

LTM4601A/LTM4601A-1

12A DC/DC µModules with PLL, Output Tracking and Margining

FEATURES

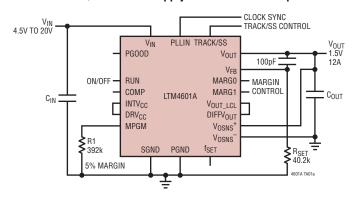
- Complete Switch Mode Power Supply
- Wide Input Voltage Range: 4.5V to 20V
- 12A DC Typical, 14A Peak Output Current
- 0.6V to 5V Output Voltage
- Output Voltage Tracking and Margining
- Redundant Mounting Pads for Enhanced Solder-Joint Strength
- Parallel Multiple µModules for Current Sharing
- Differential Remote Sensing for Precision Regulation (LTM4601A Only)
- PLL Frequency Synchronization
- ±1.5% Total DC Error
- Current Foldback Protection (Disabled at Start-Up)
- Pb-Free (e4) RoHS Compliant Package with Gold Finish Pads
- UltraFast[™] Transient Response
- Current Mode Control
- Up to 95% Efficiency at 5V_{IN}, 3.3V_{OLIT}
- Programmable Soft-Start
- Output Overvoltage Protection
- Enhanced (15mm × 15mm × 2.8mm) Surface Mount LGA Package

APPLICATIONS

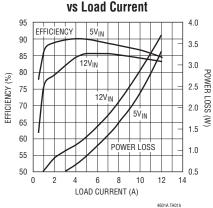
- Telecom and Networking Equipment
- Servers

DESCRIPTION

The LTM®4601A is a complete 12A step-down switch mode DC/DC power supply with onboard switching controller, MOSFETs, inductor and all support components. The $\mu\text{Module}^{\text{TM}}$ is housed in a small surface mount 15mm \times 15mm \times 2.8mm LGA package. The LTM4601A LGA package is designed with redundant mounting pads to enhance solder-joint strength for extended temperature cycling endurance. Operating over an input voltage range of 4.5 to 20V, the LTM4601A supports an output voltage range of 0.6V to 5V as well as output voltage tracking and margining. The high efficiency design delivers 12A continuous current (14A peak). Only bulk input and output capacitors are needed to complete the design.


The low profile (2.8mm) and light weight (1.7g) package easily mounts on the back side of PC boards. The μ Module can be synchronized with an external clock for reducing undesirable frequency harmonics and allows PolyPhase® operation for high load currents.

An onboard differential remote sense amplifier can be used to accurately regulate an output voltage independent of load current. The onboard remote sense amplifier is not available in the LTM4601A-1.

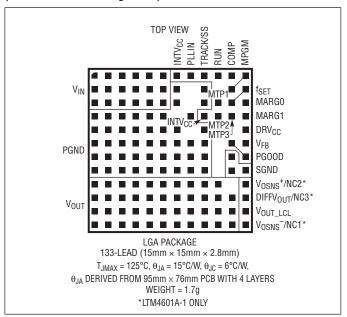

T, LT, LTC, LTM and PolyPhase are registered trademarks of Linear Technology Corporation. µModule and UltraFast are trademarks of Linear Technology Corporation. All other trademarks are the property of their respective owners. Protected by U.S. Pratents including 5481178, 5847554. 6304066. 6476589. 6580258. 6677210. 6774611.

TYPICAL APPLICATION

1.5V/12A Power Supply with 4.5V to 20V Input

Efficiency and Power Loss

4601afb


ABSOLUTE MAXIMUM RATINGS

(Note 1)

1 /
INTV _{CC} , DRV _{CC} , V_{OUT} LCL, V_{OUT} ($V_{OUT} \le 3.3V$ with
DIFFV _{OUT})0.3V to 6V
PLLIN, TRACK/SS, MPGM, MARGO, MARG1,
PGOOD, f_{SET} $-0.3V$ to $INTV_{CC} + 0.3V$
RUN –0.3V to 5V
V _{FB} , COMP –0.3V to 2.7V
V _{IN} 0.3V to 20V
V_{OSNS}^+ , V_{OSNS}^- 0.3V to INTV _{CC} + 0.3V
Operating Temperature Range (Note 2)40°C to 85°C
Junction Temperature125°C
Storage Temperature Range55°C to 125°C

PIN CONFIGURATION

(See Table 5. Pin Assignment)

ORDER INFORMATION

LEAD FREE FINISH	TRAY	PART MARKING*	PACKAGE DESCRIPTION	TEMPERATURE RANGE
LTM4601AEV#PBF	LTM4601AEV#PBF	LTM4601AV	133-Lead (15mm \times 15mm \times 2.8mm) LGA	-40°C to 85°C
LTM4601AIV#PBF	LTM4601AIV#PBF	LTM4601AV	133-Lead (15mm × 15mm × 2.8mm) LGA	-40°C to 85°C
LTM4601AEV-1#PBF	LTM4601AEV-1#PBF	LTM4601AV-1	133-Lead (15mm × 15mm × 2.8mm) LGA	-40°C to 85°C
LTM4601AIV-1#PBF	LTM4601AIV-1#PBF	LTM4601AV-1	133-Lead (15mm × 15mm × 2.8mm) LGA	-40°C to 85°C

Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container. For more information on lead free part marking, go to: http://www.linear.com/leadfree/

This product is only offered in trays. For more information go to: http://www.linear.com/packaging/

ELECTRICAL CHARACTERISTICS The \bullet denotes the specifications which apply over the -40° C to 85°C temperature range, otherwise specifications are at $T_A = 25^{\circ}$ C, $V_{IN} = 12$ V. Per typical application (front page) configuration.

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
V _{IN(DC)}	Input DC Voltage		•	4.5		20	V
V _{OUT(DC)}	Output Voltage, Total Variation with Line and Load	$C_{IN} = 10 \mu F \times 3$, $C_{OUT} = 200 \mu F$, $R_{SET} = 40.2 k$ $V_{IN} = 5 V$ to 20V, $I_{OUT} = 0 A$ to 12A (Note 5)	•	1.478	1.5	1.522	V
Input Specification	ons						
V _{IN(UVLO)}	Undervoltage Lockout Threshold	I _{OUT} = 0A			3.2	4	V
I _{INRUSH(VIN)}	Input Inrush Current at Startup	I _{OUT} = 0A. V _{OUT} = 1.5V V _{IN} = 5V V _{IN} = 12V			0.6 0.7		A A

4601afb

ELECTRICAL CHARACTERISTICS The \bullet denotes the specifications which apply over the -40° C to 85° C temperature range, otherwise specifications are at $T_A = 25^{\circ}$ C, $V_{IN} = 12$ V. Per typical application (front page) configuration.

