

NPN Silicon RF Transistor

Preliminary data

- For low voltage / low current applications
- Ideal for VCO modules and low noise amplifiers
- Low noise figure: 1.1 dB at 1.8 GHz
- World's smallest SMD leadless package
- Excellent ESD performance typical value > 1500V (HBM)
- High f_T of 22 GHz

ESD: Electrostatic discharge sensitive device, observe handling precaution!

Туре	Marking	Pin Configuration			Package	
BFR460L3	AB	1 = B	2 = E	3 = C	TSLP-3-1	

Maximum Ratings

Parameter	Symbol	Value	Unit	
Collector-emitter voltage	$V_{\sf CEO}$	4.5	V	
Collector-emitter voltage	V_{CES}	15		
Collector-base voltage	V_{CBO}	15		
Emitter-base voltage	V_{EBO}	1.5		
Collector current	I _C	50	mA	
Base current	I _B	5		
Total power dissipation ¹⁾²⁾	P _{tot}	200	mW	
<i>T</i> _S ≤ 108°C				
Junction temperature	T_{i}	150	°C	
Ambient temperature	T_{A}	-65 150		
Storage temperature	T _{stg}	-65 150		

Thermal Resistance

Parameter	Symbol	Value	Unit
Junction - soldering point ³⁾	R _{thJS}	≤ 210	K/W

 $^{^{1}}P_{\mathrm{tot}}$ due to Maximum Ratings

 $^{^2\}textit{T}_{\textrm{S}}$ is measured on the collector lead at the soldering point to the pcb

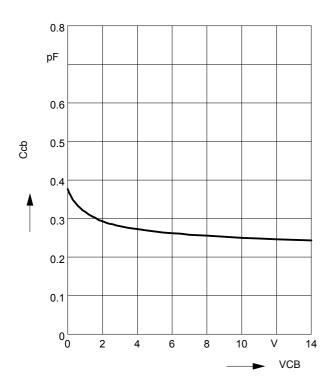
 $^{^3}$ For calculation of R_{thJA} please refer to Application Note Thermal Resistance

Electrical Characteristics at $T_A = 25$ °C, unless otherwise specified

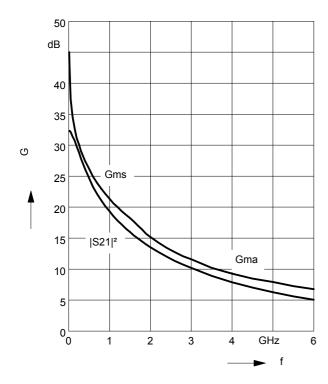
Parameter	Symbol	Values			Unit
		min.	typ.	max.	
Characteristics					
Collector-emitter breakdown voltage	V _{(BR)CEO}	4.5	5	-	V
$I_{\rm C}$ = 1 mA, $I_{\rm B}$ = 0					
Collector-base cutoff current	I _{CBO}	-	-	100	nA
$V_{CB} = 5 \text{ V}, I_{E} = 0$					
Emitter-base cutoff current	I _{EBO}	-	-	1	μA
$V_{\text{EB}} = 0.5 \text{ V}, I_{\text{C}} = 0$					
DC current gain	h _{FE}	50	130	200	-
$I_{\rm C}$ = 20 mA, $V_{\rm CE}$ = 3 V					

