SONY

CXD2301Q

8-bit 30MSPS Video A/D Converter with Built-in Amplifier/Clamp

Description

The CXD2301Q is an 8-bit CMOS A/D converter for video applications with built-in amplifier/sync-clamp circuits. A maximum conversion rate of 30MSPS is attained at a low power consumption by adopting a 2-step parallel system.

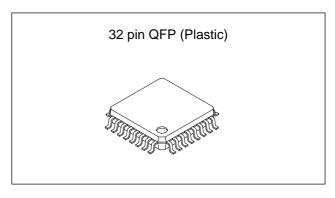
Features

- Resolution: 8 bits ±1/2LSB (DL)
- Maximum sampling frequency: 30MSPS
- Low power consumption: 120mW (at 30MSPS typ.)

(Including reference current)

- · Standby function:
 - 0.5mW power consumption in standby
- Amplifier functions: Built-in 3x amplifier (15MHz band),
 2-input selector function

provided


- Synchronous clamp function
- Clamp ON/OFF function
- Reference voltage self-bias circuit
- TTL compatible output
- 3V digital interface capability
- Single 5V or dual 4.75/3.3V power supplies
- Low input capacitance: 8pF
- Reference impedance: 330Ω (typ.)

Applications

Wide range of application fields where high-speed A/D conversion is required such as in the digital systems of TVs, VCRs, etc.

Structure

Silicon gate CMOS IC

Absolute Maximum Ratings (Ta = 25°C)

- Supply voltage VDD 7
- Reference voltage VRT, VRB

V_{DD} +0.5 to V_{SS} -0.5 V

- Input voltage (analog) VIN
 - V_{DD} +0.5 to V_{SS} -0.5 V
- Input voltage (digital) VIH, VIL

 V_{DD} +0.5 to V_{SS} -0.5 V

• Output voltage (digital) Voн, VoL

V_{DD} +0.5 to V_{SS} -0.5 V

• Storage temperature Tstg -55 to +150 °C

Recommended Operating Conditions

- Supply voltage IDVss-AVssI 0 to 100 mV
 Single power supply AVDD, DVDD 5.0 ± 0.25 V
 Dual power supply AVDD 4.75 ± 0.25 V
 DVDD 3.3 ± 0.3 V
- Reference input voltage

Clock pulse width

VRB 0 to V
VRT to 2.2 V
• Analog input ADIN More than 1.2Vp-p

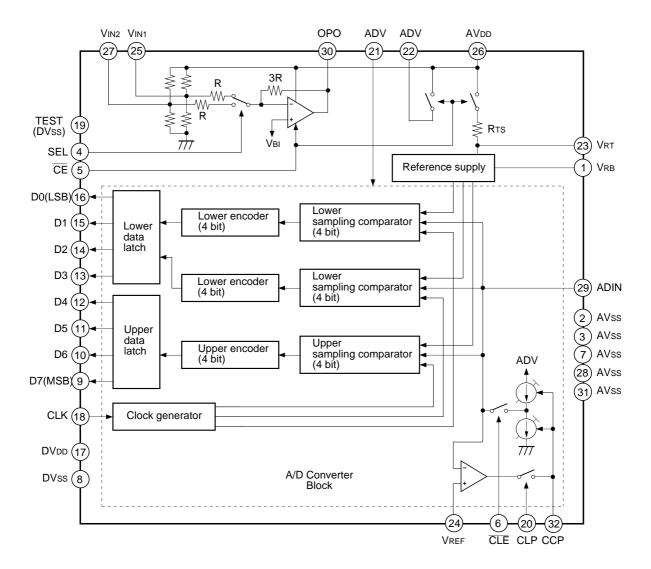
Tewo

• Operating ambient temperature

TPWI

Topr -20 to +75 °C

16 (min)


16 (min)

ns

ns

Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits.

