two or more interrupt requests to be pending, the easiest method for servicing
these interrupts is to service the extemal interrupt first and then the internal interrupt requests
individually (by taking a new interrupt for each internal request) until no more interrupts are
pending. The drawback of this procedure is that if external interrupts are frequent, there may be a
large latency when servicing intemnal interrupts.

4.2.7 Interrupt Latency

Two classes of DSP16/DSP16A instructions are not interruptible. The first class contains all
branch instructions. The second class contains instructions that are executing in the cache (i.e.,
any instruction when executing from the on-chip instruction cache cannot be interrupted).

Interrupt latency is bounded by the longest in-cache operation. In situations where interrupt
latency is critical, in-cache operations should be split into smaller cache operations whose
execution time is less than any critical latency requircments. In this situation, an interruptible
instruction must be placed between successive cache instructions.

For example:
do 93 {
instr
instrc
ianstr
}
nop /* interruptible instruction =/
rede 30
nop /* interruptible instruetion */
redo 350

4-11

4-12

