## DATA SHEET

## TDA6500TT; TDA6501TT <br> 5 V mixer/oscillator and synthesizer for PAL and NTSC standards

## 5 V mixer/oscillator and synthesizer for PAL and NTSC standards

| CONTENTS | 10 |  |
| :--- | :--- | :--- |
| 1 | FEATURES | 11 |
| 2 | APPLICATIONS | 12 |
| 3 | GENERAL DESCRIPTION | 13 |
| 4 | ORDERING INFORMATION | 14 |
| 5 | BLOCK DIAGRAM | 15 |
| 6 | PINNING | 16 |
| 7 | FUNCTIONAL DESCRIPTION | 17 |
| 8 | LIMITING VALUES | 18 |
| 9 | THERMAL CHARACTERISTICS |  |10111213141516

CHARACTERISTICS
APPLICATION INFORMATION
INTERNAL PIN CONFIGURATION
PACKAGE OUTLINE
SOLDERING
DATA SHEET STATUS
DEFINITIONS
DISCLAIMERS
PURCHASE OF PHILIPS I ${ }^{2} \mathrm{C}$ COMPONENTS

## 5 V mixer/oscillator and synthesizer for PAL and NTSC standards

## 1 FEATURES

- Single-chip 5 V mixer/oscillator and synthesizer for TV and VCR tuners
- $1^{2} \mathrm{C}$-bus protocol compatible with 3.3 V and 5 V microcontrollers:
- Address + 6 data bytes transmission
- Address +1 status byte ( $\mathrm{I}^{2} \mathrm{C}$-bus read mode)
- Four independent $\mathrm{I}^{2} \mathrm{C}$-bus addresses.
- Two PMOS open-drain ports with 5 mA source capability to switch high band and FM sound trap (P2 and P3)
- One PMOS open-drain port with 20 mA source capability to switch the mid band (P1)
- One PMOS open-drain port with 10 mA source capability to switch the low band (PO)
- Five step, 3-bit Analog-to-Digital Converter (ADC) and NPN open-collector general purpose port with 5 mA sinking capability (P6)
- NPN open-collector general purpose port with 5 mA sinking capability (P4)
- Internal AGC flag
- In-lock flag
- 33 V tuning voltage output
- 15-bit programmable divider
- Programmable reference divider ratio: 64, 80 or 128
- Programmable charge pump current: 60 or $280 \mu \mathrm{~A}$
- Varicap drive disable
- Balanced mixer with a common emitter input for the low band (single input)
- Balanced mixer with a common base input for the mid and high bands (balanced input)
- 2-pin asymmetrical oscillator for the low band
- 2-pin asymmetrical oscillator for the mid band
- 4-pin symmetrical oscillator for the high band
- Frequency ranges: see Table 1
- IF preamplifier with asymmetrical $75 \Omega$ output impedance to drive a SAW filter ( $500 \Omega / 40 \mathrm{pF}$ )
- Wide-band AGC detector for internal tuner AGC:
- Five programmable take-over points
- Two programmable time constants.


## 2 APPLICATIONS

- TV and VCR tuners
- Specially suited for switched concepts, all systems
- Specially suited for strong off-air reception.


## 5 V mixer/oscillator and synthesizer for PAL and NTSC standards

## 3 GENERAL DESCRIPTION

TDA6500TT and TDA6501TT are programmable 2-mixer, 3-oscillator and synthesizer MOPLL intended for pure 3-band tuner concepts (see Fig.1).

The device includes two double balanced mixers for the low and mid/high bands and three oscillators for the low, mid and high bands respectively. The band limits for PAL tuners are shown in Table 1. Other functions are an IF amplifier, a wide-band AGC detector and a PLL synthesizer. Two pins are available between the mixer output and the IF amplifier input to enable IF filtering for improved signal handling.

Table 1 Low, mid and high band limits

| BAND | RFpix INPUT (MHz) |  | OSCILLATOR (MHz) |  |
| :--- | :---: | :---: | :---: | :---: |
|  | MIN. | MAX. | MIN. | MAX. |
| Low | 45.25 | 154.25 | 84.15 | 193.15 |
| Mid | 161.25 | 439.25 | 200.15 | 478.15 |
| High | 455.25 | 855.25 | 494.15 | 894.15 |

Bit P0 enables Port P0 and the low band mixer and oscillator. Bit P1 enables Port P1, the mid/high band mixer and the mid band oscillator. Bit P2 enables Port P2 and bit P3 enables Port P3. When P0 and P1 are disabled, the $\mathrm{mid} /$ high band mixer and the high band oscillator are enabled.

The AGC detector provides information about the IF amplifier level. Five AGC take-over points are available by software. Two programmable AGC time constants are available for search tuning and normal tuner operation.

The synthesizer consists of a 15-bit programmable divider, a crystal oscillator and its programmable reference divider and a phase/frequency detector combined with a charge pump, which drives the tuning amplifier including 33 V output.
Depending on the reference divider ratio (64, 80 or 128) the phase comparator operates at $62.50 \mathrm{kHz}, 50.00 \mathrm{kHz}$ or 31.25 kHz with a 4 MHz crystal.

The device can be controlled according to the $\mathrm{I}^{2} \mathrm{C}$-bus format. The lock detector bit FL is set to logic 1 when the loop is locked. The AGC bit is set to logic 1 when the internal AGC is active (level below 3 V ). These two flags are read on the SDA line (status byte) during a read operation (see Table 8).
The ADC input is available on pin P6/ADC for digital AFC control. The ADC code is read during a read operation (see Table 8). In test mode, pin P6/ADC is used as a test output for $1 / 2 f_{\text {ref }}$ and $1 / 2 f_{\text {div }}$ (see Table 5).
A minimum of seven bytes, including address byte, is required to address the device, select the VCO frequency, program the ports, set the charge pump current, set the reference divider ratio, select the AGC take-over point and select the AGC time constant. The device has four independent $\mathrm{I}^{2} \mathrm{C}$-bus addresses which can be selected by applying a specific voltage on input AS (see Table 4).

4 ORDERING INFORMATION

| TYPE NUMBER | PACKAGE |  |  |
| :--- | :---: | :--- | :--- | :--- |
|  | NAME | DESCRIPTION | VERSION |
| TDA6500TT | TSSOP32 | plastic thin shrink small outline package; 32 leads; body width $6.1 \mathrm{~mm} ;$ <br> lead pitch 0.65 mm | SOT487-1 |
| TDA6501TT |  |  |  |

## 5 V mixer/oscillator and synthesizer for PAL and NTSC standards

## 5 BLOCK DIAGRAM



The pin numbers in parenthesis represent the TDA6501TT.

Fig. 1 Block diagram.

## 5 V mixer/oscillator and synthesizer for PAL and NTSC standards

## 6 PINNING

| SYMBOL | PIN |  | DESCRIPTION |
| :---: | :---: | :---: | :---: |
|  | TDA6500TT | TDA6501TT |  |
| LOSCIN | 1 | 32 | low band oscillator input |
| LOSCOUT | 2 | 31 | low band oscillator output |
| OSCGND | 3 | 30 | oscillator ground |
| MOSCOUT | 4 | 29 | mid band oscillator output |
| MOSCIN | 5 | 28 | mid band oscillator input |
| HOSCIN1 | 6 | 27 | high band oscillator input |
| HOSCOUT2 | 7 | 26 | high band oscillator output 2 |
| HOSCOUT1 | 8 | 25 | high band oscillator output 1 |
| HOSCIN2 | 9 | 24 | high band oscillator input 2 |
| $\mathrm{V}_{\mathrm{CC}}$ | 10 | 23 | supply voltage |
| IFGND | 11 | 22 | IF ground |
| IFOUT | 12 | 21 | IF output |
| PLLGND | 13 | 20 | digital ground |
| XTAL | 14 | 19 | crystal oscillator input |
| VT | 15 | 18 | tuning voltage output |
| CP | 16 | 17 | charge pump output |
| P4 | 17 | 16 | NPN open-collector general purpose port |
| P6/ADC | 18 | 15 | NPN open-collector general purpose port or ADC input |
| SDA | 19 | 14 | serial data input and output |
| SCL | 20 | 13 | serial clock input |
| AS | 21 | 12 | address selection input |
| P3 | 22 | 11 | PMOS open-drain general purpose port |
| P0 | 23 | 10 | PMOS open-drain port to select low band operation |
| P1 | 24 | 9 | PMOS open-drain port to select mid band operation |
| AGC | 25 | 8 | AGC output |
| P2 | 26 | 7 | PMOS open-drain general purpose port |
| IFFIL1 | 27 | 6 | IF filter output 1 |
| IFFIL2 | 28 | 5 | IF filter output 2 |
| RFGND | 29 | 4 | RF ground |
| LBIN | 30 | 3 | low band RF input |
| MHBIN1 | 31 | 2 | mid and high band RF input 1 |
| MHBIN2 | 32 | 1 | mid and high band RF input 2 |



Fig. 2 Pin configuration TDA6500TT.

## 7 FUNCTIONAL DESCRIPTION

The device is controlled via the $\mathrm{I}^{2} \mathrm{C}$-bus. For programming, a module address of 7 bits and the $R / \bar{W}$ bit for selecting the read or the write mode is required.

### 7.1 Write mode

Data bytes can be sent to the device after the address transmission (first byte). Seven data bytes are needed to fully program the device. The bus transceiver has an auto-increment facility, which permits the programming of the device within one single transmission (address + 6 data bytes).

The device can also be partially programmed providing that the first data byte following the address is the first divider byte DB1 or the control byte CB. The data bytes are defined in Tables 2 and 3.


Fig. 3 Pin configuration TDA6501TT.

The first bit of the first data byte indicates whether frequency data (first bit $=0$ ) or control, port and auxiliary data (first bit $=1$ ) will follow. Until an $\mathrm{I}^{2} \mathrm{C}$-bus STOP command is sent by the controller, additional data bytes can be entered without the need to re-address the device. The frequency register is loaded after the 8th clock pulse of the second divider byte DB2, the control register is loaded after the 8th clock pulse of the control byte CB, the band switch register is loaded after the 8th clock pulse of the band switch byte BB and the auxiliary register is loaded after the 8th clock pulse of the auxiliary byte AB.
To program the AGC take-over point setting and the AGC current to a different value than the default value, an additional byte, the auxiliary byte, has to be sent. To this end, the auxiliary byte is preceded by a control byte with the test bits T2, T1 and T0 set to 011 (see Table 5).