Block Diagram

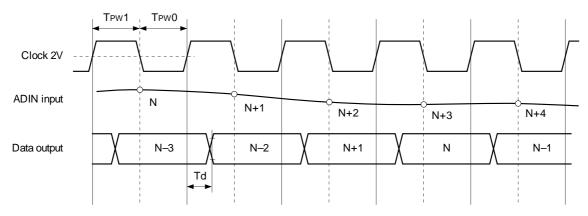
Pin Description

1	Vrb	AVDD	Reference voltage (bottom) Connect to AVss for normal use. When another external voltage is input, connect an external 0.1µF capacitor and retain a 1.5V differential compared to the top reference voltage.
23	Vrt	RTS Rref AVss	Reference voltage (top) By setting VRB to AVss, outputs approximately 1.5V. Connect only a 0.1µF external by-pass capacitor for normal use. When another external voltage is input, it must be 2.2V or lower.
2, 3, 7, 28, 31	AVss		Analog GND.
4	SEL	AVDD	Switches the input of the 3x amplifier. When SEL is at Low level, VIN1 is selected. When SEL is at High level, VIN2 is selected.
5 (CE	5 W DVss	Standby function ON/OFF selector. In standby state when High.
19	TEST	AŬss	Fix to Vss for normal use.
6	CLE	AVDD 6 18	When CLE = Low: Clamp function is enabled. When CLE = High: Clamp function is disabled, and only the normal A/D converter function is enabled.
18 (CLK	20	Clock input
20	CLP	↓ CE AVss	Inputs the clamp pulse to Pin 20 (CLP). Clamps the High interval signal voltage.
8 [DVss		Digital GND.
9 to 16 [D7 to D0	Dio	D7 (MSB) to D ₀ (LSB) output Outputs Low level in standby. In operation, the phase of D7 to D ₀ output is inverted against the phase of ADIN.
17 [DV _{DD}		5V or 3.3V

Pin No.	Symbol	Equivalent circuit	Description
21	ADV	AVDD CE 21 AVss	Short Pins 21 and 22, and connect 0.1μF
22	ADV	AVDD AVSS	external capacitor.
24	Vref	AVDD 24 AVSS	Clamp reference voltage input. Clamps so that the reference voltage and the clamp interval ADIN input signal are equal. The reference voltage is more than 0.5V.
25 27	VIN1 VIN2	AVDD 200 R11 R R R12 AVss	Amplifier input pin. Biased internally at 1.9V (when AVDD = 5V) or at 1.8V (when AVDD = 4.75V). When in standby as well. When SEL is at Low level, VIN1 is selected for input; When SEL is at High level, VIN2 is selected for input.
26	AVDD		5V or 4.75V

Pin No.	Symbol	Equivalent circuit	Description
29	ADIN	AVDD 29 AVSS	A/D converter block analog input.
30	ОРО	AVDD 30 AVSS	Amplifier output. The phase of this output is inverted against the phase of V _{IN1, 2} . In standby mode, it becomes high-impedance output condition.
32	ССР	AVDD 32 AVss	Integrates the clamp control voltage. The relationship between the CCP voltage variation and the ADIN voltage is positive phase.

ullet The following table shows the status of the digital output pins when the TEST pin is used with the $\overline{\text{CE}}$ and SEL pins.


TEST	CE	SEL	D1	D2	D3	D4	D5	D6	D7	D8
L	L	Х	D1	D2	D3	D4	D5	D6	D7	D8
L	Н	X	L	L	L	L	L	L	L	L
H	L	X	◀			TEST	mode			-
H	Н	L	Н	L	Н	L	Н	L	Н	L
Н	Ι	Н	L	Н	L	Н	L	Н	L	Н

Digital Output

The following table shows the correlation between the ADIN input voltage and the digital output code.

Take notice that the phase of ADIN input signal voltage is inverted against the phase of the digital output.

ADIN Input signal voltage	Step	MSI	_	jita	lou	itpu	t co		LSB
VRT	0	0	0	0	0	0	0	0	0
:	:					:			
:	127	0	1	1	1	1	1	1	1
:	128	1	0	0	0	0	0	0	0
:	:					:			
Vrb	255	1	1	1	1	1	1	1	1

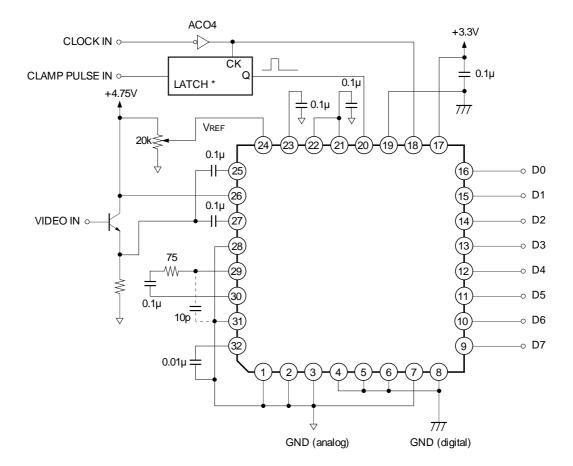
 $_{\odot}$: Indicates point at which input signal is sampled