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
I _{Q(VIN,NOLOAD)}	Input Supply Bias Current	$\begin{aligned} &V_{IN} = 12 \text{V, No Switching} \\ &V_{IN} = 12 \text{V, } V_{OUT} = 1.5 \text{V, Switching Continuous} \\ &V_{IN} = 5 \text{V, No Switching} \\ &V_{IN} = 5 \text{V, } V_{OUT} = 1.5 \text{V, Switching Continuous} \\ &Shutdown, RUN = 0, V_{IN} = 12 \text{V} \end{aligned}$			3.8 38 2.5 42 22		mA mA mA mA μA
I _{S(VIN)}	Input Supply Current	$V_{IN} = 12V, V_{OUT} = 1.5V, I_{OUT} = 12A$ $V_{IN} = 12V, V_{OUT} = 3.3V, I_{OUT} = 12A$ $V_{IN} = 5V, V_{OUT} = 1.5V, I_{OUT} = 12A$			1.81 3.63 4.29		A A A
INTV _{CC}	V _{IN} = 12V, RUN > 2V	No Load		4.7	5	5.3	V
Output Specificat	ions						
I _{OUTDC}	Output Continuous Current Range	V _{IN} = 12V, V _{OUT} = 1.5V (Note 5)		0		12	А
$\frac{\Delta V_{OUT(LINE)}}{V_{OUT}}$	Line Regulation Accuracy	V _{OUT} = 1.5V, I _{OUT} = 0A, V _{IN} from 4.5V to 20V	•			0.3	%
ΔV _{OUT(LOAD)} V _{OUT}	Load Regulation Accuracy	V_{OUT} = 1.5V, 0A to 12A (Note 5) V_{IN} = 12V, with Remote Sense Amplifier V_{IN} = 12V (LTM4601A-1)	•			0.25 1	% %
V _{OUT(AC)}	Output Ripple Voltage	$I_{OUT} = 0A$, $C_{OUT} = 2 \times$, $100 \mu F$ X5R Ceramic $V_{IN} = 12 V$, $V_{OUT} = 1.5 V$ $V_{IN} = 5 V$, $V_{OUT} = 1.5 V$			20 18		mV _{P-P}
f_S	Output Ripple Voltage Frequency	I _{OUT} = 5A, V _{IN} = 12V, V _{OUT} = 1.5V			850		kHz
$\Delta V_{OUT(START)}$	Turn-On Overshoot, TRACK/SS = 10nF	$C_{OUT} = 200 \mu F$, $V_{OUT} = 1.5 V$, $I_{OUT} = 0 A$ $V_{IN} = 12 V$ $V_{IN} = 5 V$			20 20		mV mV
t _{START}	Turn-On Time, TRACK/SS = Open	C_{OUT} = 200µF, V_{OUT} = 1.5V, I_{OUT} = 1A Resisitive Load V_{IN} = 12V V_{IN} = 5V			0.5 0.5		ms ms
ΔV _{OUTLS}	Peak Deviation for Dynamic Load	Load: 0% to 50% to 0% of Full Load, $C_{OUT} = 2 \times 22 \mu F$ Ceramic, 470 μ F4V Sanyo POSCAP $V_{IN} = 12V$ $V_{IN} = 5V$			35 35		mV mV
t _{SETTLE}	Settling Time for Dynamic Load Step	Load: 0% to 50%, or 50% to 0% of Full Load $V_{\text{IN}} = 12 \text{V}$			25		μs
I _{OUTPK}	Output Current Limit	C _{OUT} = 200µF, Table 2 V _{IN} = 12V, V _{OUT} = 1.5V V _{IN} = 5V, V _{OUT} = 1.5V			17 17		A A
Remote Sense Ar	mp (Note 3) (LTM4601A Only, Not Supp	orted in the LTM4601A-1)					
V _{OSNS} ⁺ , V _{OSNS} ⁻ CM Range	Common Mode Input Voltage Range	V _{IN} = 12V, RUN > 2V		0		INTV _{CC} – 1	V
DIFFV _{OUT} Range	Output Voltage Range	V _{IN} = 12V, DIFF OUT Load = 100k		0		INTV _{CC}	V
V _{OS}	Input Offset Voltage Magnitude					1.25	mV
A _V	Differential Gain				1		V/V
GBP	Gain-Bandwidth Product				3		MHz

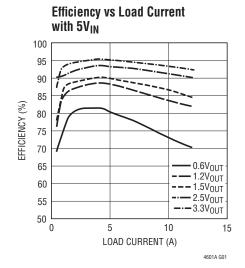
ELECTRICAL CHARACTERISTICS The \bullet denotes the specifications which apply over the -40° C to 85° C temperature range, otherwise specifications are at $T_A = 25^{\circ}$ C, $V_{IN} = 12$ V. Per typical application (front page) configuration.

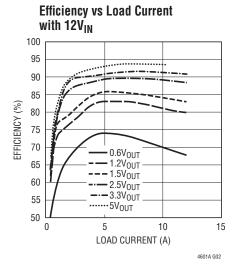
SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
SR	Slew Rate				2		V/µs
R _{IN}	Input Resistance	V _{OSNS} ⁺ to GND			20		kΩ
CMRR	Common Mode Rejection Mode				100		dB
Control Stage			'				
V_{FB}	Error Amplifier Input Voltage Accuracy	I _{OUT} = 0A, V _{OUT} = 1.5V	•	0.594	0.6	0.606	V
$\overline{V_{RUN}}$	RUN Pin On/Off Threshold			1	1.5	1.9	V
I _{SS/TRACK}	Soft-Start Charging Current	V _{SS/TRACK} = 0V		-1	-1.5	-2	μА
t _{ON(MIN)}	Minimum On-Time	(Note 4)			50	100	ns
t _{OFF(MIN)}	Minimum Off-Time	(Note 4)			250	400	ns
R _{PLLIN}	PLLIN Input Resistance				50		kΩ
I _{DRVCC}	Current into DRV _{CC} Pin	V _{OUT} = 1.5V, I _{OUT} = 1A, DRV _{CC} = 5V			18	25	mA
R _{FBHI}	Resistor Between V _{OUT_LCL} and V _{FB}			60.098	60.4	60.702	kΩ
V_{MPGM}	Margin Reference Voltage				1.18		V
V _{MARG0} , V _{MARG1}	MARGO, MARG1 Voltage Thresholds				1.4		V
PGOOD Output							
ΔV_{FBH}	PGOOD Upper Threshold	V _{FB} Rising		7	10	13	%
ΔV_{FBL}	PGOOD Lower Threshold	V _{FB} Falling		-7	-10	-13	%
$\Delta V_{FB(HYS)}$	PGOOD Hysteresis	V _{FB} Returning			1.5		%
V _{PGL}	PGOOD Low Voltage	I _{PGOOD} = 5mA			0.15	0.4	V