## 5 V mixer/oscillator and synthesizer for PAL and NTSC standards

Table $2 \mathrm{I}^{2} \mathrm{C}$-bus data format for write mode

| NAME | BYTE | BIT |  |  |  |  |  |  |  | ACK |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MSB LSB |  |  |  |  |  |  |  |  |
| Address byte | ADB | 1 | 1 | 0 | 0 | 0 | MA1 | MA0 | R/W $=0$ | A |
| Divider byte 1 | DB1 | 0 | N14 | N13 | N12 | N11 | N10 | N9 | N8 | A |
| Divider byte 2 | DB2 | N7 | N6 | N5 | N4 | N3 | N2 | N1 | N0 | A |
| Control byte | CB | 1 | CP | T2 | T1 | T0 | RSA | RSB | OS | A |
| Band switch byte | BB | 0 | P6 | 0 | P4 | P3 | P2 | P1 | P0 | A |
| Auxiliary byte; note 1 | AB | ATC | AL2 | AL1 | ALO | 0 | 0 | 0 | 0 | A |

## Note

1. Auxiliary byte AB replaces band switch byte BB when bits $\mathrm{T} 2, \mathrm{~T} 1$ and $\mathrm{T} 0=011$.

Table 3 Description of bits shown in Table 2

| SYMBOL | DESCRIPTION |
| :---: | :---: |
| A | acknowledge |
| MA1 and MA0 | programmable address bits; see Table 4 |
| R/W | logic 0 for write mode |
| N14 to N0 | programmable divider bits; $\mathrm{N}=\left(\mathrm{N} 14 \times 2{ }^{14}\right)+\left(\mathrm{N} 13 \times 2{ }^{13}\right)+\ldots+\left(\mathrm{N} 1 \times 2^{1}\right)+\mathrm{N} 0$ |
| CP | charge pump current <br> $\mathrm{CP}=0$, the charge pump current is $60 \mu \mathrm{~A}$ <br> $\mathrm{CP}=1$, the charge pump current is $280 \mu \mathrm{~A}$ (default) |
| T2, T1 and T0 | test bits; see Table 5 |
| RSA and RSB | reference divider ratio select bits; see Table 6 |
| OS | tuning amplifier control bit <br> OS $=0$, normal operation; tuning voltage is on OS = 1, tuning voltage is off; high-impedance state (default) |
| P6 and P4 | NPN port control bits <br> $\mathrm{Pn}=0$, port n is off; high-impedance state (default) $\mathrm{Pn}=1$, buffer n is on; $\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CE} \text { (sat) }}$ |
| P3 to P0 | PMOS port control bits <br> $0=$ port n is off; high-impedance state (default) <br> $1=$ buffer n is on; $\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{DS} \text { (sat) }}$ |
| ATC | AGC time constant $\begin{aligned} & \text { ATC }=0, I_{\text {AGC }}=220 \mathrm{nA} ; \Delta \mathrm{t}=2 \mathrm{~s} \text { with } \mathrm{C}=160 \mathrm{nF} \text { (default) } \\ & \text { ATC }=1, \mathrm{I}_{\mathrm{AGC}}=9 \mu \mathrm{~A} ; \Delta \mathrm{t}=50 \mathrm{~ms} \text { with } \mathrm{C}=160 \mathrm{nF} \end{aligned}$ |
| AL2, AL1 and AL0 | AGC take-over point bits; see Table 7 |

## 5 V mixer/oscillator and synthesizer for PAL and NTSC standards

TDA6500TT; TDA6501TT

The module address contains programmable address bits (MA1 and MA0) which offer the possibility of having up to 4 synthesizers in one system by applying a specific voltage on the AS input. Table 4 gives the relationship between the input voltage applied to the AS input and bits MA1 and MAO.

Table $4 \quad{ }^{2} \mathrm{C}$-bus address selection

| VOLTAGE APPLIED TO PIN AS | MA1 | MA0 |
| :--- | :---: | :---: |
| 0 V to $0.1 \mathrm{~V}_{\mathrm{CC}}$ | 0 | 0 |
| open or $0.2 \mathrm{~V}_{\mathrm{CC}}$ to $0.3 \mathrm{~V}_{\mathrm{CC}}$ | 0 | 1 |
| $0.4 \mathrm{~V}_{\mathrm{CC}}$ to $0.6 \mathrm{~V}_{\mathrm{CC}}$ | 1 | 0 |
| $0.9 \mathrm{~V}_{\mathrm{CC}}$ to $\mathrm{V}_{\mathrm{CC}}$ | 1 | 1 |

Table 5 Test modes

| T2 | T1 | T0 | TEST MODES |
| :---: | :---: | :---: | :--- |
| 0 | 0 | 0 | normal mode |
| 0 | 0 | 1 | normal mode; note 1 |
| 0 | 1 | 0 | charge pump is off |
| 0 | 1 | 1 | control byte is followed by auxiliary byte AB in stead of the band switch byte BB |
| 1 | 1 | 0 | charge pump is sinking current |
| 1 | 1 | 1 | charge pump is sourcing current |
| 1 | 0 | 0 | $1 / 2 \mathrm{f}_{\text {ref }}$ is available on pin P6/ADC; note 2 |
| 1 | 0 | 1 | $1 / 2 \mathrm{f}_{\text {div }}$ is available on pin P6/ADC; note 2 |

## Notes

1. This is the default mode at Power-on reset.
2. The ADC input cannot be used when these test modes are active; see Section 7.2 for more information

Table 6 Reference divider ratio select

| RSA | RSB | REFERENCE DIVIDER RATIO |
| :---: | :---: | :--- |
| 0 | 0 | 80 |
| 0 | 1 | 128 |
| 1 | 1 | 64 |
| 1 | 0 | forbidden |

## 5 V mixer/oscillator and synthesizer for PAL and NTSC standards

Table 7 AGC take-over point

| AL2 | AL1 | ALO | ASYMMETRICAL MODE |
| :---: | :---: | :---: | :--- |
| 0 | 0 | 0 | $115 \mathrm{~dB} \mu \mathrm{~V}$ |
| 0 | 0 | 1 | $115 \mathrm{~dB} \mu \mathrm{~V}$ |
| 0 | 1 | 0 | $112 \mathrm{~dB} \mu \mathrm{~V}$; default mode at Power-on reset |
| 0 | 1 | 1 | $109 \mathrm{~dB} \mu \mathrm{~V}$ |
| 1 | 0 | 0 | $106 \mathrm{~dB} \mu \mathrm{~V}$ |
| 1 | 0 | 1 | $103 \mathrm{~dB} \mu \mathrm{~V}$ |
| 1 | 1 | 0 | $\mathrm{I}_{\mathrm{AGC}}=0$; external AGC; note 1 |
| 1 | 1 | 1 | $3.5 \mathrm{~V} ;$ disabled; note 2 |

## Notes

1. The AGC detector is disabled. Both the sinking and sourcing currents from the IC are disabled. The AGC output goes into a high-impedance state and an external AGC source can be connected in parallel.
2. The AGC detector is disabled and the fast mode current source is enabled.

### 7.2 Read mode

Data can be read from the device by setting the $R / \bar{W}$ bit to logic 1. The data read format is shown in Table 8. After the slave address has been recognized, the device generates an acknowledge pulse and the first data byte (status byte) is transferred on the SDA line with the MSB first. Data is valid on the SDA line during a HIGH-level of the SCL clock signal.

A second data byte can be read from the device if the microcontroller generates an acknowledge on the SDA line (master acknowledge). End of transmission will occur if no master acknowledge occurs. The device will then release the data line to allow the microcontroller to generate a STOP condition.

The POR flag is set to logic 1 at Power-on. The flag is reset when an end-of-data is detected by the device (end of a read sequence).
Control of the loop is made possible with the in-lock flag $(F L)$ which indicates when the loop is locked ( $F L=1$ ).

The internal AGC status is available from the AGC bit. AGC $=1$ indicates when the selected take-over point is reached.

A built-in ADC is available on the P6/ADC pin. The ADC can be used to apply AFC information to the microcontroller from the IF section of the tuner. The relationship between the voltage applied to the ADC input and the $\mathrm{A} 2, \mathrm{~A} 1$ and A 0 bits is given in Table 10.

Table 8 Read data format

| NAME | BYTE | BIT |  |  |  |  |  |  |  | ACK |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MSB ${ }^{(1)}{ }^{(1)}$ LSB |  |  |  |  |  |  |  |  |
| Address byte | ADB | 1 | 1 | 0 | 0 | 0 | MA1 | MA0 | R/W = 1 | A |
| Status byte | SB | POR | FL | 1 | 1 | AGC | A2 | A1 | A0 | - |

## Note

1. MSB is transmitted first.

## 5 V mixer/oscillator and synthesizer for PAL and NTSC standards

Table 9 Description of bits shown in Table 8

| SYMBOL |  |
| :--- | :--- |
| A | acknowledge |
| MA1 and MA0 | programmable address bits; see Table 4 |
| R/ $\bar{W}$ | logic 1 for read mode <br> Power-on reset flag <br> POR $=0$, normal operation <br> POR $=1$, power-on state |
| POR | in-lock flag <br> FL $=0$, not locked <br> FL $=1$, the PLL is locked |
| FL | internal AGC flag <br> AGC $=0$, internal AGC not active <br> AGC $=1$, internal AGC is active; level below 3 V |
| AGC | digital output of the 5-level ADC; see Table 10 |
| A2, A1 and A0 |  |

Table 10 ADC levels

| VOLTAGE APPLIED TO ADC INPUT $^{(1)}$ | A2 | A1 | A0 |
| :--- | :---: | :---: | :---: |
| $0.60 \mathrm{~V}_{\mathrm{CC}}$ to $\mathrm{V}_{\mathrm{CC}}$ | 1 | 0 | 0 |
| $0.45 \mathrm{~V}_{\mathrm{CC}}$ to $0.60 \mathrm{~V}_{\mathrm{CC}}$ | 0 | 1 | 1 |
| $0.30 \mathrm{~V}_{\mathrm{CC}}$ to $0.45 \mathrm{~V}_{\mathrm{CC}}$ | 0 | 1 | 0 |
| $0.15 \mathrm{~V}_{\mathrm{CC}}$ to $0.30 \mathrm{~V}_{\mathrm{CC}}$ | 0 | 0 | 1 |
| 0 to $0.15 \mathrm{~V}_{\mathrm{CC}}$ | 0 | 0 | 0 |

## Note

1. Accuracy is $\pm 0.03 \mathrm{~V}_{\mathrm{CC}}$.

### 7.3 Power-on reset

The Power-on detection threshold voltage $\left(\mathrm{V}_{\mathrm{POR}}\right)$ is set to $\mathrm{V}_{\mathrm{CC}}=3.5 \mathrm{~V}$ at room temperature. Below this threshold, the device is reset to the Power-on state.

In the Power-on state, the charge pump current is set to $280 \mu \mathrm{~A}$, the tuning voltage output is disabled, the test bits T2, T1 and T0 are set to 001, the AGC take-over point is set to $112 \mathrm{~dB} \mathrm{\mu V}$ and the AGC current is set to the slow mode. The high band is selected by default.

