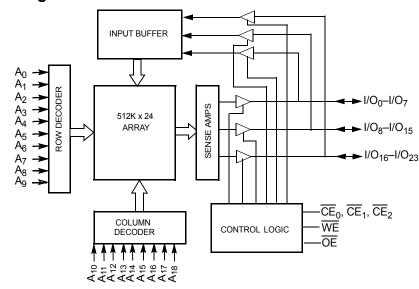


512 K × 24 Static RAM

Features

- High speed
 □ t_{AA} = 8 ns
- Low active power □ 1080 mW (max)
- Operating voltages of 3.3 ± 0.3 V
- 2.0 V data retention
- Automatic power-down when deselected
- TTL-compatible inputs and outputs
- Easy memory expansion with \overline{CE}_0 , \overline{CE}_1 and \overline{CE}_2 features
- Available in non Pb-free 119 ball PBGA.

Functional Description


The CY7C1012AV33 is a high-performance CMOS static RAM organized as 512 K words by 24 bits. Each data byte is separately controlled by the individual chip selects (CE₀, CE₁, CE₂). CE₀ controls the data on the I/O₀–I/O₇, while CE₁ controls the data on I/O₈–I/O₁₅, and CE₂ controls the data on the data pins I/O₁₆–I/O₂₃. This device has an automatic power-down feature that significantly reduces power consumption when deselected.

Writing the data bytes into the SRAM is accomplished when the chip select controlling that byte is LOW and the write enable input (WE) input is LOW. Data on the respective input/output (I/O) pins is then written into the location specified on the address pins (A₀–A₁₈). Asserting all of the chip selects LOW and write enable L<u>OW</u> will write all 24 bits of data into the SRAM. Output enable (\overline{OE}) is ignored while in WRITE mode.

Data bytes can also be individually read from the device. Reading a byte is accomplished when <u>the</u> chip select controlling that byte is LOW and write enable (WE) HIGH while output enable (\overline{OE}) remains LOW. Under these conditions, the contents of the memory location specified on the address pins will appear on the specified data input/output (I/O) pins. Asserting all the chip selects LOW will read all 24 bits of data from the SRAM.

The 24 I/O pins ($I/O_0-I/O_{23}$) are placed in a high-impedance state wh<u>en</u> all the chip selects are HIGH or when the output enable (\overline{OE}) is HIGH during a READ mode. For further details, refer to the truth table of this data sheet.

The CY7C1012AV33 is available in a standard 119-ball PBGA.

Functional Block Diagram

Cypress Semiconductor Corporation Document Number: 38-05254 Rev. *H 198 Champion Court

San Jose, CA 95134-1709

• 408-943-2600 Revised June 7, 2011

CY7C1012AV33

Contents

Selection Guide	3
Pin Configurations	3
Maximum Ratings	4
Operating Range	4
DC Electrical Characteristics	4
Capacitance	4
AC Test Loads and Waveforms	5
AC Switching Characteristics	5
Switching Waveforms	7
Truth Table	9
Ordering Information	9
Ordering Code Definitions	9

Package Diagram	10
Acronyms	
Document Conventions	
Units of Measure	11
Document History Page	12
Sales, Solutions, and Legal Information	13
Worldwide Sales and Design Support	13
Products	13
PSoC Solutions	13

Selection Guide

Description		-8	Unit
Maximum Access Time		8	ns
Maximum Operating Current	Commercial	300	mA
	Industrial	300	
Maximum CMOS Standby Current	Commercial/Industrial	50	mA

