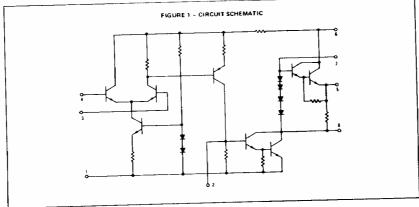
MFC8020A MFC8021A MFC8022A

CLASS B AUDIO DRIVERS

 \dots , designed as preamplifiers and driver circuits for complementary output transistors.

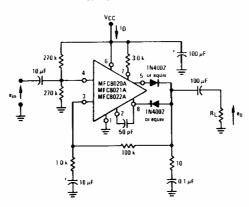
- Driver for Auto Radios and up to 20-Watt Amplifiers
 High Gain 7.0 mV for 1.0 Watt, R_L = 3.2 Ohms
 High Input Impedance 500-Kilohm Capability
 Output Biasing Diodes Included
 No Special hF E Matching of Outputs Required


A XIMUM RATINGS (Ta + 25°C priness otherwise notes)

Rating				
	MFCB020A	MFC8021A	MFC8022A	Unit
Power Supply Voltage	35	20	45	Vdc
Power Dissipation Denate above TA = +25°C	10	1.0 10	1.0	Watt mW/ ^o C
Peak Output Current (pins 5 & 8)	150	150	150	mA
Operating Temperature Range	-10 to +75	-10 to +75	-10 to +75	°C
Storage Temperature Range	-55 to +125	-55 to +125	-55 to +125	°c

THERMAL CHARACTERISTICS Unst OC/W Characteristic
Thermal Resistance
Junction Temperature 100

CLASS B AUDIO DRIVERS SILICON MONOLITHIC FUNCTIONAL CIRCUITS



See Packaging Information Section for outline dimensions.

ELECTRICAL CHARACTERISTICS (T. + +25°C unless otherwise noted) (See Figure 2)

Characteristic		Min	Тур	Max	Unit
Orain Current (ein = 0)					mA
V _{CC} = 30 Vdc	MFCB020A	-	10	30	1
VCC = 14 Vdc	MF C8021A	-	7.0	30	
VCC = 40 Vdc	MF C8022A	-	12	30	
Sensitivity (Po = 1.0 Watt, f = 1.0 kHz)					mV
e ₀ = 8.95 V(RMS), R _L = 165 Ω	MFC8020A	-	89	112	
e ₀ = 3.2 V(RMS), R ₁ = 65 Ω	MFC8021A	-	32	40	
e _O = 12.65 V(RMS), R _L = 165 \(\Omega\)	MFC8022A	-	126	160	
Total Harmonic Distortion (f = 1.0 kHz)]	%
V_{CC} = 30 V, $\mathbf{e_0}$ = 8.95 V(RMS), $\mathbf{R_L}$ = 165 Ω	MF C8020A	-	0.7	5.0	
V _{CC} = 14 V, e _o = 3.2 V(RMS),R _L =65 Ω	MFC8021A	-	1.0	5.0	ļ
V _{CC} = 40 V, e ₀ = 12.65 V(RMS), R _L = 165 Ω	MF C8022A	-	1.5	5.0	
Open-Loop Gain					dB
V _{CC} * 30 V, R _L *165 Ω	MF C8020A		89	-	
V _{CC} = 14 V, R _L = 65 Ω	MF C8021A		87		
V _{CC} = 40 V, R _L = 165 Ω	MF C8022A	-	90	_	
Ripple Rejection					dB
f = 60 Hz, A _v ± 100, a _{in} = 0, Power Supply Ripple ≈ 1.0 V(RMS)		-	27		
Equivalent Input Noise			18	_	μ∨
e _{in} = 0, R _S = 1.0 k 11, BW = 100 Hz - 10 i	Hz		 " -	 	Vdc
Quiescent Output Voltage (ein = 0)	*** 000004	1	15	_	Vac
V _{CC} = 30 V	MFC8020A	,	7.0	-	
VCC * 14 V	MFC8021A		20	1 .	l
V _{CC} = 40 V	MFC8022A		20	<u> </u>	┸

FIGURE 2 - TEST CIRCUIT

TYPICAL AUTO RADIO AUDIO APPLICATION and CHARACTERISTICS

(TA = +25°C unless otherwise noted.)