Table 11 Default bits at Power-on reset

| NAME | BYTE | BIT |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MSB |  |  |  |  |  | LSB |  |
| Address byte | ADB | 1 | 1 | 0 | 0 | 0 | MA1 | MAO | X |
| Divider byte 1 | DB1 | 0 | X | X | X | X | X | X | X |
| Divider byte 2 | DB2 | X | X | X | X | X | X | X | X |
| Control byte | CB | 1 | 1 | 0 | 0 | 1 | X | X | 1 |
| Band switch byte | BB | - | 0 | - | 0 | 0 | 0 | 0 | 0 |
| Auxiliary byte | AB | 0 | 0 | 1 | 0 | - | - | - | - |

## 5 V mixer/oscillator and synthesizer for PAL and NTSC standards

## 8 LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 60134); note 1.

| SYMBOL | PARAMETER | MIN. | MAX. | UNIT |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{V}_{\mathrm{CC}}$ | Supply voltage | -0.3 | +6 | V |
| $\mathrm{~V}_{\mathrm{XTAL}}$ | Crystal input voltage | -0.3 | $\mathrm{~V}_{\mathrm{CC}}+0.3$ | V |
| $\mathrm{~V}_{\mathrm{P} / \mathrm{ADC}}$ | NPN port input and output voltage | -0.3 | $\mathrm{~V}_{\mathrm{CC}}+0.3$ | V |
| $\mathrm{I}_{\mathrm{P} / \mathrm{ADC}}$ | NPN port output current (open-collector) | 0 | +10 | mA |
| $\mathrm{~V}_{\mathrm{VT}}$ | tuning voltage output | -0.3 | +35 | V |
| $\mathrm{~V}_{\mathrm{CP}}$ | charge pump output voltage | -0.3 | $\mathrm{~V}_{\mathrm{CC}}+0.3$ | V |
| $\mathrm{~V}_{\mathrm{P} 4}$ | NPN port output voltage (open-collector) | -0.3 | $\mathrm{~V}_{\mathrm{CC}}+0.3$ | V |
| $\mathrm{I}_{\mathrm{P} 4}$ | NPN port output current (open-collector) | 0 | +10 | mA |
| $\mathrm{~V}_{\mathrm{SDA}}$ | serial data input/output voltage | -0.3 | +6 | V |
| $\mathrm{I}_{\mathrm{SDA}}$ | serial data output current | -1 | +10 | mA |
| $\mathrm{~V}_{\mathrm{SCL}}$ | serial clock input voltage | -0.3 | +6 | V |
| $\mathrm{~V}_{\mathrm{AS}}$ | address selection input voltage | -0.3 | $\mathrm{~V}_{\mathrm{CC}}+0.3$ | V |
| $\mathrm{~V}_{\mathrm{Pn}}$ | PMOS port output voltage (open-drain) | -0.3 | $\mathrm{~V}_{\mathrm{CC}}+0.3$ | V |
| $\mathrm{I}_{\mathrm{P} 1}$ | PMOS port output current (open-drain) | -25 | 0 | mA |
| $\mathrm{I}_{\mathrm{P} 0}$ | PMOS port output current (open-drain) | -15 | 0 | mA |
| $\mathrm{I}_{\mathrm{P} 2}, \mathrm{I}_{\mathrm{P} 3}$ | PMOS port output current (open-drain) | -10 | 0 | mA |
| $\mathrm{~T}_{\text {Stg }}$ | storage temperature | -40 | +150 | ${ }^{\circ} \mathrm{C}$ |
| $\mathrm{T}_{\mathrm{amb}}$ | ambient temperature | -20 | +85 | ${ }^{\circ} \mathrm{C}$ |
| $\mathrm{T}_{\mathrm{j}}$ | junction temperature | - | 150 | ${ }^{\circ} \mathrm{C}$ |

## Note

1. Maximum ratings cannot be exceeded, not even momentarily without causing irreversible IC damage. Maximum ratings cannot be accumulated.

## 9 THERMAL CHARACTERISTICS

| SYMBOL | PARAMETER | CONDITIONS | VALUE | UNIT |
| :---: | :---: | :---: | :---: | :---: |
| SOT487EC3 package (TDA6500TT) |  |  |  |  |
| $\mathrm{R}_{\text {th }(\mathrm{ja}}$ ) | thermal resistance from junction to ambient | in free air; one layer PCB, JEDEC standards; note 1 | 110 | K/W |
| SOT487EC5 package (TDA6501TT) |  |  |  |  |
| $\mathrm{R}_{\text {th (j-a) }}$ | thermal resistance from junction to ambient | in free air; one layer PCB, JEDEC standards; note 1 | 115 | K/W |

## Note

1. The thermal resistance is highly dependant on the PCB on which the package is mounted. The thermal resistance values are given only for customer's guidance.

## 5 V mixer/oscillator and synthesizer for PAL and NTSC standards

## 10 CHARACTERISTICS

$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$; values are given for an IF amplifier with $500 \Omega$ load (measured as shown in Fig. 16 for the PAL standard); unless otherwise specified.

| SYMBOL | PARAMETER | CONDITIONS | MIN. | TYP. | MAX. | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Supply |  |  |  |  |  |  |
| $\mathrm{V}_{\text {CC }}$ | supply voltage |  | 4.5 | 5.0 | 5.5 | V |
| $\mathrm{I}_{\mathrm{CC}}$ | supply current | $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ <br> PNP ports off one PNP port on; sourcing 20 mA two PNP ports on; one port sourcing 20 mA ; one other port sourcing 5 mA | - - - | $\begin{array}{\|l} 74 \\ 96 \\ 102 \end{array}$ | $\begin{array}{\|l\|} 94 \\ 116 \\ 122 \end{array}$ | mA <br> mA <br> mA |
| PLL part |  |  |  |  |  |  |
| Functional range |  |  |  |  |  |  |
| $\mathrm{V}_{\mathrm{POR}}$ | Power-on reset supply voltage | for a voltage lower than $\mathrm{V}_{\mathrm{POR}}$, Power-on reset is active | 1.5 | 3.5 | - | V |
| N | divider ratio | 15-bit frequency word | 64 | - | 32767 |  |
| $\mathrm{f}_{\text {XTAL }}$ | crystal oscillator | $\mathrm{R}_{\text {XTAL }}=25$ to $300 \Omega$ | 3.2 | 4.0 | 4.48 | MHz |
| $\left\|Z_{\text {XTAL }}\right\|$ | input impedance (absolute value) | $\mathrm{f}_{\mathrm{XTAL}}=4 \mathrm{MHz}$ | 600 | 1200 | - | $\Omega$ |
| PMOS Ports: P0, P1, P2 AND P3 |  |  |  |  |  |  |
| ILO | output leakage current | $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{Pn}}=0 \mathrm{~V}$ | - | - | 10 | $\mu \mathrm{A}$ |
| $\mathrm{V}_{\mathrm{DS} \text { (PO)(sat) }}$ | output saturation voltage | buffer P0 only is on; sourcing 10 mA | - | 0.25 | 0.4 | V |
| $\mathrm{V}_{\mathrm{DS} \text { (P1)(sat) }}$ | output saturation voltage | buffer P1 only is on; sourcing 20 mA | - | 0.25 | 0.4 | V |
| $V_{\text {DS(P2)(sat) }}$, <br> $\mathrm{V}_{\mathrm{DS}(\mathrm{P} 3) \text { (sat) }}$ | output saturation voltage | buffer P2 or P3 is on; sourcing 5 mA | - | 0.25 | 0.4 | V |
| NPN Ports: P4 AND P6 |  |  |  |  |  |  |
| ILO | output leakage current | $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{Pn}}=6 \mathrm{~V}$ | - | - | 10 | $\mu \mathrm{A}$ |
| $\mathrm{V}_{\text {CE(sat) }}$ | output saturation voltage | buffer P4 or P6 is on; sinking 5 mA | - | 0.25 | 0.4 | V |
| ADC InPUT |  |  |  |  |  |  |
| $\mathrm{V}_{1}$ | ADC input voltage | see Table 10 | 0 | - | $\mathrm{V}_{\mathrm{CC}}$ | V |
| $\mathrm{I}_{\mathrm{IH}}$ | HIGH-level input current | ADC input $\mathrm{V}_{\mathrm{i}}=\mathrm{V}_{C C}$ | - | - | 10 | $\mu \mathrm{A}$ |
| IIL | LOW-level input current | ADC input $\mathrm{V}_{\mathrm{i}}=0 \mathrm{~V}$ | -10 | - | - | $\mu \mathrm{A}$ |
| AS InPut (ADDRESS SELECTION) |  |  |  |  |  |  |
| $\mathrm{IIH}^{\text {I }}$ | HIGH-level input current | AS input $V_{i}=V_{C C}$ | - | - | 10 | $\mu \mathrm{A}$ |
| IIL | LOW-level input current | AS input $\mathrm{V}_{\mathrm{i}}=0 \mathrm{~V}$ | -10 | - | - | $\mu \mathrm{A}$ |