Pin Configurations

	1	2	3	4	5	6	7
Α	NC	А	А	А	А	А	NC
В	NC	А	А	CE0	А	А	NC
С	I/O ₁₂	NC	CE ₁	NC	CE ₂	NC	I/O ₀
D	I/O ₁₃	V_{DD}	V _{SS}	V_{SS}	V_{SS}	V_{DD}	I/O ₁
E	I/O ₁₄	V _{SS}	V _{DD}	V_{SS}	V_{DD}	V_{SS}	I/O ₂
F	I/O ₁₅	V_{DD}	V_{SS}	V_{SS}	V_{SS}	V_{DD}	I/O ₃
G	I/O ₁₆	V_{SS}	V_{DD}	V_{SS}	V_{DD}	V_{SS}	I/O ₄
н	I/O ₁₇	V_{DD}	V _{SS}	V_{SS}	V_{SS}	V_{DD}	I/O ₅
J	NC	V_{SS}	V _{DD}	V_{SS}	V_{DD}	V_{SS}	DNU
к	I/O ₁₈	V_{DD}	V_{SS}	V_{SS}	V_{SS}	V_{DD}	I/O ₆
L	I/O ₁₉	V_{SS}	V_{DD}	V_{SS}	V_{DD}	V_{SS}	I/O ₇
м	I/O ₂₀	V_{DD}	V_{SS}	V_{SS}	V_{SS}	V_{DD}	I/O ₈
Ν	I/O ₂₁	V_{SS}	V_{DD}	V_{SS}	V_{DD}	V_{SS}	I/O ₉
Р	I/O ₂₂	V_{DD}	V _{SS}	V_{SS}	V_{SS}	V_{DD}	I/O ₁₀
R	I/O ₂₃	А	NC	NC	NC	А	I/O ₁₁
Т	NC	А	А	WE	А	А	NC
U	NC	А	А	OE	А	А	NC

Figure 1. 119-ball PBGA (Top View) ^[1, 2]

Notes

 NC pins are not connected on the die.
 DNU pins have to be left floating or tied to VSS to ensure proper application.

Maximum Ratings

Exceeding maximum ratings may shorten the useful life of the device. User guidelines are not tested.

Storage Temperature65 °C to +150 °C	
Ambient Temperature with Power Applied55 °C to +125 °C	
Supply Voltage on V_{CC} to Relative $GND^{[3]}$ –0.5 V to +4.6 V	
DC Voltage Applied to Outputs in high Z State $^{[3]}$ 0.5 V to V_{CC} + 0.5 V	

DC Electrical Characteristics

Over the Operating Range

DC Input Voltage ^[3]	–0.5 V to V _{CC} + 0.5 V
Current into Outpute (LOM)	20 4

Current into Outputs (LOW) 20 mA

Operating Range

Range	Ambient Temperature	V _{cc}
Commercial	0 °C to +70 °C	$3.3~V\pm0.3~V$
Industrial	–40 °C to +85 °C	

Devenueter	Description	Test Com		-8	11	
Parameter	Description	Description Test Conditions ^[4] Min			Мах	Unit
V _{OH}	Output HIGH Voltage	$V_{\rm CC}$ = Min, I _{OH} = -4.0 m.	A	2.4	-	V
V _{OL}	Output LOW Voltage	V _{CC} = Min, I _{OL} = 8.0 mA		-	0.4	V
V _{IH}	Input HIGH Voltage			2.0	V _{CC} + 0.3	V
V _{IL} ^[3]	Input LOW Voltage			-0.3	0.8	V
I _{IX}	Input Leakage Current	$GND \leq V_I \leq V_{CC}$	$GND \leq V_I \leq V_{CC}$			μA
I _{OZ}	Output Leakage Current	GND <u><</u> V _{OUT} <u><</u> V _{CC} , Out	put Disabled	-1	+1	μA
I _{CC}	V _{CC} Operating Supply Current	V _{CC} = Max,	Commercial	-	300	mA
		$f = f_{MAX} = 1/t_{RC}$	Industrial	-	300	mA
I _{SB1}	Automatic CE Power-down Current — TTL Inputs	$\begin{array}{l} \text{Max } V_{CC}, \ \overline{CE} \geq V_{IH}, \ V_{IN} \geq V_{IH} \ \text{or} \\ V_{IN} \leq V_{IL}, \ f = f_{MAX} \end{array}$		-	100	mA
I _{SB2}	Automatic CE Power-down Current — CMOS Inputs	$\begin{array}{l} \underline{\text{Max}} \ V_{CC}, \\ \hline CE \geq V_{CC} - 0.3 \ V, \\ V_{IN} \geq V_{CC} - 0.3 \ V, \\ \text{or} \ V_{IN} \leq 0.3 \ V, \ \text{f} = 0 \end{array}$	Commercial / Industrial	-	50	mA