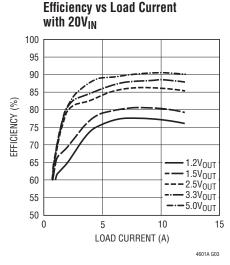
Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.

Note 2: The LTM4601AE/LTM4601AE-1 are guaranteed to meet performance specifications from 0°C to 85°C. Specifications over the -40°C to 85°C operating temperature range are assured by design,

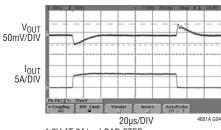
characterization and correlation with statistical process controls. The LTM4601AI/LTM4601AI-1 are guaranteed and tested over the -40° C to 85°C temperature range.

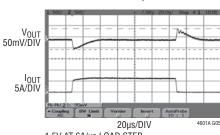

Note 3: Remote sense amplifier recommended for ≤3.3V output.


Note 4: 100% tested at wafer level only.

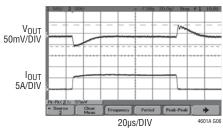

Note 5: See Output Current Derating curves for different V_{IN} , V_{OUT} and T_A .

www.DataSheet4U.com

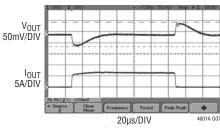

TYPICAL PERFORMANCE CHARACTERISTICS (See Figure 18 for all curves)



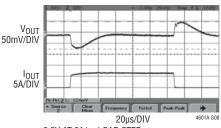
1.2V Transient Response


1.2V AT 6A/µs LOAD STEP C_{OUT} = 3 • 22µF 6.3V CERAMICS 470µF 4V SANYO POSCAP C3 = 100pF

1.5V Transient Response


1.5V AT 6A/µs LOAD STEP C_{OUT} = 3 • 22µF 6.3V CERAMICS 470µF 4V SANYO POSCAP C3 = 100pF

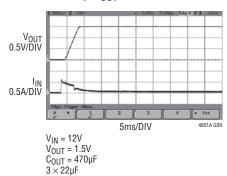
1.8V Transient Response


1.8V AT 6A/µs LOAD STEP C_{OUT} = 3 • 22µF 6.3V CERAMICS 470µF 4V SANYO POSCAP C3 = 100pF

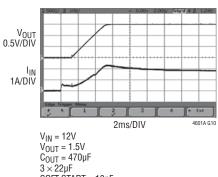
2.5V Transient Response

2.5V AT 6A/µs LOAD STEP C_{OUT} = 3 • 22µF 6.3V CERAMICS 470µF 4V SANYO POSCAP C3 = 100pF

3.3V Transient Response

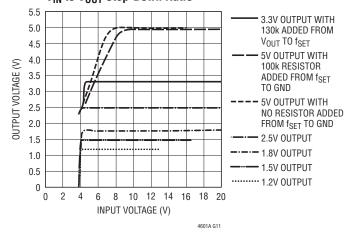


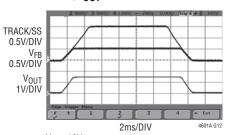
3.3V AT 6A/µs LOAD STEP C_{OUT} = 3 • 22µF 6.3V CERAMICS 470µF 4V SANYO POSCAP C3 = 100pF



TYPICAL PERFORMANCE CHARACTERISTICS (See Figure 18 for all curves)

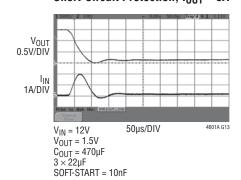
Start-Up, $I_{OUT} = 0A$


Start-Up, $I_{OUT} = 12A$ (Resistive Load)

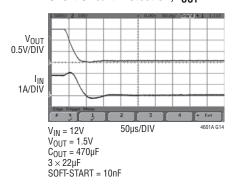

SOFT-START = 10nF

VIN to VOUT Step-Down Ratio

SOFT-START = 10nF



Track, I_{OUT} = 12A



 $V_{IN} = 12V$ $V_{OUT} = 1.5V$ $C_{OUT} = 470 \mu F$ $3 \times 22 \mu F$ SOFT-START = 10nF

Short-Circuit Protection, $I_{OUT} = 0A$

Short-Circuit Protection, $I_{OUT} = 12A$

www.DataSheet4U.com

PIN FUNCTIONS (See Package Description for Pin Assignment)

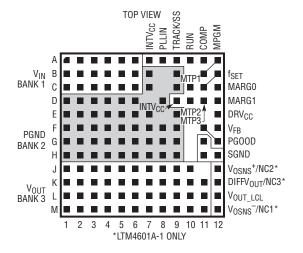
 V_{IN} (Bank 1): Power Input Pins. Apply input voltage between these pins and PGND pins. Recommend placing input decoupling capacitance directly between V_{IN} pins and PGND pins.

V_{OUT} (**Bank 3**): Power Output Pins. Apply output load between these pins and PGND pins. Recommend placing output decoupling capacitance directly between these pins and PGND pins. Review the figure below.

PGND (Bank 2): Power ground pins for both input and output returns.

 V_{OSNS}^- (Pin M12): (–) Input to the Remote Sense Amplifier. This pin connects to the ground remote sense point. The remote sense amplifier is used for $V_{OUT} \le 3.3 \text{ V}$.

NC1 (Pin M12): No Connect On the LTM4601A-1.


 V_{OSNS}^+ (Pin J12): (+) Input to the Remote Sense Amplifier. This pin connects to the output remote sense point. The remote sense amplifier is used for $V_{OLIT} \le 3.3 \text{ V}$.

NC2 (Pin J12): No Connect On the LTM4601A-1.