## 5 V mixer/oscillator and synthesizer

 for PAL and NTSC standards| SYMBOL | PARAMETER | CONDITIONS | MIN. | TYP. | MAX. | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SCL And SDA InPUTS |  |  |  |  |  |  |
| $\mathrm{V}_{\text {IL }}$ | LOW-level input voltage |  | 0 | - | 1.5 | V |
| $\mathrm{V}_{\mathrm{IH}}$ | HIGH-level input voltage |  | 2.3 | - | 5.5 | V |
| $\mathrm{I}_{\mathrm{H}}$ | HIGH-level input current | $\mathrm{V}_{\text {BUS }}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$ | - | - | 10 | $\mu \mathrm{A}$ |
|  |  | $\mathrm{V}_{\text {BUS }}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$ | - | - | 10 | $\mu \mathrm{A}$ |
| IIL | LOW-level input current | $\mathrm{V}_{\text {BUS }}=1.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$ | - | - | 10 | $\mu \mathrm{A}$ |
|  |  | $\mathrm{V}_{\mathrm{BUS}}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$ | -10 | - | - | $\mu \mathrm{A}$ |
| SDA OUTPUT |  |  |  |  |  |  |
| ILO | leakage current | SDA output $\mathrm{V}_{0}=5.5 \mathrm{~V}$ | - | - | 10 | $\mu \mathrm{A}$ |
| $\mathrm{V}_{0}$ | output voltage | sink current $=3 \mathrm{~mA}$ | - | - | 0.4 | V |
| Clock frequency |  |  |  |  |  |  |
| $\mathrm{f}_{\mathrm{Clk}}$ | clock frequency |  | - | - | 400 | kHz |
| Charge pump output CP |  |  |  |  |  |  |
| $\left\|I_{I H}\right\|$ | HIGH-level input current (absolute value) | $C P=1$ | - | 280 | - | $\mu \mathrm{A}$ |
| $\left\|I_{\text {IL }}\right\|$ | LOW-level input current (absolute value) | $C P=0$ | - | 60 | - | $\mu \mathrm{A}$ |
| LLO(off) | off-state leakage current | $\mathrm{T} 2=0 ; \mathrm{T} 1=1 ; \mathrm{T} 0=0$ | -15 | 0 | +15 | nA |
| Tuning voltage output VT |  |  |  |  |  |  |
| lio(off) | off-state leakage current | $\mathrm{OS}=1$; tuning supply $=33 \mathrm{~V}$ | - | - | 10 | $\mu \mathrm{A}$ |
| $\mathrm{V}_{0}$ | output voltage when the loop is closed | $\begin{aligned} & \mathrm{OS}=0 ; \mathrm{T} 2=0 ; \mathrm{T} 1=0 ; \mathrm{TO}=1 ; \\ & \mathrm{R}_{\mathrm{L}}=27 \mathrm{k} \Omega ; \text { tuning supply }=33 \mathrm{~V} \end{aligned}$ | 0.2 | - | 32.7 | V |
| Mixer/oscillator part |  |  |  |  |  |  |
| LOW BAND MIXER MODE (P0 = 1 AND P1 = 0); InCLUDING IF AMPLIFIER |  |  |  |  |  |  |
| $\mathrm{f}_{\mathrm{RF}}$ | RF frequency | picture carrier; note 1 | 44.25 | - | 154.25 | MHz |
| $\mathrm{G}_{\mathrm{v}}$ | voltage gain | $\mathrm{f}_{\mathrm{RF}}=44.25 \mathrm{MHz}$; see Fig. 7 | 25.0 | 27.5 | 30 | dB |
|  |  | $\mathrm{f}_{\mathrm{RF}}=157 \mathrm{MHz}$; see Fig. 7 | 25.0 | 27.5 | 30 | dB |
| NF | noise figure | $\mathrm{f}_{\mathrm{RF}}=50 \mathrm{MHz}$; see Figs 8 and 9 | - | 8.0 | 10.0 | dB |
| V 。 | output voltage causing $0.3 \%$ cross modulation in channel | $\mathrm{f}_{\mathrm{RF}}=44.25 \mathrm{MHz}$; see Fig. 10 | 108 | 111 | - | $\mathrm{dB} \mu \mathrm{V}$ |
|  |  | $\mathrm{f}_{\mathrm{RF}}=157 \mathrm{MHz}$; see Fig. 10 | 108 | 111 | - | $\mathrm{dB} \mu \mathrm{V}$ |
| V 。 | output voltage causing 1.1 kHz incidental FM | $\mathrm{f}_{\mathrm{RF}}=44.25 \mathrm{MHz}$; note 2 | 108 | 111 | - | $\mathrm{dB} \mu \mathrm{V}$ |
|  |  | $\mathrm{f}_{\mathrm{RF}}=157 \mathrm{MHz}$; note 2 | 108 | 111 | - | $\mathrm{dB} \mu \mathrm{V}$ |
| $\mathrm{INT}_{\text {SO2 }}$ | channel SO2 beat | $\mathrm{V}_{\mathrm{RFpix}}=115 \mathrm{~dB} \mu \mathrm{~V}$ at IF output; note 3 | 57 | 60 | - | dBc |
| $\mathrm{V}_{\mathrm{i}}$ | input level without lock-out | see Fig.14; note 13 | - | - | 120 | $\mathrm{dB} \mu \mathrm{V}$ |
| gos | optimum source conductance for noise figure | $\mathrm{f}_{\mathrm{RF}}=50 \mathrm{MHz}$ | - | 0.7 | - | mS |
|  |  | $\mathrm{f}_{\mathrm{RF}}=150 \mathrm{MHz}$ | - | 0.9 | - | mS |
| $\mathrm{g}_{\mathrm{i}}$ | input conductance | $\mathrm{f}_{\mathrm{RF}}=44.25 \mathrm{MHz}$; see Fig. 4 | - | 0.30 | - | mS |
|  |  | $\mathrm{f}_{\mathrm{RF}}=161.25 \mathrm{MHz}$; see Fig. 4 | - | 0.33 | - | mS |

## 5 V mixer／oscillator and synthesizer

 for PAL and NTSC standards| SYMBOL | PARAMETER | CONDITIONS | MIN． | TYP． | MAX． | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{C}_{i}$ | input capacitance | $\begin{aligned} & \mathrm{f}_{\mathrm{RF}}=44.25 \text { to } 161.25 \mathrm{MHz} ; \\ & \text { see Fig. } 4 \end{aligned}$ | － | 1.29 | － | pF |
| High band mixer in mid band mode（ $\mathrm{P} 0=0$ and $\mathrm{P} 1=1$ ）；including IF Amplifier |  |  |  |  |  |  |
| $\mathrm{f}_{\mathrm{RF}}$ | RF frequency | picture carrier；note 1 | 161.25 | － | 439.25 | MHz |
| $\mathrm{G}_{v}$ | voltage gain | $\mathrm{f}_{\mathrm{RF}}=157 \mathrm{MHz}$ ；see Fig． 11 | 35 | 38 | 41 | dB |
|  |  | $\mathrm{f}_{\mathrm{RF}}=443 \mathrm{MHz}$ ；see Fig． 11 | 35 | 38 | 41 | dB |
| NF | noise figure（not corrected for image） | $\mathrm{f}_{\mathrm{RF}}=157 \mathrm{MHz}$ ；see Fig． 12 | － | 6 | 8.0 | dB |
|  |  | $\mathrm{f}_{\mathrm{RF}}=443 \mathrm{MHz}$ ；see Fig． 12 | － | 6 | 8.0 | dB |
| V 。 | output voltage causing $0.3 \%$ cross modulation in channel | $\mathrm{f}_{\mathrm{RF}}=157 \mathrm{MHz}$ ；see Fig． 13 | 108 | 111 | － | $\mathrm{dB} \mu \mathrm{V}$ |
|  |  | $\mathrm{f}_{\mathrm{RF}}=443 \mathrm{MHz}$ ；see Fig． 13 | 108 | 111 | － | $\mathrm{dB} \mu \mathrm{V}$ |
| V 。 | output voltage causing 1.1 kHz incidental FM | $\mathrm{f}_{\mathrm{RF}}=157 \mathrm{MHz}$ ；note 2 | 108 | 111 | － | $\mathrm{dB} \mu \mathrm{V}$ |
|  |  | $\mathrm{f}_{\mathrm{RF}}=443 \mathrm{MHz}$ ；note 2 | 108 | 111 | － | $\mathrm{dB} \mathrm{\mu} \mathrm{~V}$ |
| $\mathrm{V}_{\mathrm{f}(\mathrm{N}+5)-1}$ | （ $\mathrm{N}+5$ ）－ 1 MHz pulling | $\begin{array}{\|l} \hline \mathrm{f}_{\mathrm{RF} \text { wanted }}=443 \mathrm{MHz} ; \\ \mathrm{f}_{\text {osc }}=481.9 \mathrm{MHz} ; \\ \mathrm{f}_{\mathrm{RF} \text { unwanted }}=482 \mathrm{MHz} ; \text { note } 8 \\ \hline \end{array}$ | 72 | 80 | － | $\mathrm{dB} \mu \mathrm{V}$ |
| $\mathrm{Z}_{\mathrm{i}}$ | input impedance$\left(R_{S}+j L_{S} \omega\right)$ | $\mathrm{R}_{\mathrm{S}}$ at $\mathrm{f}_{\mathrm{RF}}=157 \mathrm{MHz}$ ；see Fig． 5 | － | 25 | － | $\Omega$ |
|  |  | $\mathrm{R}_{\mathrm{S}}$ at $\mathrm{f}_{\mathrm{RF}}=443 \mathrm{MHz}$ ；see Fig． 5 | － | 25 | － | $\Omega$ |
|  |  | $L_{\text {S }}$ at $\mathrm{f}_{\text {RF }}=157 \mathrm{MHz}$ ；see Fig． 5 | － | 13 | － | nH |
|  |  | $L_{S}$ at $f_{\text {RF }}=443 \mathrm{MHz}$ ；see Fig． 5 | － | 13 | － | nH |
| $\mathrm{V}_{\mathrm{i}}$ | input level without lock－out | see Fig．15；note 13 | － | － | 120 | $\mathrm{dB} \mu \mathrm{V}$ |
| High band mixer in high band mode（P0＝ 0 AND P1＝0）；Including IF Amplifier |  |  |  |  |  |  |
| $\mathrm{f}_{\mathrm{RF}}$ | RF frequency | picture carrier；note 1 | 455.25 | － | 855.25 | MHz |
| $\mathrm{G}_{v}$ | voltage gain | $\mathrm{f}_{\mathrm{RF}}=443 \mathrm{MHz}$ ；see Fig． 11 | 35 | 38 | 41 | dB |
|  |  | $\mathrm{f}_{\mathrm{RF}}=863.25 \mathrm{MHz}$ ；see Fig． 11 | 35 | 38 | 41 | dB |
| NF | noise figure（not corrected for image） | $\mathrm{f}_{\mathrm{RF}}=443 \mathrm{MHz}$ ；see Fig． 12 | － | 6.0 | 8.0 | dB |
|  |  | $\mathrm{f}_{\mathrm{RF}}=863.25 \mathrm{MHz}$ ；see Fig． 12 | － | 7.0 | 9.0 | dB |
| V 。 | output voltage causing $0.3 \%$ cross modulation in channel | $\mathrm{f}_{\mathrm{RF}}=443 \mathrm{MHz}$ ；see Fig． 13 | 108 | 111 | － | $\mathrm{dB} \mu \mathrm{V}$ |
|  |  | $\mathrm{f}_{\mathrm{RF}}=863.25 \mathrm{MHz}$ ；see Fig． 13 | 108 | 111 | － | $\mathrm{dB} \mu \mathrm{V}$ |
| V 。 | output voltage causing 1.1 kHz incidental FM | $\mathrm{f}_{\mathrm{RF}}=443 \mathrm{MHz}$ ；note 2 | 108 | 111 | － | $\mathrm{dB} \mu \mathrm{V}$ |
|  |  | $\mathrm{f}_{\mathrm{RF}}=863.25 \mathrm{MHz}$ ；note 2 | 108 | 111 | － | $\mathrm{dB} \mu \mathrm{V}$ |
| $\mathrm{V}_{\mathrm{f}(\mathrm{N}+5)-1}$ | （ $\mathrm{N}+5$ ）－ 1 MHz pulling | $\begin{aligned} & \mathrm{f}_{\mathrm{RF} \text { wanted }}=863.25 \mathrm{MHz} ; \\ & \mathrm{f}_{\text {osc }}=902.15 \mathrm{MHz} ; \\ & \mathrm{f}_{\mathrm{RF} \text { unwanted }}=902.25 \mathrm{MHz} \text {; note } 8 \end{aligned}$ | 72 | 80 | － | $\mathrm{dB} \mathrm{\mu} \mathrm{~V}$ |
| $\mathrm{Z}_{\mathrm{i}}$ | input impedance$\left(R_{S}+j L_{S} \omega\right)$ | $\mathrm{R}_{\mathrm{S}}$ at $\mathrm{f}_{\mathrm{RF}}=443 \mathrm{MHz}$ ；see Fig． 5 | － | 25 | － | $\Omega$ |
|  |  | $\mathrm{R}_{\mathrm{S}}$ at $\mathrm{f}_{\mathrm{RF}}=863.25 \mathrm{MHz}$ ；see Fig． 5 | － | 23 | － | $\Omega$ |
|  |  | $L_{\text {S }}$ at $f_{\text {RF }}=443 \mathrm{MHz}$ ；see Fig． 5 | － | 13 | － | nH |
|  |  | $\mathrm{L}_{\text {S }}$ at $\mathrm{f}_{\mathrm{RF}}=863.25 \mathrm{MHz}$ ；see Fig． 5 | － | 13 | － | nH |
| $\mathrm{V}_{i}$ | input level without lock－out | see Fig．15；note 13 | － | － | 120 | $\mathrm{dB} \mu \mathrm{V}$ |