Fig. 1. Timing Chart

Electrical Characteristics

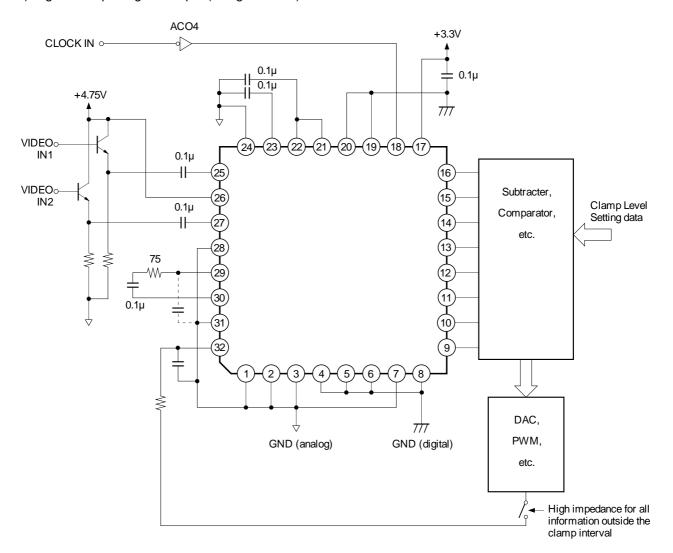
(1) When using a single power supply (Fc = 30MSPS, AVDD = DVDD = +5V, VRB = 0V, VRT = 1.5V, Ta = 25°C)

Item	Symbol	Cor	nditions	Min.	Тур.	Max.	Unit	
Supply current	lad + Idd	Fc = 35MSPS NTSC ramp wa	ave input		27	35	mA	
Standby supply current	Іѕтв	CE = DV _{DD}			130	200	μA	
Max. conversion rate	Fc max	Vin = 0 to 1.5V	,	30			MODO	
Min. conversion rate	Fc min	fin = 1kHz ram	р			0.5	MSPS	
ADIN input band (at -1dB)	BW				20		MHz	
ADIN input capacitance	CADIN	VIN = 0.75V + 0	0.07Vrms		8		pF	
Reference resistance (VRT to VRB)	RREF			230	330	440	Ω	
Self bias	Vrt	VRB = AVSS		1.38	1.52	1.66	V	
O#s studies as	Еот			-40	-20	0	>/	
Offset voltage	Еов			+25	+45	+65	mV	
Disital insutualtana	Vін			3.5				
Digital input voltage	VIL					0.5	- V	
Disital insert success	Iн	VIH = VDD				5		
Digital input current	lı∟	DVDD = max.	VIL = 0V			5	- μA	
Digital autout august	Іон	D\/i	Voh = VDD-0.5V	-1.1	-2.5		- mA	
Digital output current	loL	DVDD = min.	Vol = 0.4V	3.7	6.5			
Output data delay	TDL	With TTL 1gate	e and 10pF load	7	13	25	ns	
Integral nonlinearity error	EL	Fc = 30MSPS Vin = 0 to 1.5V	,		+0.5	+1.3	LSB	
Differential nonlinearity error	Ed	Fc = 30MSPS Vin = 0 to 1.5V	,		±0.3	±0.5	LSB	
Differential gain error	DG	NTSC 40IRE n	nod		1		%	
Differential phase error	DP	ramp, Fc = 14.	3MSPS		0.5		deg	
Aperture jitter	taj				30		ps	
Sampling delay	tsd				2		ns	
Clamp offset voltage	Eoc	Vadin = DC, PWS = 3µsec	VREF = 0.5V VREF = 1.5V	0 -40	+20 -20	+40	- mV	
Clamp pulse delay	tcpd		1		25		ns	
Amplifier gain	•	DC to 15MHz		8.5	9.5	10.5	dB	
VIN1 and VIN2 bias voltage	VBI1, 2	When open			1.9		V	
VIN1 and VIN2 input resistance	R ₁₁ , 2	•		19	27	35	kΩ	
VIN1 and VIN2 input capacitance	Cl1, 2				15		pF	


(2) When using a dual power supply (Fc = 30MSPS, AVDD = 4.75V, DVDD = 3.3V, VRB = 0V, VRT = 1.5V, Ta = 25°C)