DIFFV_{OUT} (**Pin K12**): Output of the Remote Sense Amplifier. This pin connects to the $V_{OUT\ LCL}$ pin.

NC3 (Pin K12): No Connect On the LTM4601A-1.

DRV_{CC} (**Pin E12**): This pin normally connects to INTV_{CC} for powering the internal MOSFET drivers. This pin can be biased up to 6V from an external supply with about 50mA capability, or an external circuit shown in Figure 16. This improves efficiency at the higher input voltages by reducing power dissipation in the module.

INTV_{CC} (Pin A7, D9): This pin is for additional decoupling of the 5V internal regulator. These pins are internally connected. Pin A7 is a test pin.

PLLIN (Pin A8): External Clock Synchronization Input to the Phase Detector. This pin is internally terminated to SGND with a 50k resistor. Apply a clock above 2V and below INTV $_{CC}$. See Applications Information.

TRACK/SS (Pin A9): Output Voltage Tracking and Soft-Start Pin. When the module is configured as a master output, then a soft-start capacitor is placed on this pin to ground to control the master ramp rate. A soft-start capacitor can be used for soft-start turn on as a stand alone regulator. Slave operation is performed by putting a resistor divider from the master output to the ground, and connecting the center point of the divider to this pin. See Applications Information.

MPGM (Pins A12, B11): Programmable Margining Input. A resistor from this pin to ground sets a current that is equal to 1.18V/R. This current multiplied by $10k\Omega$ will equal a value in millivolts that is a percentage of the 0.6V reference voltage. See Applications Information. To parallel LTM4601As, each requires an individual MPGM resistor. Do not tie MPGM pins together. Both pins are internally connected. Pin A12 is a test pin.

f_{SET} (**Pins B12, C11**): Frequency Set Internally to 850kHz. An external resistor can be placed from this pin to ground to increase frequency. This pin can be decoupled with a 1000pF capacitor. See Applications Information for frequency adjustment. Both pins are internally connected. Pin B12 is a test pin.

V_{FB} (Pin F12): The Negative Input of the Error Amplifier. Internally, this pin is connected to V_{OUT_LCL} pin with a 60.4k precision resistor. Different output voltages can be programmed with an additional resistor between V_{FB} and SGND pins. See Applications Information.

MARGO (Pin C12): This pin is the LSB logic input for the margining function. Together with the MARG1 pin will determine if margin high, margin low or no margin state is applied. The pin has an internal pull-down resistor of 50k. See Applications Information.

PIN FUNCTIONS (See Package Description for Pin Assignment)

MARG1 (Pin D12): This pin is the MSB logic input for the margining function. Together with the MARGO pin will determine if margin high, margin low or no margin state is applied. The pin has an internal pull-down resistor of 50k. See Applications Information.

SGND (Pins H12, H11, G11): Signal Ground. These pins connect to PGND at output capacitor point. See Figure 15.

COMP (Pin A11): Current Control Threshold and Error Amplifier Compensation Point, The current comparator threshold increases with this control voltage. The voltage ranges from 0V to 2.4V with 0.7V corresponding to zero sense voltage (zero current).

PGOOD (Pins G12, F11): Output Voltage Power Good Indicator. Open-drain logic output that is pulled to ground when the output voltage is not within ±10% of the regulation point, after a 25µs power bad mask timer expires.

RUN (Pin A10): Run Control Pin. A voltage above 1.9V will turn on the module, and when below 1V, will turn off the module. A programmable UVLO function can be accomplished with a resistor from V_{IN} to this pin that has a 5.1V zener to ground. Maximum pin voltage is 5V. Limit current into the RUN pin to less than 1mA.

V_{OUT LCI} (**Pin L12**): V_{OUT} connects directly to this pin to bypass the remote sense amplifier, or DIFFV_{OUT} connects to this pin when remote sense amplifier is used. V_{OUT LCL} can be connected to V_{OUT} on the LTM4601A-1, V_{OUT} is internally connected to $V_{OUT-LCL}$ with 50Ω in the LTM4601A-1.

MTP1, MTP2, MPT3 (Pins C10, D10, D11): Extra Mounting Pads used for increased solder integrity strength. These pads must remain floating (electrical open circuit).

SIMPLIFIED BLOCK DIAGRAM

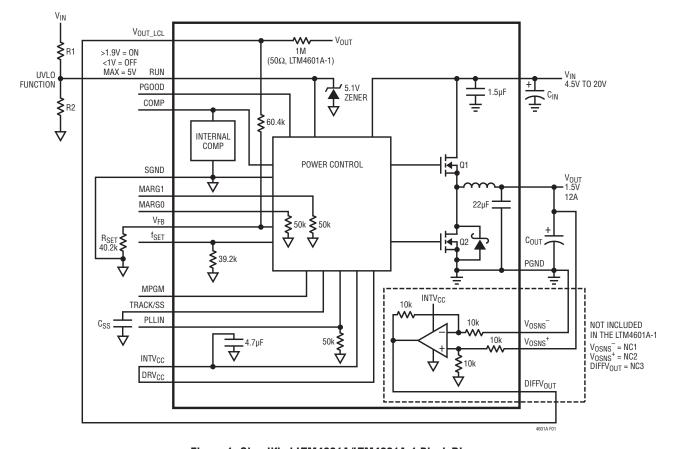


Figure 1. Simplified LTM4601A/LTM4601A-1 Block Diagram

www.DataSheet4U.com

DECOUPLING REQUIREMENTS $T_A = 25^{\circ}C$, $V_{IN} = 12V$. Use Figure 1 configuration.

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
C _{IN}	External Input Capacitor Requirement (V _{IN} = 4.5V to 20V, V _{OUT} = 1.5V)	I _{OUT} = 12A, 3× 10μF Ceramics	20	30		μF
C _{OUT}	External Output Capacitor Requirement (V _{IN} = 4.5V to 20V, V _{OUT} = 1.5V)	I _{OUT} = 12A	100	200		μF

OPERATION

Power Module Description

The LTM4601A is a standalone nonisolated switching mode DC/DC power supply. It can deliver up to 12A of DC output current with few external input and output capacitors. This module provides precisely regulated output voltage programmable via one external resistor from $0.6V_{DC}$ to $5.0V_{DC}$ over a 4.5V to 20V wide input voltage. The typical application schematic is shown in Figure 18.