## 5 V mixer/oscillator and synthesizer for PAL and NTSC standards

| SYMBOL | PARAMETER | CONDITIONS | MIN. | TYP. | MAX. | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Low band oscillator (see Fig.16) |  |  |  |  |  |  |
| $\mathrm{f}_{\text {osc }}$ | oscillator frequency | note 4 | 84.15 | - | 193.15 | MHz |
| $\Delta \mathrm{f}_{\text {osc }(\mathrm{V})}$ | oscillator frequency shift with supply voltage | $\Delta \mathrm{V}_{\mathrm{CC}}=5 \%$; note 5 | - | 20 | 70 | kHz |
|  |  | $\Delta \mathrm{V}_{\mathrm{CC}}=10 \%$; note 5 | - | 110 | - | kHz |
| $\Delta \mathrm{f}_{\text {osc }(\mathrm{T})}$ | oscillator frequency drift with temperature | $\Delta \mathrm{T}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \text { with }$ compensation; note 6 | - | 800 | 1100 | kHz |
| $\Delta \mathrm{f}_{\text {osc }(t)}$ | oscillator frequency switch-on drift | 5 s to 15 min after switching on $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$; note 7 | - | 500 | 700 | kHz |
| $\Phi_{\text {osc }}$ | phase noise, carrier to noise sideband | $\pm 10 \mathrm{kHz}$ frequency offset; worst case in the frequency range | 84 | 87 | - | $\mathrm{dBc} / \mathrm{Hz}$ |
|  |  | $\pm 100 \mathrm{kHz}$ frequency offset; worst case in the frequency range | 104 | 107 | - | $\mathrm{dBc} / \mathrm{Hz}$ |
| $\mathrm{RSC}_{\mathrm{p}-\mathrm{p}}$ | ripple susceptibility of $\mathrm{V}_{\mathrm{CC}}$ (peak-to-peak value) | $4.75<\mathrm{V}_{\mathrm{CC}}<5.25 \mathrm{~V}$; worst case in the frequency range; ripple frequency 500 kHz ; note 9 | 15 | 20 | - | mV |
| MID BAND OSCILLATOR (see Fig.16) |  |  |  |  |  |  |
| $\mathrm{f}_{\text {osc }}$ | oscillator frequency | note 4 | 200.15 | - | 478.15 | MHz |
| $\Delta \mathrm{f}_{\text {osc }(\mathrm{V})}$ | oscillator frequency shift with supply voltage | $\Delta \mathrm{V}_{\mathrm{CC}}=5 \%$; note 5 | - | 20 | 70 | kHz |
|  |  | $\Delta \mathrm{V}_{\mathrm{CC}}=10 \%$; note 5 | - | 110 | - | kHz |
| $\Delta \mathrm{f}_{\text {osc }(\mathrm{T})}$ | oscillator frequency drift with temperature | $\Delta \mathrm{T}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \text { with }$ compensation; note 6 | - | 1000 | 1500 | kHz |
| $\Delta \mathrm{f}_{\text {osc }(t)}$ | oscillator frequency drift after switch on | 5 s to 15 min after switching on $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$; note 7 | - | 500 | 700 | kHz |
| $\Phi_{\text {osc }}$ | phase noise, carrier to noise sideband | $\pm 10 \mathrm{kHz}$ frequency offset; worst case in the frequency range | 84 | 87 | - | $\mathrm{dBc} / \mathrm{Hz}$ |
|  |  | $\pm 100 \mathrm{kHz}$ frequency offset; worst case in the frequency range | 104 | 107 | - | $\mathrm{dBc} / \mathrm{Hz}$ |
| $\mathrm{RSC}_{p-p}$ | ripple susceptibility of $V_{C C}$ (peak-to-peak value) | $4.75<\mathrm{V}_{\mathrm{CC}}<5.25 \mathrm{~V}$; worst case in the frequency range; ripple frequency 500 kHz ; note 9 | 15 | 20 | - | mV |
| High band oscillator (see Fig.16) |  |  |  |  |  |  |
| $\mathrm{f}_{\text {osc }}$ | oscillator frequency | note 4 | 494.15 | - | 894.15 | MHz |
| $\Delta \mathrm{f}_{\text {osc }(\mathrm{V})}$ | oscillator frequency shift with supply voltage | $\Delta \mathrm{V}_{\mathrm{CC}}=5 \%$; note 5 | - | 20 | 70 | kHz |
|  |  | $\Delta \mathrm{V}_{C C}=10 \%$; note 5 | - | 300 | - | kHz |
| $\Delta \mathrm{f}_{\text {osc( } \mathrm{T} \text { ) }}$ | oscillator frequency drift with temperature | $\Delta \mathrm{T}=25^{\circ} \mathrm{C} \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$; with compensation; note 6 | - | 1100 | 1500 | kHz |
| $\Delta \mathrm{f}_{\text {osc }(t)}$ | oscillator frequency drift after switch on | 5 s to 15 min after switching on; $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$; note 7 | - | 600 | 900 | kHz |
| $\Phi_{\text {osc }}$ | phase noise, carrier to noise sideband | $\pm 10 \mathrm{kHz}$ frequency offset; worst case in the frequency range | 84 | 87 | - | $\mathrm{dBc} / \mathrm{Hz}$ |
|  |  | $\pm 100 \mathrm{kHz}$ frequency offset; worst case in the frequency range | 104 | 107 | - | $\mathrm{dBc} / \mathrm{Hz}$ |

## 5 V mixer/oscillator and synthesizer

 for PAL and NTSC standards| SYMBOL | PARAMETER | CONDITIONS | MIN. | TYP. | MAX. | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{RSC}_{\mathrm{p} \text {-p }}$ | ripple susceptibility of $V_{C C}$ (peak-to-peak value) | $4.75<\mathrm{V}_{\mathrm{CC}}<5.25 \mathrm{~V}$; worst case in the frequency range; ripple frequency 500 kHz ; note 9 | 15 | 20 | - | mV |
| IF AMPLIFIER |  |  |  |  |  |  |
| $\mathrm{S}_{22}$ | output reflection coefficient | magnitude; see Fig. 6 | - | 38 | - | dB |
|  |  | phase; see Fig. 6 | - | 0.36 | - | deg |
| $\mathrm{Z}_{0}$ | output impedance$\left(R_{S}+j L_{S} \omega\right)$ | $\mathrm{R}_{\mathrm{S}}$ at 36.15 MHz; see Fig. 6 | - | 79 | - | $\Omega$ |
|  |  | $\mathrm{C}_{\text {S }}$ at 36.15 MHz ; see Fig. 6 | - | 9 | - | nF |
|  |  | $\mathrm{R}_{\mathrm{S}}$ at 43.5 MHz ; see Fig. 6 | - | 80 | - | $\Omega$ |
|  |  | $\mathrm{C}_{\mathrm{S}}$ at 43.5 MHz ; see Fig.6 | - | 3 | - | nF |
| Rejection at the if output |  |  |  |  |  |  |
| INT div | level of divider interferences in the IF signal | note 10; worst case | - | - | 23 | $\mathrm{dB} \mu \mathrm{V}$ |
| $\mathrm{INT}_{\text {XTAL }}$ | crystal oscillator interferences rejection | $\mathrm{V}_{\mathrm{IF}}=100 \mathrm{~dB} \mu \mathrm{~V}$; worst case in the frequency range; note 11 | 60 | 66 | - | dBc |
| INTt ${ }_{\text {ref }}$ | reference frequency rejection | $\mathrm{V}_{\text {IF }}=100 \mathrm{~dB} \mu \mathrm{~V}$; worst case in the frequency range; note 12 | 60 | 66 | - | dBc |
| AGC OUTPUT |  |  |  |  |  |  |
| AGC $_{\text {TOP }}$ | AGC take-over point | $A L 2=0 ; A L 1=1 ; A L 0=0$ | 110.5 | 112 | 113.5 | $\mathrm{dB} \mu \mathrm{V}$ |
| $\mathrm{I}_{\text {source(fast) }}$ | source current 1 |  | 8.0 | 9.5 | 11.0 | $\mu \mathrm{A}$ |
| $\mathrm{I}_{\text {source(slow) }}$ | source current 2 |  | 210.0 | 245.0 | 280.0 | nA |
| $\mathrm{I}_{\text {sink(peak) }}$ | peak sink current to ground |  | 80 | 100 | 120 | $\mu \mathrm{A}$ |
| $\mathrm{V}_{\text {max }}$ | AGC maximum output voltage |  | 3.45 | 3.5 | 3.6 | V |
| $\mathrm{V}_{\text {min }}$ | AGC minimum output voltage |  | 0 | - | 0.1 | V |
| $\mathrm{V}_{\mathrm{RF} \text { (slip) }}$ | RF voltage range to switch the AGC from active to not active mode |  | - | - | 0.5 | dB |
| $\mathrm{V}_{\text {RM(L) }}$ | AGC output voltage | AGC bit $=1$ or AGC active | 0 | - | 2.9 | V |
| $\mathrm{V}_{\text {RM(H) }}$ | AGC output voltage | AGC bit $=0$ or AGC not active | 3 | 3.5 | 3.6 | V |
| lo | AGC leakage current | $\begin{aligned} & \hline \mathrm{AL2}=1 ; \mathrm{AL1}=1 ; \mathrm{ALO}=0 ; \\ & 0<\mathrm{V}_{\mathrm{AGC}}<\mathrm{V}_{\mathrm{CC}} \\ & \hline \end{aligned}$ | -50 | - | +50 | nA |
| $\mathrm{V}_{\text {O(off) }}$ | AGC output voltage with AGC disabled | AL2 $=1 ;$ AL1 $=1 ; ~ A L 0=1$ | 3.45 | 3.5 | 3.6 | V |

## Notes

1. The RF frequency range is defined by the oscillator frequency range and the Intermediate Frequency (IF).
2. This is the level of the RF unwanted signal, $50 \%$ amplitude modulated with 1 kHz , that causes a 1.1 kHz FM modulation of the local oscillator and thus of the wanted signal; $\mathrm{V}_{\text {wanted }}=100 \mathrm{~dB} \mu \mathrm{~V} ; \mathrm{f}_{\text {unwanted }}=\mathrm{f}_{\text {wanted }}+5.5 \mathrm{MHz}$. The FM modulation is measured at the oscillator output with a peeking coil using a modulation analyser with a peak to peak detector and a post detection filter of 300 Hz up to 3 kHz .
3. Channel SO2 beat is the interfering product of $f_{\text {RFpix }}, f_{I F}$ and $f_{\text {osc }}$ of channel SO ; $f_{\text {beat }}=37.35 \mathrm{MHz}$. The possible mechanisms are: $f_{\text {osc }}-2 \times f_{\text {IF }}$ or $2 \times f_{\text {RFpix }}-f_{\text {osc }}$. For the measurement $V_{o(I F O U T)}=V_{\text {RFpix }}=115 \mathrm{~dB} \mathrm{\mu}$.