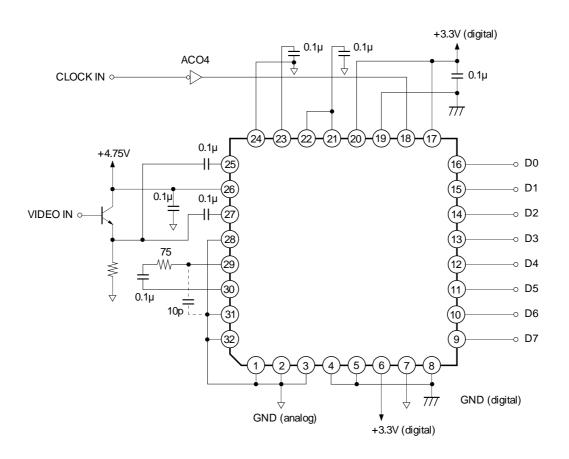
Item	Symbol	Con	nditions	Min.	Тур.	Max.	Unit
Analog supply current	I AD	Fc = 30MSPS NTSC ramp wave input			24	32	mA
Digital supply current	IDD	Fc = 30MSPS NTSC ramp wave input			1	2	mA
Standby supply current	Іѕтв	CE = DVDD			130	200	μΑ
Max. conversion rate	Fc max	Vin = 0 to 1.5V		30			MSPS
Min. conversion rate	Fc min	fin = 1kHz ram	p			0.5	INISPS
ADIN input band (at -1dB)	BW				20		MHz
ADIN input capacitance	Cadin	VIN = 0.75V + 0	0.07Vrms		8		pF
Reference resistance (VRT to VRB)	RREF			230	330	440	Ω
Self bias	VRT	VRB = AVSS		1.44	1.52	1.6	V
0" !:	Еот			-40	-20	0	.,
Offset voltage	Еов			+25	+45	+65	mV
	Vін			2.5			1
Digital input voltage	VIL					0.5	V
	Іін	DVDD = max.				5	
Digital input current	lıL					5	μA
Digital autout aurrent	Іон	DVDD = min. $VOH = VDD - 0.5V$ $VOL = 0.4V$		-1.1	-2.5		mA
Digital output current	loL			3.7	6.5		
Output data delay	TDL	With TTL 1gate	e and 10pF load	7	13	25	ns
Integral nonlinearity error	EL	Fc = 30MSPS Vin = 0 to 1.5V	,		+0.5	+1.3	LSB
Differential nonlinearity error	Ed	Fc = 30MSPS Vin = 0 to 1.5V			±0.3	±0.5	LSB
Differential gain error	DG	NTSC 40IRE n	nod		1		%
Differential phase error	DP	ramp, Fc = 14.	3MSPS		0.5		deg
Aperture jitter	taj				30		ps
Sampling delay	tsd				2		ns
	_	VIN = DC,	VREF = 0.5V	0	+20	+40	
Clamp offset voltage	Eoc	PWS = 3µsec	VREF = 1.5V	-40	-20	0	- mV
Clamp pulse delay	tcpd		1		25		ns
3x amplifier gain		DC to 15MHz		8.5	9.5	10.5	dB
VIN1 and VIN2 bias voltage	VBI1, 2	When open			1.8		V
VIN1 and VIN2 input resistance	R ₁₁ , 2			19	27	35	kΩ
VIN1 and VIN2 input capacitance	C _{11, 2}				15		pF

Application Circuit

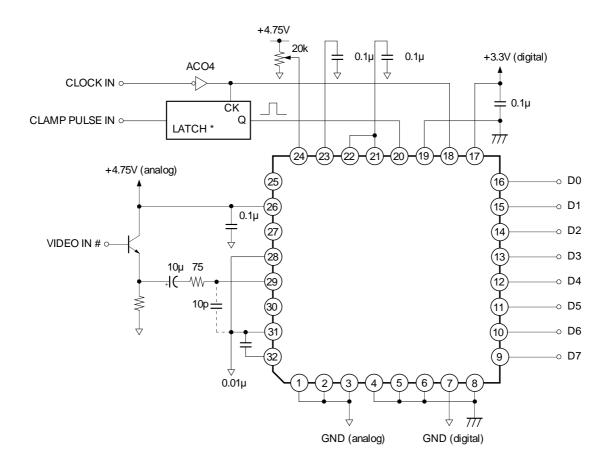

(1) When using the internal amplifier

a) Clamp usage example (using self bias)

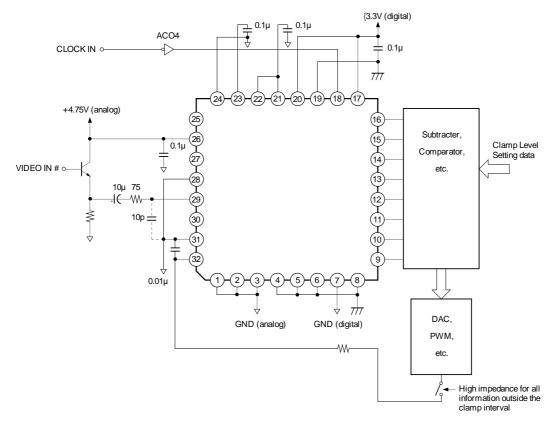
^{*} Although the ADC sampling clock latches the clamp pulse, it is not needed for basic clamp operation. However, depending on the relationship between the sampling frequency and the clamp pulse frequency, a small beat might be generated as V sag. The latch circuit is valid at this time.


b) Digital clamp usage example (using self bias)

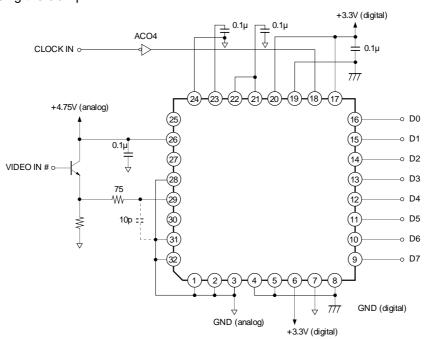
^{*} The relationship between the CCP voltage (Pin 32) variation and the ADIN voltage variation is positive phase.