The LTM4601A has an integrated constant on-time current mode regulator, ultralow $R_{DS(0N)}$ FETs with fast switching speed and integrated Schottky diodes. The typical switching frequency is 850kHz at full load. With current mode control and internal feedback loop compensation, the LTM4601A module has sufficient stability margins and good transient performance under a wide range of operating conditions and with a wide range of output capacitors, even all ceramic output capacitors.

Current mode control provides cycle-by-cycle fast current limit. Besides, foldback current limiting is provided in an overcurrent condition while V_{FB} drops. Internal overvoltage and undervoltage comparators pull the open-drain PGOOD output low if the output feedback voltage exits a $\pm 10\%$ window around the regulation point. Furthermore, in an overvoltage condition, internal top FET Q1 is turned off

and bottom FET Q2 is turned on and held on until the overvoltage condition clears.

Pulling the RUN pin below 1V forces the controller into its shutdown state, turning off both Q1 and Q2. At low load current, the module works in continuous current mode by default to achieve minimum output voltage ripple.

When DRV_{CC} pin is connected to $INTV_{CC}$ an integrated 5V linear regulator powers the internal gate drivers. If a 5V external bias supply is applied on the DRV_{CC} pin, then an efficiency improvement will occur due to the reduced power loss in the internal linear regulator. This is especially true at the higher input voltage range.

The LTM4601A has a very accurate differential remote sense amplifier with very low offset. This provides for very accurate remote sense voltage measurement. The MPGM pin, MARG0 pin and MARG1 pin are used to support voltage margining, where the percentage of margin is programmed by the MPGM pin, and the MARG0 and MARG1 select margining.

The PLLIN pin provides frequency synchronization of the device to an external clock. The TRACK/SS pin is used for power supply tracking and soft-start programming.

The typical LTM4601A application circuit is shown in Figure 18. External component selection is primarily determined by the maximum load current and output voltage. Refer to Table 2 for specific external capacitor requirements for a particular application.

VIN to VOLIT Step-Down Ratios

There are restrictions in the maximum V_{IN} and V_{OUT} step down ratio that can be achieved for a given input voltage. These constraints are shown in the Typical Performance Characteristics curves labeled " V_{IN} to V_{OUT} Step-Down Ratio". Note that additional thermal derating may apply. See the Thermal Considerations and Output Current Derating section of this data sheet.

Output Voltage Programming and Margining

The PWM controller has an internal 0.6V reference voltage. As shown in the Block Diagram, a 1M and a 60.4k 0.5% internal feedback resistor connects V_{OUT} and V_{FB} pins together. The V_{OUT_LCL} pin is connected between the 1M and the 60.4k resistor. The 1M resistor is used to protect against an output overvoltage condition if the V_{OUT_LCL} pin is not connected to the output, or if the remote sense amplifier output is not connected to V_{OUT_LCL} . The output voltage will default to 0.6V. Adding a resistor R_{SET} from the V_{FB} pin to SGND pin programs the output voltage:

$$V_{OUT} = 0.6V \frac{60.4k + R_{SET}}{R_{SET}}$$

Table 1. R_{SET} Standard 1% Resistor Values vs V_{OUT}

							•	
R_{SET} ($k\Omega$)	Open	60.4	40.2	30.1	25.5	19.1	13.3	8.25
V _{OUT} (V)	0.6	1.2	1.5	1.8	2	2.5	3.3	5

The MPGM pin programs a current that when multiplied by an internal 10k resistor sets up the 0.6V reference \pm offset for margining. A 1.18V reference divided by the RPGM resistor on the MPGM pin programs the current. Calculate $V_{OUT(MARGIN)}$:

$$V_{OUT(MARGIN)} = \frac{\%V_{OUT}}{100} \cdot V_{OUT}$$

where $%V_{OUT}$ is the percentage of V_{OUT} you want to margin, and $V_{OUT(MARGIN)}$ is the margin quantity in volts:

$$R_{PGM} = \frac{V_{OUT}}{0.6V} \bullet \frac{1.18V}{V_{OUT(MARGIN)}} \bullet 10k$$

where R_{PGM} is the resistor value to place on the MPGM pin to ground.

The output margining will be \pm margining of the value. This is controlled by the MARG0 and MARG1 pins. See the truth table below:

MARG1	MARG0	MODE
LOW	LOW	NO MARGIN
LOW	HIGH	MARGIN UP
HIGH	LOW	MARGIN DOWN
HIGH	HIGH	NO MARGIN

Input Capacitors

LTM4601A module should be connected to a low AC impedance DC source. Input capacitors are required to be placed adjacent to the module. In Figure 18, the $10\mu F$ ceramic input capacitors are selected for their ability to handle the large RMS current into the converter. An input bulk capacitor of $100\mu F$ is optional. This $100\mu F$ capacitor is only needed if the input source impedance is compromised by long inductive leads or traces.

For a buck converter, the switching duty-cycle can be estimated as:

$$D = \frac{V_{OUT}}{V_{INI}}$$

Without considering the inductor current ripple, the RMS current of the input capacitor can be estimated as:

$$I_{CIN(RMS)} = \frac{I_{OUT(MAX)}}{n\%} \bullet \sqrt{D \bullet (1-D)}$$

In the above equation, $\eta\%$ is the estimated efficiency of the power module. C_{IN} can be a switcher-rated electrolytic aluminum capacitor, OS-CON capacitor or high volume ceramic capacitor. Note the capacitor ripple current ratings are often based on temperature and hours of life. This makes it advisable to properly derate the input capacitor, or choose a capacitor rated at a higher temperature than required. Always contact the capacitor manufacturer for derating requirements.

In Figure 18, the $10\mu F$ ceramic capacitors are together used as a high frequency input decoupling capacitor. In a typical 12A output application, three very low ESR, X5R or X7R, $10\mu F$ ceramic capacitors are recommended. These decoupling capacitors should be placed directly adjacent to the module input pins in the PCB layout to minimize the trace inductance and high frequency AC noise. Each $10\mu F$ ceramic is typically good for 2A to 3A of RMS ripple current. Refer to your ceramics capacitor catalog for the RMS current ratings.