## 5 V mixer/oscillator and synthesizer for PAL and NTSC standards

4. Limits are related to the tank circuits used in Fig. 16 for a PAL application. The choice of different external components adapts the measurement circuit to other frequency bands or NTSC applications.
5. The frequency shift is defined as a change in oscillator frequency when the supply voltage varies from $\mathrm{V}_{\mathrm{CC}}=5$ to $4.75 \mathrm{~V}(4.5 \mathrm{~V})$ or from $\mathrm{V}_{\mathrm{CC}}=5$ to $5.25 \mathrm{~V}(5.5 \mathrm{~V})$. The oscillator is free running during this measurement.
6. The frequency drift is defined as a change in oscillator frequency when the ambient temperature varies from $\mathrm{T}_{\mathrm{amb}}=25$ to $50^{\circ} \mathrm{C}$ or from $\mathrm{T}_{\mathrm{amb}}=25$ to $0^{\circ} \mathrm{C}$. The oscillator is free running during this measurement.
7. Switch-on drift is defined as the change in oscillator frequency between 5 s and 15 min after switch on. The oscillator is free running during this measurement.
8. $(N+5)-1 \mathrm{MHz}$ pulling is the input level of channel $N+5$, at frequency 1 MHz lower, causing FM sidebands 30 dB below the wanted carrier.
9. The supply ripple susceptibility is measured in the circuit according to Fig. 16 using a spectrum analyser connected to the IF output. An unmodulated RF signal is applied to the test board RF input. A sinewave signal with a frequency of 500 kHz is superimposed onto the supply voltage. The amplitude of this ripple signal is adjusted to bring the 500 kHz sidebands around the IF carrier to a level of -53.5 dB with respect to the carrier.
10. This is the level of divider interferences close to the IF. For example channel S3: $\mathrm{f}_{\mathrm{osc}}=158.15 \mathrm{MHz}$, $1 / 4 f_{\text {osc }}=39.5375 \mathrm{MHz}$. The LOSCIN input must be left open (i.e. not connected to any load or cable); the HOSCIN1 and HOSCIN2 inputs are connected to a hybrid.
11. Crystal oscillator interference means the 4 MHz sidebands caused by the crystal oscillator. The rejection has to be greater than 60 dB for an IF output signal of $100 \mathrm{~dB} \mu \mathrm{~V}$.
12. The reference frequency rejection is the level of reference frequency sidebands (e.g. 62.5 kHz ) related to the carrier. The rejection has to be greater than 60 dB for an IF output signal of $100 \mathrm{~dB} \mu \mathrm{~V}$.
13. The IF output signal stays stable within the range of the $f_{\text {ref }}$ step for a low level RF input up to $120 \mathrm{~dB} \mu \mathrm{~V}$. This should be verified for every channel in the band.


Fig. 4 Input admittance $\left(S_{11}\right)$ of the low band mixer ( 40 to 140 MHz ); $\mathrm{Y}_{\mathrm{o}}=20 \mathrm{mS}$.

## 5 V mixer/oscillator and synthesizer

 for PAL and NTSC standards

Fig. 5 Input impedance $\left(\mathrm{S}_{11}\right)$ of the mid and high band mixer $(160$ to 870 MHz$) ; \mathrm{Z}_{\mathrm{o}}=100 \Omega$.


Fig. 6 Output impedance $\left(\mathrm{S}_{22}\right)$ of the IF amplifier ( 30 to 50 MHz ); $\mathrm{Z}_{\mathrm{o}}=50 \Omega$.

## 5 V mixer/oscillator and synthesizer for PAL and NTSC standards


$\mathrm{Z}_{\mathrm{i}} \gg 50 \Omega \rightarrow \mathrm{~V}_{\mathrm{i}}=2 \times \mathrm{V}_{\text {meas }}=80 \mathrm{~dB} \mu \mathrm{~V}$.
$\mathrm{V}_{\mathrm{i}}=\mathrm{V}_{\text {meas }}+6 \mathrm{~dB}=80 \mathrm{~dB} \mu \mathrm{~V}$.
$\mathrm{V}_{0}=\mathrm{V}^{\prime}$ meas $\times \frac{50}{\sqrt{50^{2}+\mathrm{L}^{2} \omega^{2}}}=\mathrm{V}^{\prime}$ meas + attenuation.
PAL:
IF = 38.9 MHz.
$G_{v}=20 \log \frac{V_{0}}{V_{i}}$.
$\mathrm{L}=680 \mathrm{nH}$.
$\mathrm{C}=25.9 \mathrm{pF}$.
attenuation $=10.2 \mathrm{~dB}$.
Fig. 7 Gain ( $\mathrm{G}_{\mathrm{v}}$ ) measurement in low band.


For $f_{R F}=150 \mathrm{MHz}$.
Low band mixer frequency response measured $=150.3 \mathrm{MHz}$; loss $=1.3 \mathrm{~dB}$; image suppression $=13 \mathrm{~dB}$.
$\mathrm{C} 3=5 \mathrm{pF}$.
$\mathrm{C} 4=25 \mathrm{pF}$.
$12=$ semi rigid cable (RIM): 30 cm long; $33 \mathrm{~dB} / 100 \mathrm{~m} ; 50 \Omega ; 96 \mathrm{pF} / \mathrm{m}$.
$\mathrm{I} 3=$ semi rigid cable (RIM): 5 cm long; $33 \mathrm{~dB} / 100 \mathrm{~m} ; 50 \Omega ; 96 \mathrm{pF} / \mathrm{m}$.

Fig. 8 Input circuit for optimum noise figure in the low band.

## 5 V mixer/oscillator and synthesizer

 for PAL and NTSC standards

PAL:
IF $=38.9 \mathrm{MHz}$.
$\mathrm{L}=680 \mathrm{nH}$.
$\mathrm{C}=25.9 \mathrm{pF}$.

Fig. 9 Noise figure (NF) measurement in low band.


Fig. 10 Cross modulation measurement in low band.

## 5 V mixer/oscillator and synthesizer for PAL and NTSC standards



Loss in hybrid $=1 \mathrm{~dB}$.
$\mathrm{V}_{\mathrm{i}}=\mathrm{V}_{\text {meas }}-$ loss $=70 \mathrm{~dB} \mu \mathrm{~V}$.
$\mathrm{V}_{0}=\mathrm{V}^{\prime}$ meas $\times \frac{50}{\sqrt{50^{2}+\mathrm{L}^{2} \omega^{2}}}=\mathrm{V}_{\text {'meas }}^{\prime}+$ attenuation.
PAL:
IF $=38.9 \mathrm{MHz}$.
$G_{v}=20 \log \frac{V_{0}}{V_{i}}$.
$\mathrm{L}=680 \mathrm{nH}$.
$\mathrm{C}=25.9 \mathrm{pF}$.
attenuation $=10.2 \mathrm{~dB}$.
Fig. 11 Gain $\left(G_{v}\right)$ measurement in mid and high bands.


Fig. 12 Noise figure (NF) measurement in mid and high bands.

## 5 V mixer/oscillator and synthesizer for PAL and NTSC standards


$\mathrm{V}_{\mathrm{o}}=\mathrm{V}_{\text {meas }} \times \frac{50}{\sqrt{50^{2}+\mathrm{L}^{2} \omega^{2}}}=\mathrm{V}_{\text {meas }}+$ attenuation.
Wanted output signal at $f_{\text {RFpix }} ; \mathrm{V}_{\mathrm{O}}=100 \mathrm{~dB} \mu \mathrm{~V}$.
Unwanted output signal at $\mathrm{f}_{\mathrm{RF} \text { pix }}+5.5 \mathrm{MHz}$.
The level of unwanted signal is measured by causing $0.09 \%$ AM modulation in the wanted signal.

## PAL:

IF = 38.9 MHz .
$\mathrm{L}=680 \mathrm{nH}$.
$\mathrm{C}=25.9 \mathrm{pF}$.
attenuation $=10.2 \mathrm{~dB}$.

Fig. 13 Cross modulation measurement in mid and high bands.


Fig. 14 Maximum RF input level without lock-out in low band.

## 5 V mixer/oscillator and synthesizer for PAL and NTSC standards



Fig. 15 Maximum RF input level without lock-out in mid and high bands.

## 5 V mixer/oscillator and synthesizer for PAL and NTSC standards



The pin numbers in parenthesis represent the TDA6501TT
Fig. 16 Measurement circuit for PAL on test jig.