^{*} \triangle ADIN/ \triangle VccP = 3.0 (fs = 30MSPS)

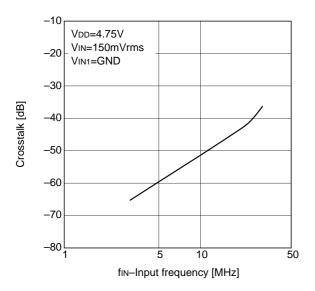
c) When not using the clamp


(2) When not using the internal amplifier

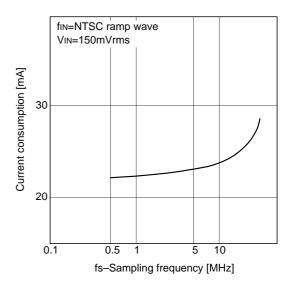
a) Clamp usage example


- * Although the ADC sampling clock latches the clamp pulse, it is not needed for basic clamp operation. However, depending on the relationship between the sampling frequency and the clamp pulse frequency, a small beat might be generated as V sag. The latch circuit is valid at this time.
- # Take care that the phase of ADIN input is inverted against the phase of the digital output, because the use of the built-in inverting amplifier is standard. (Refer to "Digital Output" on page 6.)

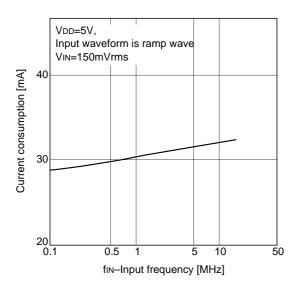
b) Digital clamp usage example


- * The relationship between the CCP voltage (Pin 32) variation and the ADIN voltage variation is positive phase.
- * $\Delta VADIN/\Delta VCCP = 3.0$ (fs = 20MSPS)

c) When not using the clamp



Take care that the phase of ADIN input is inverted against the phase of the digital output, because the use of the built-in inverting amplifier is standard. (Refer to "Digital Output" on page 6.)


Example of Representative Characteristics

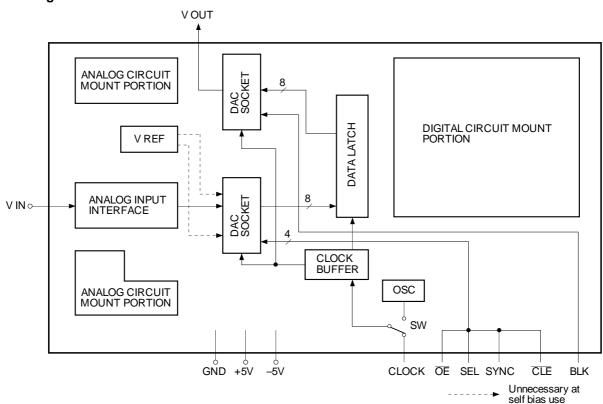
Input frequency of Vin2 vs. Crosstalk Vin2→Vin1

Sampling frequency vs. Current consumption

Input frequency vs. Current consumption

SONY

CXD2301Q


8bit ADC and DAC Evaluation Board

Evaluation boards are available for the high speed, low power consumption CMOS converters, CXD2301Q (8-bit 30MHz A/D) and CXD1171M (8-bit 40MHz D/A).

The evaluation board is composed of a main board common to either type, to which is added sub board D2301Q or sub board D1171M. The junction is made through a socket.

To the main board are mounted an input interface, clock buffer and latch. To each of the sub boards is mounted CXD2301Q and CXD1171M respectively. Those IC's are mounted according to recommended print patterns designed to provide maximum performance to the A/D and D/A converters.