Multiphase operation with multiple LTM4601A devices in parallel will lower the effective input RMS ripple current due to the interleaving operation of the regulators. Application Note 77 provides a detailed explanation. Refer to Figure 2 for the input capacitor ripple current requirement as a function of the number of phases. The figure provides a ratio of RMS ripple current to DC load current as function of duty cycle and the number of paralleled phases. Pick

the corresponding duty cycle and the number of phases to arrive at the correct ripple current value. For example, the 2-phase parallel LTM4601A design provides 24A at 2.5V output from a 12V input. The duty cycle is DC = 2.5V/12V = 0.21. The 2-phase curve has a ratio of ~ 0.25 for a duty cycle of 0.21. This 0.25 ratio of RMS ripple current to a DC load current of 24A equals $\sim 6A$ of input RMS ripple current for the external input capacitors.

Output Capacitors

The LTM4601A is designed for low output voltage ripple. The bulk output capacitors defined as C_{OUT} are chosen with low enough effective series resistance (ESR) to meet the output voltage ripple and transient requirements. C_{OUT} can be a low ESR tantalum capacitor, a low ESR polymer capacitor or a ceramic capacitor. The typical capacitance is $200\mu F$ if all ceramic output capacitors are used. Additional output filtering may be required by the system designer, if further reduction of output ripple or dynamic transient spike is required. Table 2 shows a matrix of different output voltages and output capacitors to minimize the voltage droop and overshoot during a $5A/\mu s$ transient. The table optimizes total equivalent ESR and total bulk capacitance to maximize transient performance.

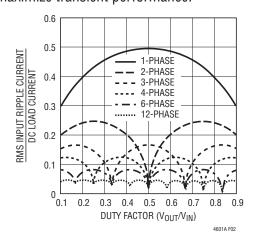


Figure 2. Normalized Input RMS Ripple Current vs Duty Factor for One to Six Modules (Phases)

Multiphase operation with multiple LTM4601A devices in parallel will lower the effective output ripple current due to the interleaving operation of the regulators. For example, each LTM4601A's inductor current of a 12V to 2.5V multiphase design can be read from the Inductor Ripple Current vs Duty Cycle graph (Figure 3). The large ripple current at low duty cycle and high output voltage

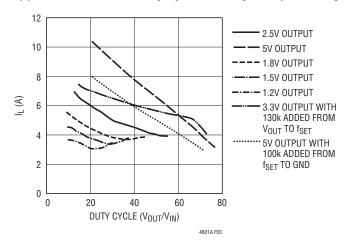
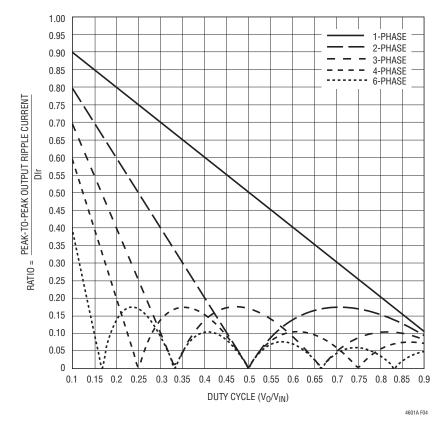



Figure 3. Inductor Ripple Current vs Duty Cycle

can be reduced by adding an external resistor from f_{SET} to ground which increases the frequency. If the duty cycle is DC = 2.5V/12V = 0.21, the inductor ripple current for 2.5V output at 21% duty cycle is ~6A in Figure 3.

Figure 4 provides a ratio of peak-to-peak output ripple current to the inductor current as a function of duty cycle and the number of paralleled phases. Pick the corresponding duty cycle and the number of phases to arrive at the correct output ripple current ratio value. If a 2-phase operation is chosen at a duty cycle of 21%, then 0.6 is the ratio. This 0.6 ratio of output ripple current to inductor ripple of 6A equals 3.6A of effective output ripple current. Refer to Application Note 77 for a detailed explanation of output ripple current reduction as a function of paralleled phases.

The output voltage ripple has two components that are related to the amount of bulk capacitance and effective series resistance (ESR) of the output bulk capacitance. Therefore, the output voltage ripple can be calculated with the known effective output ripple current. The equation: $\Delta V_{OUT(P-P)} \approx (\Delta I_I / (8 \bullet f \bullet m \bullet C_{OUT}) + ESR \bullet \Delta I_I)$, where f

www.DataSheet4U.com

4601afb

Figure 4. Normalized Output Ripple Current vs Duty Cycle, $DIr = V_0T/L_1$, DIr = Each Phase's Inductor Current

is frequency and m is the number of parallel phases. This calculation process can be easily fulfilled using our Linear Technology µModule Design Tool.

Fault Conditions: Current Limit and Overcurrent Foldback

LTM4601A has a current mode controller, which inherently limits the cycle-by-cycle inductor current not only in steady-state operation, but also in transient.

To further limit current in the event of an overload condition, the LTM4601A provides foldback current limiting. If the output voltage falls by more than 50%, then the maximum output current is progressively lowered to about one sixth of its full current limit value.

Soft-Start and Tracking

The TRACK/SS pin provides a means to either soft-start the regulator or track it to a different power supply. A capacitor on this pin will program the ramp rate of the output voltage. A 1.5 μ A current source will charge up the external soft-start capacitor to 80% of the 0.6V internal voltage reference minus any margin delta. This will control the ramp of the internal reference and the output voltage. The total soft-start time can be calculated as:

$$t_{SOFTSTART} = 0.8 \cdot (0.6V - V_{OUT(MARGIN)}) \cdot \frac{C_{SS}}{1.5 \mu A}$$

When the RUN pin falls below 1.5V, then the SS pin is reset to allow for proper soft-start control when the regulator is enabled again. Current foldback and force continuous mode are disabled during the soft-start process. The soft-start function can also be used to control the output ramp up time, so that another regulator can be easily tracked to it.

Output Voltage Tracking

Output voltage tracking can be programmed externally using the TRACK/SS pin. The output can be tracked up and

down with another regulator. The master regulator's output is divided down with an external resistor divider that is the same as the slave regulator's feedback divider. Figure 5 shows an example of coincident tracking. Ratiometric modes of tracking can be achieved by selecting different resistor values to change the output tracking ratio. The master output must be greater than the slave output for the tracking to work. Figure 6 shows the coincident output tracking characteristics.