Capacitance


Parameter ^[5]	Description	Test Conditions	Max	Unit
C _{IN}	Input Capacitance	T _A = 25 °C, f = 1 MHz, V _{CC} = 3.3 V	8	pF
C _{OUT}	I/O Capacitance		10	pF

Notes

- 3. V_{\parallel} (min) = -2.0 V for pulse durations of less than 20 ns. 4. CE refers to a combination of CE₀, CE₁, and CE₂. CE is active LOW when all three of these signals are active LOW at the same time. 5. Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveforms

AC Switching Characteristics

Over the Operating Range

Parameter ^[7]	Description	-	8	Unit
Farameter	Description	Min	Max	Unit
Read Cycle		•		
t _{power} ^[8]	V _{CC} (typical) to the first access	1	-	ms
t _{RC}	Read Cycle Time	8	-	ns
t _{AA}	Address to Data Valid	-	8	ns
t _{OHA}	Data Hold from Address Change	3	-	ns
t _{ACE}	\overline{CE}_1 , \overline{CE}_2 , and \overline{CE}_3 LOW to Data Valid	-	8	ns
t _{DOE}	OE LOW to Data Valid	-	5	ns
t _{LZOE}	OE LOW to low Z ^[9]	1	-	ns
t _{HZOE}	OE HIGH to high Z ^[9]	-	5	ns
t _{LZCE}	\overline{CE}_1 , \overline{CE}_2 , and \overline{CE}_3 LOW to low $Z^{[9]}$	3	-	ns
t _{HZCE}	\overline{CE}_1 , \overline{CE}_2 , or \overline{CE}_3 HIGH to high $Z^{[9]}$	-	5	ns
t _{PU}	\overline{CE}_1 , \overline{CE}_2 , and \overline{CE}_3 LOW to power-up ^[10]	0	-	ns
t _{PD}	\overline{CE}_{1} , \overline{CE}_{2} , or \overline{CE}_{3} HIGH to power-down ^[10]	-	8	ns
t _{DBE}	Byte Enable to Data Valid	-	5	ns
t _{LZBE}	Byte Enable to low Z ^[9]	1	-	ns
t _{HZBE}	Byte Disable to high Z ^[9]	_	5	ns

Notes

Valid SRAM operation does not occur until the power supplies have reached the minimum operating V_{DD} (3.0 V). As soon as 1 ms (T_{power}) after reaching the minimum operating V_{DD}, normal SRAM operation can begin including reduction in V_{DD} to the data retention (V_{CCDR}, 2.0 V) voltage.
 Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5 V, input pulse levels of 0 to 3.0 V, and output loading of the specified I_{DL}/I_{DH}

7. Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5 V, input pulse levels of 0 to 3.0 V, and output loading of the specified I_{OL}/I_{OH} and transmission line loads. Test conditions for the read cycle use output loading as shown in part (a) of the Figure 2, unless specified otherwise.
8. This part has a voltage regulator which steps down the voltage from 3 V to 2 V internally transmission time to be provided initially before a read/write operation is started.