Block Diagram

Characteristics

Resolution 8bit
 Maximum conversion rate 30MHz
 Digital input level CMOS level

• Supply voltage ±5.0V (Single +5V power supply possible at self bias use)

Supply Voltage

Item	Min.	Тур.	Max.	Unit
+5V -5V			165 20	mA

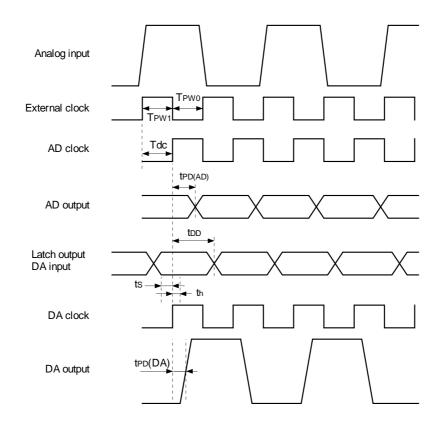
Clock Input

CMOS compatible

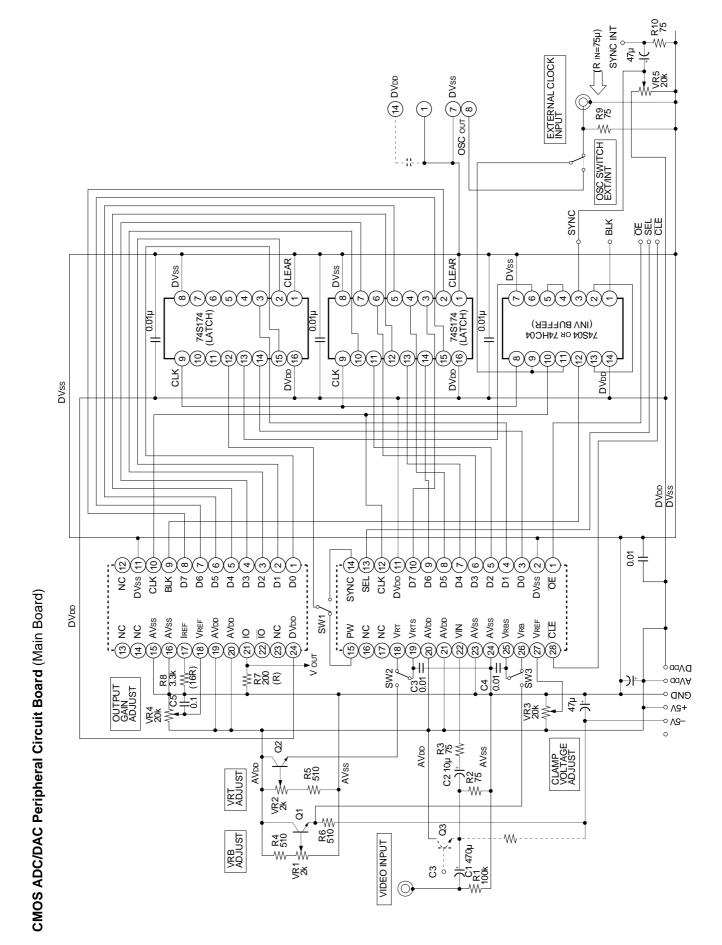
Pulse width Tcw1 16ns (min)
Tcw0 16ns (min)

Analog Output (CXD1171M)

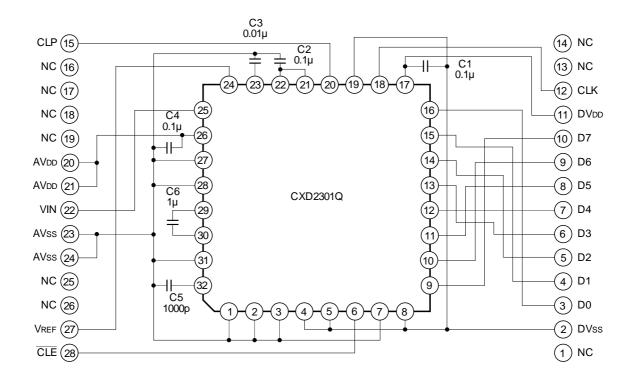
 $(RL > 10k\Omega)$

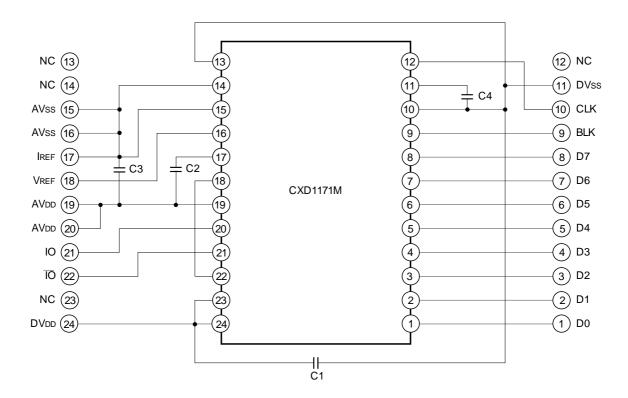

Item	Min.	Тур.	Max.	Unit
Analog output	1.8	2.0	2.1	V

Output Format (CXD2301Q)