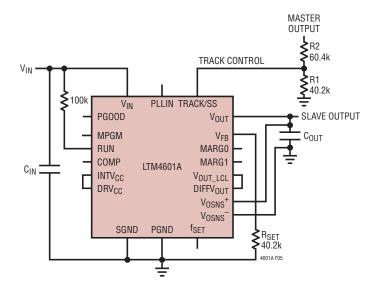


Figure 5. Coincident Tracking

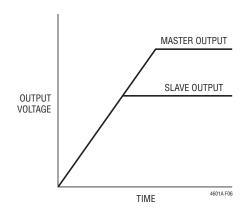


Figure 6. Coincident Output Tracking Characteristics

Run Enable

The RUN pin is used to enable the power module. The pin has an internal 5.1V zener to ground. The pin can be driven with a logic input not to exceed 5V.

The RUN pin can also be used as an undervoltage lockout (UVLO) function by connecting a resistor divider from the input supply to the RUN pin:

$$V_{UVLO} = \frac{R1 + R2}{R2} \bullet 1.5V$$

See Figure 1, Simplified Block Diagram.

Power Good

The PGOOD pin is an open-drain pin that can be used to monitor valid output voltage regulation. This pin monitors a $\pm 10\%$ window around the regulation point and tracks with margining.

COMP Pin

This pin is the external compensation pin. The module has already been internally compensated for most output voltages. Table 2 is provided for most application requirements. A spice model will be provided for other control loop optimization.

PLLIN

The power module has a phase-locked loop comprised of an internal voltage controlled oscillator and a phase detector. This allows the internal top MOSFET turn-on to be locked to the rising edge of the external clock. The frequency range is ±30% around the operating frequency of 850kHz. A pulse detection circuit is used to detect a clock on the PLLIN pin to turn on the phase-lock loop. The pulse width of the clock has to be at least 400ns and 2V in amplitude. During the start-up of the regulator, the phase-lock loop function is disabled.

INTV_{CC} and DRV_{CC} Connection

An internal low dropout regulator produces an internal 5V supply that powers the control circuitry and DRV_{CC} for driving the internal power MOSFETs. Therefore, if the system does not have a 5V power rail, the LTM4601A can be directly powered by V_{IN} . The gate driver current

through the LDO is about 20mA. The internal LDO power dissipation can be calculated as:

$$P_{LDO_LOSS} = 20 \text{mA} \cdot (V_{IN} - 5V)$$

The LTM4601A also provides the external gate driver voltage pin DRV $_{CC}$. If there is a 5V rail in the system, it is recommended to connect DRV $_{CC}$ pin to the external 5V rail. This is especially true for higher input voltages. Do not apply more than 6V to the DRV $_{CC}$ pin. A 5V output can be used to power the DRV $_{CC}$ pin with an external circuit as shown in Figure 16.

Parallel Operation of the Module

The LTM4601A device is an inherently current mode controlled device. Parallel modules will have very good current sharing. This will balance the thermals on the design. Figure 19 shows a schematic of the parallel design. The voltage feedback equation changes with the variable N as modules are paralleled:

$$V_{OUT} = 0.6V \frac{\frac{60.4k}{N} + R_{SET}}{R_{SET}}$$

N is the number of paralleled modules.

Figure 19 shows an LTM4601A and an LTM4601A-1 used in a parallel design. The 2nd LTM4601A device does not require the remote sense amplifier, therefore, the LTM4601A-1 device is used. An LTM4601A device can be used without the diff amp. V_{OSNS}^+ can be tied to ground and the V_{OSNS}^- can be tied to INTV_{CC}. DIFFV_{OUT} can float. When using multiple LTM4601A-1 devices in parallel with an LTM4601A, limit the number to five for a total of six modules in parallel.

Thermal Considerations and Output Current Derating

The power loss curves in Figures 7 and 8 can be used in coordination with the load current derating curves in Figures 9 to 14 for calculating an approximate θ_{JA} for the module with various heat sinking methods. Thermal models are derived from several temperature measurements at the bench and thermal modeling analysis. Thermal Application Note 103 provides a detailed explanation of the analysis for the thermal models and the derating curves.

www.DataSheet4U.com

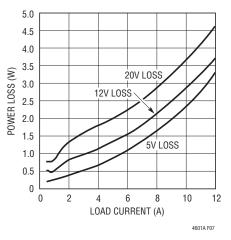


Figure 7. 1.5V Power Loss

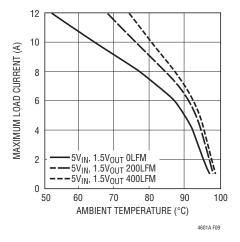


Figure 9. No Heat Sink 5V_{IN}

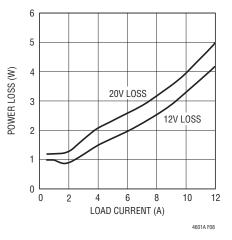


Figure 8. 3.3V Power Loss

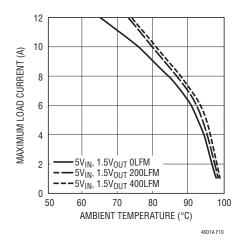


Figure 10. BGA Heat Sink 5VIN

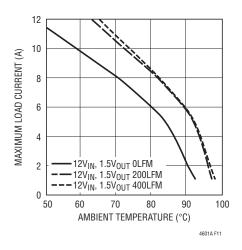


Figure 11. No Heat Sink 12V_{IN}

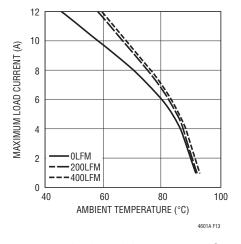


Figure 13. $12\mbox{V}_{\mbox{\footnotesize{IN}}},\,3.3\mbox{V}_{\mbox{\footnotesize{OUT}}},\,\mbox{No}$ Heat Sink

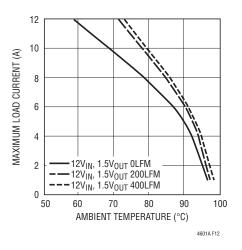


Figure 12. BGA Heat Sink 12V_{IN}

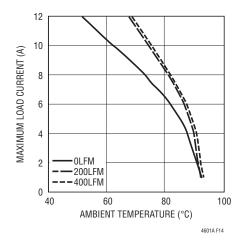


Figure 14. $12V_{IN}$, $3.3V_{OUT}$, BGA Heat Sink

Table 2. Output Voltage Response Versus Component Matrix (Refer to Figure 18), 0A to 6A Load Step