FIGURE 3 - APPLICATION CIRCUIT FOR MFC8021A

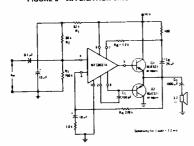


FIGURE 4 - TOTAL HARMONIC DISTORTION VOTSUS OUTPUT POWER

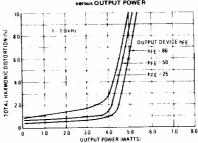


FIGURE 5 - TOTAL HARMONIC DISTORTION VALUE FREQUENCY

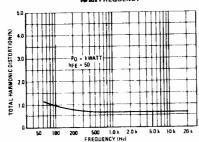
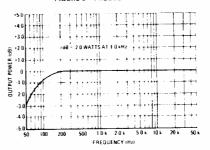



FIGURE 6 - FREQUENCY RESPONSE

APPLICATIONS INFORMATION for MFC8021A (AUTO RADIO AUDIO)

The MFC8021A combines all the voltage gain required for an automotive radio audio amplifier into one package reducing the circuit-board area requirement. The circuit shown in Figure 3 has an input sensitivity of approximately 7.2 militivoits for a one-watt output. Sensitivity can be adjusted by changing the value of 84. The circuit performance is a function of the output device higgs are some simple of the output transistors. The bandwidth of the amplifier is determined by the capacitor, C₁. If C₁ is increased to 300 pF the high frequency 3.0 dB point is typically 20 kHz. An illustration of the copper side of the printed-circuit board layout is shown in Figure 7. The output transistors are mounted on the heatsink which for auto-radio audio applications should have a maximum thermal resistance of IB-C/M for each device or 9.0°C/M when both output transistors are mounted on the same heatsink.

FIGURE 7 — PRINTED CIRCUIT BOARD for AUTOMOTIVE RADIO AUDIO 10 and 20 WATT AMPLIFIERS (COPPER SIDE)

TYPICAL 10-and-20 WATT AMPLIFIER APPLICATION AND CHARACTERISTICS

(T_A = +26°C unless otherwise noted.)

FIGURE 8 - APPLICATION CIRCUIT for MFC8020A/and MFC8022A

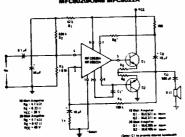


FIGURE 9 - TOTAL HARMONIC DISTORTION WIRELS OUTPUT POWER

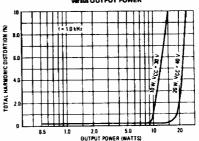


FIGURE 10 - TOTAL HARMONIC DISTORTION WE'S SEE FREQUENCY

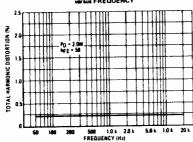
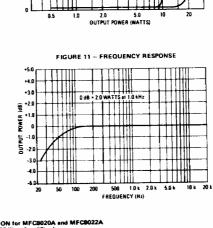



FIGURE 11 ~ FREQUENCY RESPONSE

APPLICATIONS INFORMATION for MFC8020A and MFC8022A (10-Wett and 20-Watt Amplifiers)

The MFC8020A and MFC8022A are high-voltage parts capable of driving 10-to-20 watt audio amplifiers. The gain of the circuit shown in Figure 8 changes when the value of R 4 is varied and the bendwidth is destermined by C1. Emitter resistors are required at the higher voltages used for 10-to-20 watt audio amplifiers to provide thermal stability. The value of R_E is a function of the heatsink thermal resistance and supply voltage. The heatsink requirements for operation at +65°C (with both devices mounted on the same heatsink) is about 14°C/W for the 10-watt amplifier and 8.0°C/W for the 20-watt amplifier. If the maximum ambient operating temperature is reduced then the heatsink can be reduced in size as calculated by

$$\theta_{SA} = \frac{T_J - (\theta_{JS}) P_D - T_A}{P_D}$$

where θ_{SA} = Heatsink thermal resistance

T₃ = Maximum junction operating temperature

θ_{JS} = Junction to heatsink thermal resistance (includes all surface interface components for thermal resistance such as the insulating washer)

PD = Maximum power dissipation of transistors (This occurs at about 60% of maximum output power) 6.0 W for 10 W, 7.2 W for 12 W

TA = Maximum ambient temperature

The printed circuit board layout is shown in Figure 7.