## 5 V mixer/oscillator and synthesizer

 for PAL and NTSC standardsTable 12 Component values for measurement circuit

| COMPONENT | VALUE |
| :---: | :---: |
| Capacitors (SMD and NPO, unless otherwise stated) |  |
| C1 | 1.8 pF (N750) |
| C2 | 1.5 pF (N750) |
| C3 | 82 pF (N750) |
| C4 | 1 pF (N750) |
| C5 | 1.5 pF (N750) |
| C6 | 100 pF (N750) |
| C7 | 1.2 pF (N750) |
| C8 | 1.2 pF (N750) |
| C9 | 1.2 pF (N750) |
| C10 | 1.2 pF (N750) |
| C11 | 27 pF (N750) |
| C12 | 4.7 nF |
| C13 | 4.7 nF |
| C14 | 18 pF |
| C15 | 100 nF |
| C16 | 820 pF |
| C17 | 4.7 nF |
| C18 | 4.7 nF |
| C19 | 4.7 nF |
| C20 | 12 pF |
| C21 | 12 pF |
| C22 | 160 nF |
| C23 | 10 nF |
| C25 | $10 \mu \mathrm{~F}$ (16 V; electrolytic) |
| C26 | $10 \mu \mathrm{~F}$ (16 V; electrolytic) |
| C27 | 22 pF |
| C28 | 3.9 pF |
| Resistors; all SMD |  |
| R1 | $12 \Omega$ |
| R2 | $5.6 \Omega$ |
| R3 | $27 \Omega$ |
| R4 | $5.6 \mathrm{k} \Omega$ |
| R5 | $22 \mathrm{k} \Omega$ |
| R6 | $22 \mathrm{k} \Omega$ |


| COMPONENT | VALUE |
| :---: | :---: |
| R7 | $5.6 \mathrm{k} \Omega$ |
| R10 | $27 \mathrm{k} \Omega$ |
| R11 | $1 \mathrm{k} \Omega$ |
| R12 | $220 \Omega$ |
| R13 | $470 \Omega$ |
| R14 | $1 \mathrm{k} \Omega$ |
| R15 | $2.2 \mathrm{k} \Omega$ |
| R16 | $0 \Omega$ |
| R17 | $330 \Omega$ |
| R18 | $330 \Omega$ |
| R19 | $18 \mathrm{k} \Omega$ |
| R20 | $4.7 \mathrm{k} \Omega$ |
| R21 | $3.9 \mathrm{k} \Omega$ |
| R22 | $6.8 \mathrm{k} \Omega$ |
| Diodes and ICs |  |
| D1 | BB182 |
| D2 | BB178 |
| D3 | BB179 |
| IC | TDA6500TT/TDA6501TT |
| Coils; including IF coil; wire size 0.4 mm |  |
| L1 | $6 \mathrm{t} ; \varnothing 4 \mathrm{~mm}$ |
| L2 | $3 \mathrm{t} ; \varnothing 2 \mathrm{~mm}$ |
| L3 | $3 \mathrm{t} ; \varnothing 2 \mathrm{~mm}$ |
| L4 | 12 t ; coil type: TOKO 7kN; material: 113 kN ; screw core: 03-0093; pot core: 04-0026 |
| L5 | 680 nH |
| Crystal |  |
| X1 | 4 MHz |
| Transistors |  |
| Q1 | BC847 |
| LEDs |  |
| D4 | 3 mm |
| D5 | 3 mm |
| D6 | 3 mm |
| D7 | 3 mm |

## 5 V mixer/oscillator and synthesizer for PAL and NTSC standards

## 11 APPLICATION INFORMATION

### 11.1 Tuning amplifier

The tuning amplifier is capable of driving the varicap voltage without an external transistor. The tuning voltage output must be connected to an external load of $27 \mathrm{k} \Omega$ which is connected to the tuning voltage supply rail. The loop filter design depends on the oscillator characteristics and the selected reference frequency.

### 11.2 Crystal oscillator

The crystal oscillator uses a 4 MHz crystal connected in series with an 18 pF capacitor thereby operating in the series resonance mode. Connecting the crystal to the ground is preferred, but it can also be connected to the supply voltage.

### 11.3 Examples of $\mathrm{I}^{2} \mathrm{C}$-bus sequences

Tables 13 to 18 show various write sequences where:
S = START
A = acknowledge
$P=S T O P$.
Conditions:
$\mathrm{f}_{\text {osc }}=100 \mathrm{MHz}$
P 0 is on to switch on the low band
P 3 is on
$I_{C P}=280 \mu \mathrm{~A}$
$\mathrm{f}_{\text {step }}=62.5 \mathrm{kHz}$
$N=1600$
$\mathrm{f}_{\mathrm{XTAL}}=4 \mathrm{MHz}$
$\mathrm{I}_{\mathrm{AGC}}=245 \mathrm{nA}$
AGC take-over point is set to $112 \mathrm{~dB} \mu \mathrm{~V}$ asymmetrical.
For the complete sequence see Table 13 (sequence 1) or Table 14 (sequence 2).

Other $\mathrm{I}^{2} \mathrm{C}$-bus addresses may be selected by applying an appropriate voltage to the AS input.

Table 13 Complete sequence 1

| START | ADDRESS <br> BYTE |  | DIVIDER <br> BYTE 1 |  | DIVIDER <br> BYTE 2 | CONTROL <br> BYTE | BAND <br> SWITCH <br> BYTE | CONTROL <br> BYTE | AUXILIARY <br> BYTE | STOP |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| S | C 2 | A | 06 | A | 40 | A | CE | A | 09 | A | DE | A | 20 |
| A | P |  |  |  |  |  |  |  |  |  |  |  |  |

Table 14 Complete sequence 2

| START | ADDRESS <br> BYTE |  | CONTROL <br> BYTE |  | AUXILIARY <br> BYTE | CONTROL <br> BYTE | BAND <br> SWITCH <br> BYTE | DIVIDER <br> BYTE 1 | DIVIDER <br> BYTE 2 | STOP |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| S | C 2 | A | DE | A | 20 | A | CE | A | 09 | A | 06 | A | 40 | A |

Table 15 Divider bytes only sequence

| START | ADDRESS BYTE |  | DIVIDER BYTE 1 |  | DIVIDER BYTE 2 |  | STOP |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| S | C2 | A | 06 | A | 40 | A | P |

Table 16 Control and band switch bytes only sequence

| START | ADDRESS BYTE |  | CONTROL BYTE |  | BAND SWITCH BYTE |  | STOP |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| S | C2 | A | CE | A | 09 | A | P |

## 5 V mixer/oscillator and synthesizer for PAL and NTSC standards

Table 17 Control and auxiliary bytes only sequence

| START | ADDRESS BYTE |  | CONTROL BYTE |  | AUXILIARY BYTE |  | STOP |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| S | C2 | A | DE | A | 20 | A | P |

Table 18 Control byte only sequence

| START | ADDRESS BYTE |  | CONTROL BYTE |  | STOP |
| :--- | :--- | :--- | :--- | :--- | :---: |
| S | C2 | DE | A | P |  |

Tables 19 and 20 show read sequences where:

$$
\begin{aligned}
& S=\text { START } \\
& A=\text { acknowledge } \\
& X X=\text { read status byte } \\
& X=\text { no acknowledge from the master means end of sequence } \\
& P=S T O P .
\end{aligned}
$$

Table 19 Status byte acquisition

| START | ADDRESS BYTE |  | STATUS BYTE | STOP |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| S | C3 | A | XX | X | P |

Table 20 Two status bytes acquisition

| START | ADDRESS BYTE |  | STATUS BYTE 1 |  | STATUS BYTE 2 |  | STOP |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :---: |
| S | C3 | A | XX | A | XX | X | P |

5 V mixer/oscillator and synthesizer for PAL and NTSC standards

12 INTERNAL PIN CONFIGURATION

| SYMBOL | PIN |  | AVERAGE DC VOLTAGE VERSUS BAND SELECTION |  |  | EQUIVALENT CIRCUIT ${ }^{(1)}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | TDA6500TT | TDA6501TT | LOW | MID | HIGH |  |
| LOSCIN | 1 | 32 | 1.7 | 1.4 | 1.4 |  |
| LOSCOUT | 2 | 31 | 2.9 | 3.5 | 3.5 |  |
| OSCGND | 3 | 30 | - | - | - | - |
| MOSCOUT | 4 | 29 | 3.5 | 3.02 | 3.5 |  |
| MOSCIN | 5 | 28 | 1.4 | 1.7 | 1.4 |  |
| HOSCIN1 | 6 | 27 | 2.2 | 2.2 | 1.8 |  |
| HOSCOUT2 | 7 | 26 | 5 | 5 | 2.5 |  |
| HOSCOUT1 | 8 | 25 | 5 | 5 | 2.5 |  |
| HOSCIN2 | 9 | 24 | 2.2 | 2.2 | 1.8 | (27) (6) |
| $\mathrm{V}_{\text {CC }}$ | 10 | 23 | 5.0 | 5.0 | 5.0 | - |
| IFGND | 11 | 22 | - | - | - |  |

5 V mixer/oscillator and synthesizer for PAL and NTSC standards

| SYMBOL | PIN |  | AVERAGE DC VOLTAGE VERSUS BAND SELECTION |  |  | EQUIVALENT CIRCUIT ${ }^{(1)}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | TDA6500TT | TDA6501TT | LOW | MID | HIGH |  |
| IFOUT | 12 | 21 | 2.1 | 2.1 | 2.1 |  |
| PLLGND | 13 | 20 | - | - | - |  |
| XTAL | 14 | 19 | 0.7 | 0.7 | 0.7 |  |
| VT | 15 | 18 | $\mathrm{V}_{\mathrm{VT}}$ | $\mathrm{V}_{V T}$ | $\mathrm{V}_{\mathrm{VT}}$ |  |
| CP | 16 | 17 | 1.0 | 1.0 | 1.0 |  |
| P4 | 17 | 16 | $\mathrm{V}_{\mathrm{CE}}$ (sat) or High Z | $\mathrm{V}_{\mathrm{CE} \text { (sat) }}$ or High Z | $\mathrm{V}_{\mathrm{CE}(\text { sat })}$ or High Z |  |

5 V mixer/oscillator and synthesizer for PAL and NTSC standards

TDA6500TT; TDA6501TT

| SYMBOL | PIN |  | AVERAGE DC VOLTAGE VERSUS BAND SELECTION |  |  | EQUIVALENT CIRCUIT ${ }^{(1)}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | TDA6500TT | TDA6501TT | LOW | MID | HIGH |  |
| P6/ADC | 18 | 15 | $\mathrm{V}_{\mathrm{CE}}$ (sat) or High Z | $\mathrm{V}_{\mathrm{CE} \text { (sat) }}$ or High Z | $\mathrm{V}_{\mathrm{CE}(\text { sat })}$ or High Z |  |
| SDA | 19 | 14 | n.a. | n.a. | n.a. |  |
| SCL | 20 | 13 | n.a. | n.a. | n.a. | FCE234 |
| AS | 21 | 12 | 1.25 | 1.25 | 1.25 |  |
| P3 | 22 | 11 | High Z or $V_{C C}-V_{D S}$ | High Z or $V_{C C}-V_{D S}$ | High Z or $V_{C C}-V_{D S}$ |  |

5 V mixer/oscillator and synthesizer for PAL and NTSC standards

| SYMBOL | PIN |  | AVERAGE DC VOLTAGE VERSUS BAND SELECTION |  |  | EQUIVALENT CIRCUIT ${ }^{(1)}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | TDA6500TT | TDA6501TT | LOW | MID | HIGH |  |
| P0 | 23 | 10 | $\mathrm{V}_{C C}-\mathrm{V}_{\mathrm{DS}}$ | High Z | High Z |  |
| P1 | 24 | 9 | High Z | $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{DS}}$ | High Z |  |
| AGC | 25 | 8 | $\begin{aligned} & 0 \mathrm{~V} \text { or } \\ & 3.5 \mathrm{~V} \end{aligned}$ | $\begin{aligned} & 0 \mathrm{~V} \text { or } \\ & 3.5 \mathrm{~V} \end{aligned}$ | $\begin{aligned} & 0 \mathrm{~V} \text { or } \\ & 3.5 \mathrm{~V} \end{aligned}$ |  |
| P2 | 26 | 7 | High Z or $V_{C C}-V_{D S}$ | High Z or $V_{C C}-V_{D S}$ | High Z or $V_{C C}-V_{D S}$ |  |
| IFFIL1 | 27 | 6 | 4.4 | 4.4 | 4.4 |  |
| IFFIL2 | 28 | 5 | 4.4 | 4.4 | 4.4 |  |
| RFGND | 29 | 4 | - | - | - |  |