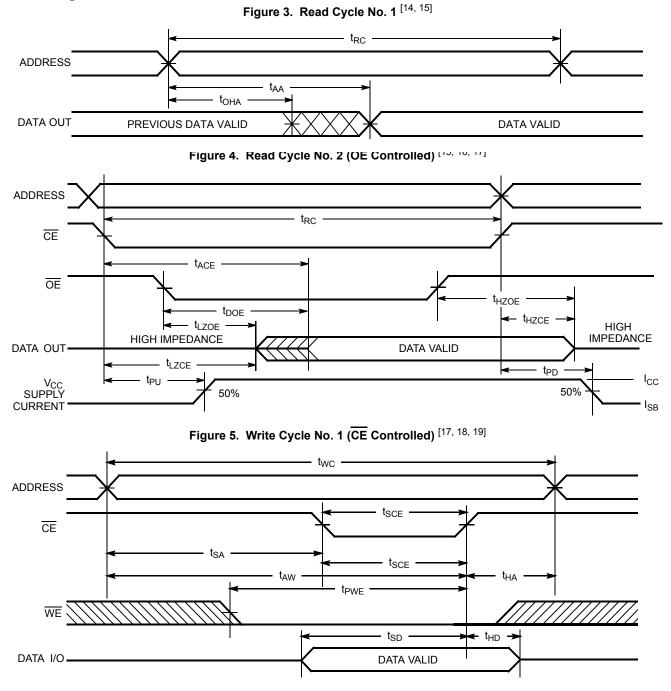
This part has a voltage regulator which steps down the voltage from 3 V to 2 V internally. t_{power} time has to be provided initially before a read/write operation is started.
 t_{HZOE}, t_{HZEE}, t_{HZWE}, t_{HZBE}, and t_{LZOE}, t_{LZCE}, t_{LZWE}, t_{LZBE} are specified with a load capacitance of 5 pF as in part (b) of Figure 2. Transition is measured ±200 mV from steady-state voltage.

10. These parameters are guaranteed by design and are not tested.

AC Switching Characteristics (continued)

Over the Operating Range

Parameter ^[7]	Pagarintian	-	Unit							
	Description	Min	Max	Unit						
Write Cycle ^[1]	Write Cycle ^[11, 12]									
t _{WC}	Write Cycle Time	8	-	ns						
t _{SCE}	\overline{CE}_1 , \overline{CE}_2 , and \overline{CE}_3 LOW to Write End	6	-	ns						
t _{AW}	Address Set-up to Write End	6	-	ns						
t _{HA}	Address Hold from Write End	0	-	ns						
t _{SA}	Address Set-up to Write Start	0	-	ns						
t _{PWE}	WE Pulse Width	6	-	ns						
t _{SD}	Data Set-up to Write End	5	-	ns						
t _{HD}	Data Hold from Write End	0	-	ns						
t _{LZWE}	WE HIGH to low Z ^[13]	3	-	ns						
t _{HZWE}	WE LOW to high Z ^[13]	-	5	ns						
t _{BW}	Byte Enable to End of Write	6	_	ns						


Notes

- The internal write time of the memory is defined by the overlap of CE₁, CE₂, and CE₃ LOW and WE LOW. The chip enables must be active and WE must be LOW to initiate a write, and the transition of any of these signals can terminate the write. The input data set-up and hold timing should be referenced to the leading edge of the signal that terminates the write.

12. The minimum write cycle time for Write Cycle No. 3 (WE controlled, OE LOW) is the sum of t_{HZWE} and t_{SD}.
13. t_{HZOE}, t_{HZEE}, t_{HZWE}, t_{HZBE}, and t_{LZOE}, t_{LZCE}, t_{LZWE}, t_{LZBE} are specified with a load capacitance of 5 pF as in part (b) of Figure 2 on page 5. Transition is measured ±200 mV from steady-state voltage.

Switching Waveforms

Notes

- 14. <u>Device</u> is continuously selected. \overline{OE} , $\overline{CE} = V_{IL}$.
- 15. WE is HIGH for read cycle.
- 15. We is HIGH for read cycle.
 16. Address valid prior to or coincident with CE transition LOW.
 17. CE refers to a combination of CE₀, CE₁, and CE₂. CE is active LOW when all three of these signals are active LOW at the same time.
 18. Data I/O is high impedance if OE = V_{IH}.
 19. If CE goes HIGH simultaneously with WE going HIGH, the output remains in a high-impedance state.