Electrical Characteristics at $T_A = 25$ °C, unless otherwise specified

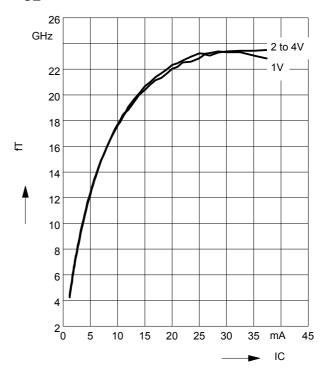
Electrical Characteristics at $T_A = 25^{\circ}\text{C}$, unless Parameter	Symbol	Values			Unit
		min.	typ.	max.	
AC Characteristics (verified by random sample	ng)				
Transition frequency	f_{T}	16	22	-	GHz
$I_{\rm C}$ = 30 mA, $V_{\rm CE}$ = 3 V, f = 1 GHz					
Collector-base capacitance	C _{cb}	-	0.3	0.45	pF
V_{CB} = 3 V, f = 1 MHz, emitter grounded					
Collector emitter capacitance	C _{ce}	-	0.14	-	
V_{CE} = 3 V, f = 1 MHz, base grounded					
Emitter-base capacitance	C _{eb}	-	0.55	-	
V_{EB} = 0.5 V, f = 1 MHz, collector grounded					
Noise figure	F				dB
$I_{\rm C} = 5 \text{ mA}, \ V_{\rm CE} = 3 \text{ V}, \ Z_{\rm S} = Z_{\rm Sopt},$					
f = 1.8 GHz		-	1.1	_	
$I_{\rm C}$ = 5 mA, $V_{\rm CE}$ = 3 V, $Z_{\rm S}$ = $Z_{\rm Sopt}$,					
f = 3 GHz		-	1.35	-	
Power gain, maximum stable ¹⁾	G _{ms}	-	16.0	-	dB
$I_{\rm C}$ = 20 mA, $V_{\rm CE}$ = 3 V, $Z_{\rm S}$ = $Z_{\rm Sopt}$,					
$Z_{L} = Z_{Lopt}$, $f = 1.8 \text{ GHz}$					
Power gain, maximum available ¹⁾	G _{ma}	-	11	-	dB
$I_{\rm C}$ = 20 mA, $V_{\rm CE}$ = 3 V, $Z_{\rm S}$ = $Z_{\rm Sopt}$,	1				
$Z_{L} = Z_{Lopt}$, $f = 3$ GHz					
Transducer gain	$ S_{21e} ^2$				dB
$I_{\rm C}$ = 20 mA, $V_{\rm CE}$ = 3 V, $Z_{\rm S}$ = $Z_{\rm L}$ = 50 Ω ,	1 2.0				
f = 1,8 GHz		-	14	_	
$I_{\rm C}$ = 20 mA, $V_{\rm CE}$ = 3 V, $Z_{\rm S}$ = $Z_{\rm L}$ = 50 Ω ,					
f = 3 GHz		-	10	-	
Third order intercept point at output ²⁾	IP ₃	-	27	-	dBm
$V_{CE} = 3 \text{ V}, I_{C} = 20 \text{ mA}, f = 1.8 \text{ GHz}$					
1dB Compression point at output	P _{-1dB}	-	11.5	-	
$I_{\rm C}$ = 20 mA, $V_{\rm CE}$ = 3 V, f = 1.8 GHz					


 $^{^{1}}G_{ma} = |S_{21} / S_{12}| (k-(k^{2}-1)^{1/2}), G_{ms} = |S_{21} / S_{12}|$

²IP3 value depends on termination of all intermodulation frequency components.

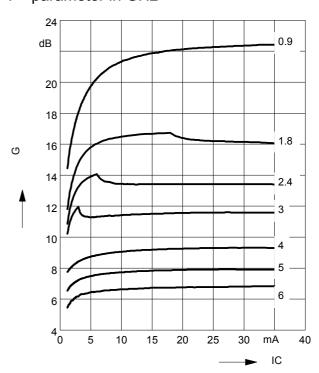

Termination used for this measurement is 50Ω from 0.1 MHz to 6 GHz

Collector-base capacitance C_{cb} = $f(V_{CB})$ f = 1MHz


Power gain G_{ma} , G_{ms} , $|S_{21}|^2 = f(f)$ $V_{CE} = 3 \text{ V}$, $I_C = 20 \text{ mA}$

Transition frequency $f_T = f(I_C)$

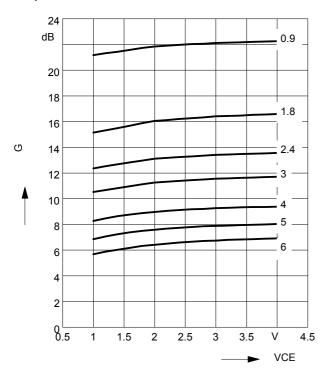
f = 1 GHz


 V_{CE} = parameter in V

Power gain G_{ma} , $G_{ms} = f(I_C)$

 $V_{CE} = 3V$

f = parameter in GHz



Power gain G_{ma} , $G_{ms} = f(V_{CE})$

 $I_{\rm C}$ = 20 mA

f = parameter in GHz

Published by Infineon Technologies AG, St.-Martin-Strasse 53, 81669 München
© Infineon Technologies AG 2004. All Rights Reserved.

Attention please!

The information herein is given to describe certain components and shall not be considered as a guarantee of characteristics.

Terms of delivery and rights to technical change reserved.

We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.Infineon.com).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.

Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.