The table shows the output format of AD Converter

Analog input voltage	Step	Digital output code MSB LS					_SB		
Vrt	0	0	0	0	0	0	0	0	0
:	:					:			
:	127	0	1	1	1	1	1	1	1
:	128	1	0	0	0	0	0	0	0
:	:					:			
Vrb	255	1	1	1	1	1	1	1	1


Timing Chart



Item	Symbol	Min.	Тур.	Max.	Unit
Clock High time	T _{PW1}	16			ns
Clock Low time	T _{PW0}	16			ns
Clock Delay	Tdc			24	ns
Data delay AD	tPD (AD)		13	25	ns
Data delay (latch)	t DD			5	ns
Settling time	t s	5			ns
Hold time	th	10			ns
Data delay DA	tPD (DA)		10		ns

CMOS ADC/DAC Peripheral Circuit Board (Sub Board)

List of Parts

resitance		transistor	
R1	100k	Q1	2SC2785
R2	75Ω	Q2	2SC2785
R3	75Ω	Q3	2SC2785
R4	510Ω		
R5	510Ω	ic	
R6	510Ω	IC1	74S174
R7	R = 200	IC2	74S174
R8	18R ≈ 3.3k	IC3	74S04
R9	75Ω		
R10	75Ω	oscillator	
VR1	2k	OSC	
VR2	2k		
VR3	20k	others	
VR4	20k	connector	BNC071
VR5	20k	SW	AT1D2M3

capacitance

capacitance	2
C1	470µF/6.3V (chemical)
C2	10µF/16V (chemical)
C3	0.01µF
C4	0.01µF
C5	0.1µF
C6	0.1µF
C7	0.1µF
C8	0.1µF
C9	0.1µF
C10	0.1µF
C11	47µF/10V (chemical)
C12	47µF/10V (chemical)
C13	47µF/10V (chemical)
C14	0.1uF

Adjustment

1. Vref adjustment (VR1, VR2)

Adjustment of A/D converter reference voltage. VRB is adjusted through VR1 and VRT through VR2. When self bias is used, there is no need for adjustment. Reference voltage is set through self bias at delivery.

2. Setting of clamp reference voltage (VR3)

Clamp reference voltage is set.

3. DAC output full scale adjustment (VR4)

Full scale voltage of D/A converter output is adjusted at the PCB shipment, the full scale voltage is adjusted to approx. 2V.

4. Sync (clamp) pulse interface (VR5)

This adjustment enables interface with the signal generator and others at the PCB shipment, adjustment is performed to obtain a threshold of approx. 2.5V to an H sync of 0 to 5V.

5. OE, SEL, Sync, BLK, CLE, Sync INT

The following pins are set on the main board: Sync, $\overline{\text{CLE}}$, Sync INT (CXD2301Q) and BLK (CXD1171M), OE, SEL (not used). For the pins function, refer to the specifications. The difference between Sync pin and Sync INT pin is that you input a pulse above 3.5Vp-p to Sync INT pin. The pulse threshold is set through VR5. For input through Sync pin, pulse is input at TTL or CMOS level. In this case cut off the junction line between Sync pin and Sync INT pin.

At the PCB shipment the main board pins are set as follows.

- OE Low
- SEL Low
- Sync Line junction with Sync INT pin
- CLE ····· Low (Clamp function ON)
- BLK ····· Low (Blanking OFF)

6. Clamp pulse input method

The clamp pulse is directly input to CXD2301Q as show in Application Circuit examples (1) and (2). Use the direct input that is set at the PCB shipment.

Points on the PCB Pattern Layout

- 1. Set the layout not to have Digital current flow into Analog GND (Part 1). (For 1, see P.17 Component side diagram.)
- 2. At CXD2301Q sub board, C2 and C3 capacitors serve the important role of bringing out CXD2301Q's full performance.
 - These are over 0.1µF (ceramic) capacitors with good high frequency characteristics. Layout as close to the IC as possible.
- Analog GND (AVss) and Digital GND (DVss) are on a common voltage and power source. Keeping ADC's DVss (Part 2) as close as possible to the voltage supply source will provide better results. That is, a layout where ADC is close to the voltage supply source, is recommended. (For 2, see P.17 Component side diagram.)
- 4. ADC samples analog signals at the clock falling edge point. Accordingly clocks supplied to ADC should not have any jitter.
- 5. The PCB layout shows ADC and DAC's Analog GND independently from the voltage supply source. The layout aims at providing an independent evaluation of ADC and DAC, as much as possible. On the actual board, common use will not cause any problems.