Switching Waveforms (continued)

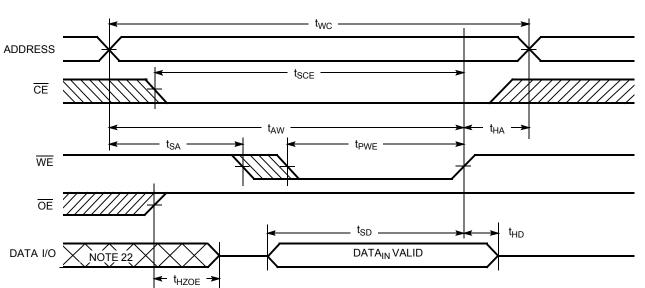
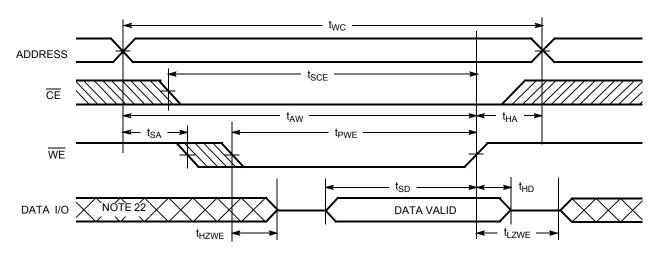
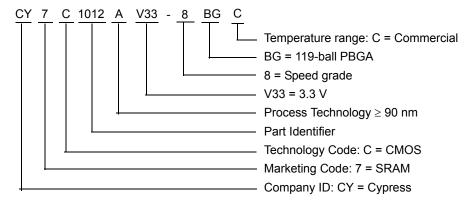



Figure 6. Write Cycle No. 2 (WE Controlled, OE HIGH During Write) ^[20, 21]

Figure 7. Write Cycle No. 3 (WE Controlled, OE LOW) [21, 20]

Notes

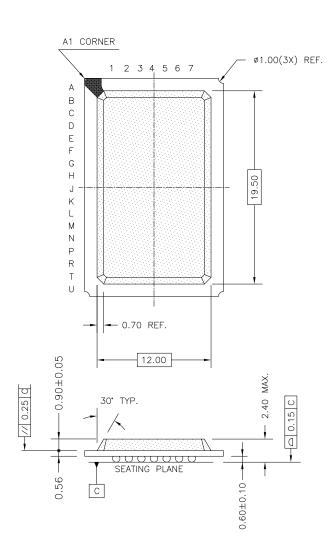
- 20. Data I/O is high impedance if $\overline{OE} = V_{IH}$. 21. If \overline{CE} goes HIGH simultaneously with WE going HIGH, the output remains in a high-impedance state. 22. During this period the I/Os are in the output state and input signals should not be applied. 23. \overline{CE} refers to a combination of \overline{CE}_0 , \overline{CE}_1 , and \overline{CE}_2 . \overline{CE} is active LOW when all three of these signals are active LOW at the same time.