## 5 V mixer/oscillator and synthesizer for PAL and NTSC standards

TDA6500TT; TDA6501TT

| SYMBOL | PIN |  | AVERAGE DC VOLTAGE VERSUS BAND SELECTION |  |  | EQUIVALENT CIRCUIT ${ }^{(1)}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | TDA6500TT | TDA6501TT | LOW | MID | HIGH |  |
| LBIN | 30 | 3 | 1.8 | n.a. | n.a. |  |
| MHBIN1 | 31 | 2 | n.a. | 1.0 | 1.0 |  |
| MHBIN2 | 32 | 1 | n.a. | 1.0 | 1.0 |  |

## Note

1. The pin numbers in parenthesis represent the TDA6501TT.

## 5 V mixer/oscillator and synthesizer for PAL and NTSC standards

## 13 PACKAGE OUTLINE

TSSOP32: plastic thin shrink small outline package; 32 leads; body width 6.1 mm ; lead pitch 0.65 mm


DIMENSIONS (mm are the original dimensions)

| UNIT | $\mathbf{A}$ <br> $\mathbf{m a x}$. | $\mathbf{A}_{\mathbf{1}}$ | $\mathbf{A}_{\mathbf{2}}$ | $\mathbf{A}_{\mathbf{3}}$ | $\mathbf{b}_{\mathbf{p}}$ | $\mathbf{c}$ | $\mathbf{D}^{(1)}$ | $\mathbf{E}^{(2)}$ | $\mathbf{e}$ | $\mathbf{H}_{\mathbf{E}}$ | $\mathbf{L}$ | $\mathbf{L}_{\mathbf{p}}$ | $\mathbf{v}$ | $\mathbf{w}$ | $\mathbf{y}$ | $\mathbf{Z}$ | $\boldsymbol{\theta}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| mm | 1.1 | 0.15 | 0.95 | 0.25 | 0.30 | 0.20 | 11.1 | 6.2 | 0.65 | 8.3 | 1 | 0.75 | 0.2 | 0.1 | 0.1 | 0.78 | $8^{\circ}$ |
|  |  | 0.05 | 0.85 |  | 0.19 | 0.09 | 10.9 | 6.0 | 0.65 | 7.9 |  | 0.50 |  |  | 0.48 | $0^{\circ}$ |  |

Notes

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.

| OUTLINE <br> VERSION | REFERENCES |  |  |  | EUROPEAN <br> PROJECTION | ISSUE DATE |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
|  | IEC | JEDEC | JEITA |  |  |  |
| SOT487-1 |  | MO-153 |  |  | $-9-12-27$ |  |

5 V mixer/oscillator and synthesizer
for PAL and NTSC standards

## 14 SOLDERING

### 14.1 Introduction to soldering surface mount packages

This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in our "Data Handbook IC26; Integrated Circuit Packages" (document order number 9398652 90011).

There is no soldering method that is ideal for all surface mount IC packages. Wave soldering can still be used for certain surface mount ICs, but it is not suitable for fine pitch SMDs. In these situations reflow soldering is recommended.

### 14.2 Reflow soldering

Reflow soldering requires solder paste (a suspension of fine solder particles, flux and binding agent) to be applied to the printed-circuit board by screen printing, stencilling or pressure-syringe dispensing before package placement. Driven by legislation and environmental forces the worldwide use of lead-free solder pastes is increasing.

Several methods exist for reflowing; for example, convection or convection/infrared heating in a conveyor type oven. Throughput times (preheating, soldering and cooling) vary between 100 and 200 seconds depending on heating method.

Typical reflow peak temperatures range from 215 to $270^{\circ} \mathrm{C}$ depending on solder paste material. The top-surface temperature of the packages should preferably be kept:

- below $220^{\circ} \mathrm{C}\left(\mathrm{SnPb}\right.$ process) or below $245^{\circ} \mathrm{C}$ (Pb-free process)
- for all BGA and SSOP-T packages
- for packages with a thickness $\geq 2.5 \mathrm{~mm}$
- for packages with a thickness $<2.5 \mathrm{~mm}$ and a volume $\geq 350 \mathrm{~mm}^{3}$ so called thick/large packages.
- below $235{ }^{\circ} \mathrm{C}$ ( SnPb process) or below $260^{\circ} \mathrm{C}$ (Pb-free process) for packages with a thickness $<2.5 \mathrm{~mm}$ and a volume < $350 \mathrm{~mm}^{3}$ so called small/thin packages.

Moisture sensitivity precautions, as indicated on packing, must be respected at all times.

### 14.3 Wave soldering

Conventional single wave soldering is not recommended for surface mount devices (SMDs) or printed-circuit boards with a high component density, as solder bridging and non-wetting can present major problems.

To overcome these problems the double-wave soldering method was specifically developed.

If wave soldering is used the following conditions must be observed for optimal results:

- Use a double-wave soldering method comprising a turbulent wave with high upward pressure followed by a smooth laminar wave.
- For packages with leads on two sides and a pitch (e):
- larger than or equal to 1.27 mm , the footprint longitudinal axis is preferred to be parallel to the transport direction of the printed-circuit board;
- smaller than 1.27 mm , the footprint longitudinal axis must be parallel to the transport direction of the printed-circuit board.
The footprint must incorporate solder thieves at the downstream end.
- For packages with leads on four sides, the footprint must be placed at a $45^{\circ}$ angle to the transport direction of the printed-circuit board. The footprint must incorporate solder thieves downstream and at the side corners.

During placement and before soldering, the package must be fixed with a droplet of adhesive. The adhesive can be applied by screen printing, pin transfer or syringe dispensing. The package can be soldered after the adhesive is cured.

Typical dwell time of the leads in the wave ranges from 3 to 4 seconds at $250^{\circ} \mathrm{C}$ or $265^{\circ} \mathrm{C}$, depending on solder material applied, SnPb or Pb -free respectively.

A mildly-activated flux will eliminate the need for removal of corrosive residues in most applications.

### 14.4 Manual soldering

Fix the component by first soldering two diagonally-opposite end leads. Use a low voltage ( 24 V or less) soldering iron applied to the flat part of the lead. Contact time must be limited to 10 seconds at up to $300^{\circ} \mathrm{C}$.

When using a dedicated tool, all other leads can be soldered in one operation within 2 to 5 seconds between 270 and $320^{\circ} \mathrm{C}$.

## 5 V mixer/oscillator and synthesizer for PAL and NTSC standards

### 14.5 Suitability of surface mount IC packages for wave and reflow soldering methods

| PACKAGE $^{(1)}$ | SOLDERING METHOD |  |
| :--- | :--- | :--- |
|  | WAVE | REFLOW $^{(2)}$ |
| BGA, LBGA, LFBGA, SQFP, SSOP-T(3), TFBGA, VFBGA | not suitable | suitable |
| DHVQFN, HBCC, HBGA, HLQFP, HSQFP, HSOP, HTQFP, | not suitable ${ }^{(4)}$ | suitable |
| HTSSOP, HVQFN, HVSON, SMS | suitable | suitable |
| PLCC(5), SO, SOJ | not recommended(5)(6) | suitable |
| LQFP, QFP, TQFP | not recommended |  |
| suitable |  |  |
| SSOP, TSSOP, VSO, VSSOP |  |  |

## Notes

1. For more detailed information on the BGA packages refer to the "(LF)BGA Application Note" (AN01026); order a copy from your Philips Semiconductors sales office.
2. All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the maximum temperature (with respect to time) and body size of the package, there is a risk that internal or external package cracks may occur due to vaporization of the moisture in them (the so called popcorn effect). For details, refer to the Drypack information in the "Data Handbook IC26; Integrated Circuit Packages; Section: Packing Methods".
3. These transparent plastic packages are extremely sensitive to reflow soldering conditions and must on no account be processed through more than one soldering cycle or subjected to infrared reflow soldering with peak temperature exceeding $217^{\circ} \mathrm{C} \pm 10^{\circ} \mathrm{C}$ measured in the atmosphere of the reflow oven. The package body peak temperature must be kept as low as possible.
4. These packages are not suitable for wave soldering. On versions with the heatsink on the bottom side, the solder cannot penetrate between the printed-circuit board and the heatsink. On versions with the heatsink on the top side, the solder might be deposited on the heatsink surface.
5. If wave soldering is considered, then the package must be placed at a $45^{\circ}$ angle to the solder wave direction. The package footprint must incorporate solder thieves downstream and at the side corners.
6. Wave soldering is suitable for LQFP, TQFP and QFP packages with a pitch (e) larger than 0.8 mm ; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.65 mm .
7. Wave soldering is suitable for SSOP, TSSOP, VSO and VSSOP packages with a pitch (e) equal to or larger than 0.65 mm ; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.5 mm .

## 15 DATA SHEET STATUS

| LEVEL | DATA SHEET STATUS ${ }^{(1)}$ | PRODUCT STATUS ${ }^{(2)(3)}$ | DEFINITION |
| :---: | :---: | :---: | :---: |
| I | Objective data | Development | This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice. |
| II | Preliminary data | Qualification | This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product. |
| III | Product data | Production | This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN). |

## Notes

1. Please consult the most recently issued data sheet before initiating or completing a design.
2. The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.
3. For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.

## 16 DEFINITIONS

Short-form specification - The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition - Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information - Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

## 17 DISCLAIMERS

Life support applications - These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes - Philips Semiconductors reserves the right to make changes in the products including circuits, standard cells, and/or software described or contained herein in order to improve design and/or performance. When the product is in full production (status 'Production'), relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN). Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no licence or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

## 5 V mixer/oscillator and synthesizer for PAL and NTSC standards

TDA6500TT; TDA6501TT

## 18 PURCHASE OF PHILIPS ${ }^{2} \mathrm{C}$ COMPONENTS

Purchase of Philips $I^{2} \mathrm{C}$ components conveys a license under the Philips' $\mathrm{I}^{2} \mathrm{C}$ patent to use the components in the $\mathrm{I}^{2} \mathrm{C}$ system provided the system conforms to the $\mathrm{I}^{2} \mathrm{C}$ specification defined by Philips. This specification can be ordered using the code 939839340011.

# 5 V mixer/oscillator and synthesizer for PAL and NTSC standards 

## NOTES

## Philips Semiconductors - a worldwide company

## Contact information

For additional information please visit http://www.semiconductors.philips.com. Fax: +31 402724825 For sales offices addresses send e-mail to: sales.addresses@www.semiconductors.philips.com.

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