Notes on Operation

1. Reference voltage

By shorting VRT and VRTS, VRB and VRBS, CXD2301 has the self bias function that generates VRT = about 2.6V and VRB = about 0.5V. On the PCB, either self bias or the external reference voltage can be selected depending on the junction method of the jumper line. At shipment from the factory, reference voltage is provided in self bias. Also, to provide external reference voltage, adjust the dynamic range (VRT - VRB) to above 1.8Vp-p.

2. Clock input

There are 2 modes for the PCB clock input.

- 1) Provided from the external signal generator (External clock)
- 2) Using the crystal oscillator (built-in clock driver). (Internal clock)

The 2 modes are selected using the switch on the PCB.

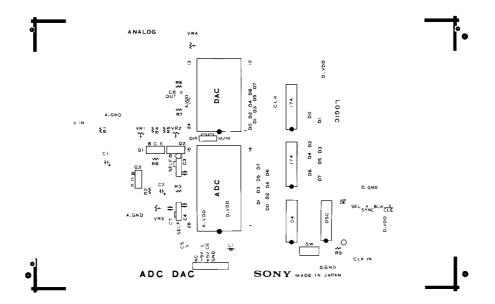
3. The 2 Latch IC's (74S174) are not absolutely necessary for the evaluation of ADC and DAC. That is, operation will still be normal if ADC output data is directly input to DAC input. However, as ADC output data is hardly ever D/A converted without executing Digital signal processing, it was mounted to indicate an example layout of Digital signal processing IC. When the ADC output data is used, use the output of the latch IC.

4. When clamp is not used

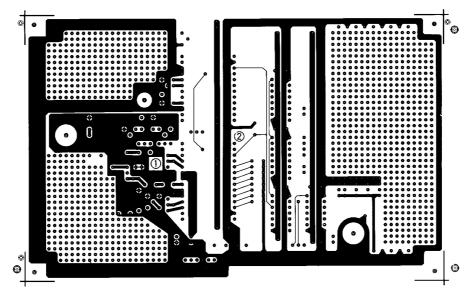
Turning CLE to H will set OFF the clamp function. In this case, the DC element is cut off by means of C_2 on the main board and DC voltage on the ADC side of C_2 turns to about (VRT + VRB). To transfer DC elements of input signals, short C_2 . At that time, it is necessary to bias input signals, but keeping R_2 open, Q_3 can also be used as buffer. Use the open space for the bias circuit.

5. Clamp pulse latch

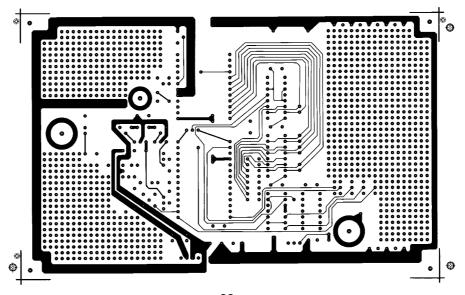
On the evaluation board, the clamp pulse is latched with ADC sampling CLK and then input to the CLP pin. This is to minimize Vsag due the synchronizing of noise and clamp pulse beat elements with GND sampling clock around ADC. If there are no problems with Vsag, latch is not necessary.


6. Peripheral through hole

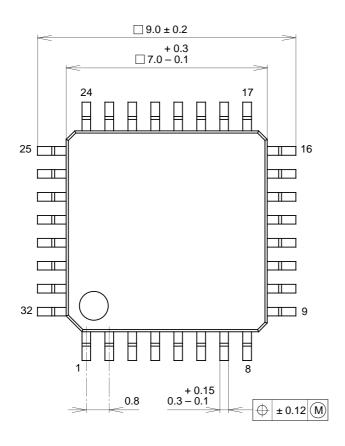
There is a group of through holes on the Analog input, output and Logic. These are to be used when mounting additional circuits to the PCB. Use when necessary.

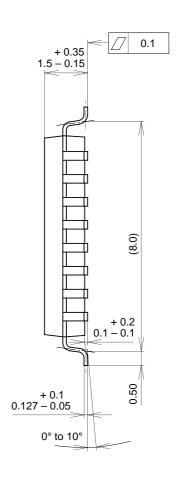

The connector hole on DAC part is used to mount the test chassis and the mount jack.

SONY CXD2301Q


Silk Side

Component Side




Soldering Side (Diagram seen from the component side)

Package Outline Unit: mm

32PIN QFP (PLASTIC)

SONY CODE	QFP-32P-L01
EIAJ CODE	*QFP032-P-0707-A
JEDEC CODE	

PACKAGE MATERIAL	EPOXY RESIN
LEAD TREATMENT	SOLDER PLATING
LEAD MATERIAL	42 ALLOY
PACKAGE WEIGHT	0.2g