Precision Linear Transducers, Conductive Plastic (REC)

The 140 L is a robust, high precision industrial linear motion transducer with double ball joints, the 140 L is designed for simple, self-aligned mounting.

FEATURES

- Measurement Range 25 mm to 1000 mm
- High Accuracy $\pm 1 \%$ down to $\pm 0.025 \%$
- Excellent Repeatability
- Long Life
- Essentially Infinite Resolution
- Not Sensitive to Temperature Variations

ELECTRICAL SPECIFICATIONS

Theoretical electrical travel (TET) on request	from 25 mm to 1000 mm in increments of 25 mm up to 2000 mm (vertical working position)
Independent linearity (over TET) on request	$\leq \pm 1 \%-\leq \pm 0.1 \%$ from 25 mm to 1000 mm $\leq \pm 0.05 \%$ from 100 mm to 1000 mm $\leq \pm 0.025 \%$ from 200 mm to 1000 mm
Actual electrical travel (AET)	see table 1
Ohmic values	$400 \Omega / \mathrm{cm}$ to $2 \mathrm{k} \Omega / \mathrm{cm} \pm 20 \%$
Repeatability	$\leq 0.01 \%$
Maximum power rating	$0.05 \mathrm{~W} / \mathrm{cm}$ at $70^{\circ} \mathrm{C}$ 0 W at $125^{\circ} \mathrm{C}$
Wiper current	recommended: a few $\mu \mathrm{A}-1 \mathrm{~mA}$ max. continuous
Load resistance	minimum $10^{3} \times \mathrm{RT}$
Number of tracks	1, standard; 2, on request
Insulation resistance at $\mathbf{2 0 ^ { \circ } \mathrm { C }}$	$\geq 1000 \mathrm{M} \Omega 500 \mathrm{VDC}$
Dielectric strength at $20^{\circ} \mathrm{C}$	1000 VRMS 50 Hz

MECHANICAL SPECIFICATIONS

Mechanical travel (MT)	see table 1
Housing	anodized aluminum
Operating force	50 N typical
Shaft (free rotation)	stainless steel
Termination	Binder connector Series 713
Wiper	precious metal multifinger
Sealed to	IP65 (on request)
Mounting	double ball joint $\varnothing 10$

PERFORMANCE	 Operating life
Temperature range	$-55^{\circ} \mathrm{C}+125^{\circ} \mathrm{C}$
typical cycles	
Sine vibration on 3 axes	1.5 mm peak to peak $0-10 \mathrm{~Hz}$
	$15 \mathrm{~g}-10 \mathrm{~Hz}-2000 \mathrm{~Hz}$
Mechanical shocks on 3 axes	$50 \mathrm{~g}-11 \mathrm{~ms}-$ half sine

Vishay Sfernice Precision Linear Transducers, Conductive Plastic (REC)

Table 1

SIZE	TET $=\mathbf{E}$	AET	MT	A	L
L1 to $L 9$	25 to 225	$E+2 \pm 0.5$	$E+4 \pm 1$	$E+129$	$E+234$
L10 to $L 16$	250 to 400	$E+3 \pm 1.5$	$E+6 \pm 2$	$E+129$	$E+234$
L17 to L19	425 to 475	$E+3 \pm 1.5$	$E+6 \pm 2$	$E+159$	$E+264$
L20 to L29	500 to 725	$E+4 \pm 1.5$	$E+8 \pm 2$	$E+159$	$E+264$
L30	750	$E+5 \pm 1.5$	$E+10 \pm 2$	$E+159$	$E+264$
L31 to L39	775 to 975	$E+5 \pm 1.5$	$E+10 \pm 2$	$E+194$	$E+299$
L40	1000	$E+6 \pm 1.5$	$E+12 \pm 2$	$E+194$	$E+299$

ELECTRICAL CONNECTIONS

TET = Theoretical electrical travel
AET = Actual electrical travel
MT = Mechanical travel

ORDERING INFORMATION

REC	$\mathbf{1 4 0}$	L	23
SERIES	MODEL	NUMBER	THEORETICAL
		OF TRACKS	ELECTRICAL TRAVEL
		$\mathrm{L}=1$	Times
		$\mathrm{LL}=2$	25 mm