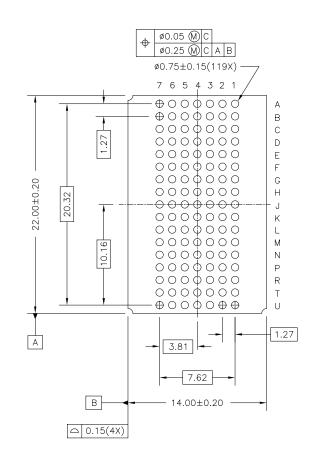

Truth Table

CE0	CE ₁	CE ₂	OE	WE	I/O ₀ –I/O ₂₃	Mode	Power
Н	н	Н	Х	Х	High Z	Power-down	Standby (I _{SB})
L	н	Н	L	Н	I/O ₀ –I/O ₇ Data Out	Read	Active (I _{CC})
Н	L	Н	L	Н	I/O ₈ –I/O ₁₅ Data Out	Read	Active (I _{CC})
Н	н	L	L	Н	I/O ₁₆ –I/O ₂₃ Data Out	Read	Active (I _{CC})
L	L	L	L	Н	Full Data Out	Read	Active (I _{CC})
L	Н	Н	Х	L	I/O ₀ –I/O ₇ Data In	Write	Active (I _{CC})
Н	L	Н	Х	L	I/O ₈ –I/O ₁₅ Data In	Write	Active (I _{CC})
Н	Н	L	Х	L	I/O ₁₆ –I/O ₂₃ Data In	Write	Active (I _{CC})
L	L	L	Х	L	Full Data In	Write	Active (I _{CC})
L	L	L	Н	Н	High Z	Selected, Outputs Disabled	Active (I _{CC})

Ordering Information

Speed (ns)	Ordering Code	Package Diagram	Package Type	Operating Range
8	CY7C1012AV33-8BGC	51-85115	119-ball (14 × 22 × 2.4 mm) PBGA	Commercial


Ordering Code Definitions



Package Diagram

Figure 8. 119-ball PBGA (14 × 22 × 2.4 mm) BG119, 51-85115

51-85115 *C

Acronyms

Acronym	Description
CMOS	complementary metal oxide semiconductor
CE	chip enable
I/O	input/output
OE	output enable
PBGA	plastic ball grid array
SRAM	static random access memory
TTL	transistor-transistor logic
WE	write enable

Document Conventions

Units of Measure

Symbol	Unit of Measure
°C	degree Celcius
MHz	Mega Hertz
μA	micro Amperes
mA	milli Amperes
mm	milli meter
ms	milli seconds
mV	milli Volts
mW	milli Watts
ns	nano seconds
%	percent
pF	pico Farad
V	Volts
W	Watts

Document History Page

Document Title: CY7C1012AV33, 512 K × 24 Static RAM Document Number: 38-05254

REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change
**	113711	03/11/02	NSL	New Data Sheet
*A	117057	07/31/02	DFP	Removed 15-ns bin
*В	117988	09/03/02	DFP	Added 8-ns bin
*C	118992	09/19/02	DFP	Change Cin - input capacitance -from 6 pF to 8 pF Change Cout -output capacitance from 8 pF to 10 pF
*D	120382	11/15/02	DFP	Final data sheet. Added note 4 to "AC Test Loads and Waveforms"
*E	492137	See ECN	NXR	Removed 12 ns speed bin from product offering Included note #1 and 2 on page #2 Changed the description of I _{IX} from Input Load Current to Input Leakage Current in DC Electrical Characteristics table Updated Ordering Information Table
*F	2896044	03/19/2010	AJU	Updated Ordering Information Table Updated Package Diagram Added Sales, Solutions, and Legal Information
*G	3097955	11/30/2010	PRAS	Added Ordering Code Definitions. Added Acronyms and Units of Measure. Minor edits.
*H	3086499	06/07/2011	AJU	Updated Selection Guide (Removed -10 column). Updated DC Electrical Characteristics (Removed -10 column). Updated AC Switching Characteristics (Removed -10 column). Updated in new template.

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

Automotive	cypress.com/go/automotive
Clocks & Buffers	cypress.com/go/clocks
Interface	cypress.com/go/interface
Lighting & Power Control	cypress.com/go/powerpsoc
	cypress.com/go/plc
Memory	cypress.com/go/memory
Optical & Image Sensing	cypress.com/go/image
PSoC	cypress.com/go/psoc
Touch Sensing	cypress.com/go/touch
USB Controllers	cypress.com/go/USB
Wireless/RF	cypress.com/go/wireless

PSoC Solutions

psoc.cypress.com/solutions PSoC 1 | PSoC 3 | PSoC 5

© Cypress Semiconductor Corporation, 2002-2011. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

Document Number: 38-05254 Rev. *H

Revised June 7, 2011

Page 13 of 13

All products and company names mentioned in this document may be the trademarks of their respective holders.