TYPICAL MEASURED VALUES

C _{OUT1} VENDORS	PART NUMBER	C _{OUT2} VENDORS	PART NUMBER
TDK	C4532X5R0J107MZ (100µF, 6.3V)	SANYO POSCAP	6TPE330MIL (330μF, 6.3V)
TAIYO YUDEN	JMK432BJ107MU-T (100μF, 6.3V)	SANYO POSCAP	2R5TPE470M9 (470μF, 2.5V)
TAIYO YUDEN	JMK316BJ226ML-T501 (22μF, 6.3V)	SANYO POSCAP	4TPE470MCL (470μF, 4V)

V _{OUT} (V)	C _{IN} (CERAMIC)	C _{IN} (BULK)	C _{OUT1} (CERAMIC)	C _{OUT2} (BULK)	C _{COMP}	C3	V _{IN} (V)	DROOP (mV)	PEAK TO PEAK (mV)	RECOVERY TIME (μs)	LOAD STEP (A/µs)	R _{SET} (kΩ)
1.2	$2\times10\mu F~25V$	150µF 35V	3 × 22μF 6.3V	470μF 4V	NONE	47pF	5	70	140	30	6	60.4
1.2	$2 \times 10 \mu F 25 V$	150µF 35V	1 × 100μF 6.3V	470μF 2.5V	NONE	100pF	5	35	70	20	6	60.4
1.2	2×10μF 25V	150µF 35V	2 × 100µF 6.3V	330µF 6.3V	NONE	22pF	5	70	140	20	6	60.4
1.2	$2 \times 10 \mu F 25 V$	150µF 35V	4 × 100μF 6.3V	NONE	NONE	100pF	5	40	93	30	6	60.4
1.2	2×10μF 25V	150µF 35V	3 × 22μF 6.3V	470μF 4V	NONE	100pF	12	70	140	30	6	60.4
1.2	2×10μF 25V	150µF 35V	1 × 100μF 6.3V	470μF 2.5V	NONE	100pF	12	35	70	20	6	60.4
1.2	2×10μF 25V	150µF 35V	2×100μF 6.3V	330µF 6.3V	NONE	22pF	12	70	140	20	6	60.4
1.2	2×10μF 25V	150μF 35V	4×100μF 6.3V	NONE	NONE	100pF	12	49	98	20	6	60.4
1.5	2×10μF 25V	150μF 35V	3 × 22μF 6.3V	470μF 4V	NONE	100pF	5	48	100	35	6	40.2
1.5	2×10μF 25V	150µF 35V	1 × 100μF 6.3V	470μF 2.5V	NONE	33pF	5	54	109	30	6	40.2
1.5	2×10μF 25V	150µF 35V	2×100µF 6.3V	330µF 6.3V	NONE	100pF	5	44	84	30	6	40.2
1.5	2×10μF 25V	150µF 35V	4 × 100μF 6.3V	NONE	NONE	100pF	5	61	118	30	6	40.2
1.5	2×10μF 25V	150µF 35V	3 × 22μF 6.3V	470µF 4V	NONE	100pF	12	48	100	35	6	40.2
1.5	2×10μF 25V	150µF 35V	1 × 100μF 6.3V	470µF 2.5V	NONE	33pF	12	54	109	30	6	40.2
1.5	2×10μF 25V	150µF 35V	2×100μF 6.3V	330µF 6.3V	NONE	100pF	12	44	89	25	6	40.2
1.5	2 × 10μF 25V	150µF 35V	4 × 100μF 6.3V	NONE	NONE	100pF	12	54	108	25	6	40.2
1.8	2 × 10μF 25V	150µF 35V	3 × 22μF 6.3V	470µF 4V	NONE	47pF	5	48	100	30	6	30.1
1.8	2 × 10μF 25V	150µF 35V	1 × 100μF 6.3V	470μF 2.5V	NONE	100pF	5	44	90	20	6	30.1
1.8	2 × 10μF 25V	150µF 35V	2 × 100μF 6.3V	330µF 6.3V	NONE	100pF	5	68	140	30	6	30.1
1.8	2 × 10μF 25V	150µF 35V	4 × 100μF 6.3V	NONE	NONE	100pF	5	65	130	30	6	30.1
1.8	2 × 10μF 25V	150µF 35V	3 × 22μF 6.3V	470μF 4V	NONE	100pF	12	60	120	30	6	30.1
1.8	2 × 10μF 25V	150µF 35V	1 × 100μF 6.3V	470μF 2.5V	NONE	100pF	12	60	120	30	6	30.1
1.8	2 × 10μF 25V	150µF 35V	2 × 100μF 6.3V	330µF 6.3V	NONE	100pF	12	68	140	30	6	30.1
1.8	2 × 10μF 25V	150µF 35V	4 × 100μF 6.3V	NONE	NONE	100pF	12	65	130	20	6	30.1
2.5	2 × 10μF 25V	150µF 35V	1 × 100μF 6.3V	470μF 4V	NONE	100pF	5	48	103	30	6	19.1
2.5	2 × 10μF 25V	150µF 35V	2 × 100μF 6.3V	330µF 6.3V	NONE	220pF	5	56	113	30	6	19.1
2.5	2 × 10μF 25V	150µF 35V	3 × 22μF 6.3V	470μF 4V	NONE	NONE	5	57	116	30	6	19.1
2.5	2 × 10μF 25V	150µF 35V	4 × 100μF 6.3V	NONE	NONE	100pF	5	60	115	25	6	19.1
2.5	2 × 10μF 25V	150µF 35V	1 × 100μF 6.3V	470μF 4V	NONE	100pF	12	48	103	30	6	19.1
2.5	2 × 10μF 25V	150µF 35V	3 × 22µF 6.3V	470μF 4V	NONE	NONE	12	51	102	30	6	19.1
2.5	2 × 10µF 25V	150µF 35V	2 × 100μF 6.3V	330µF 6.3V	NONE	220pF	12	56	113	30	6	19.1
2.5	2 × 10μF 25V	150µF 35V	4×100μF 6.3V	NONE	NONE	220pF	12	70	140	25	6	19.1
3.3	2 × 10μF 25V	150µF 35V	2×100μF 6.3V	330µF 6.3V	NONE	100pF	7	120	240	30	6	13.3
3.3	2 × 10μF 25V	150µF 35V	1 × 100μF 6.3V	470µF 4V	NONE	100pF	7	110	214	30	6	13.3
3.3	2×10μF 25V	150μF 35V	3 × 22μF 6.3V	470μF 4V	NONE	100pF	7	110	214	30	6	13.3
3.3	2 × 10μF 25V	150µF 35V	4 × 100μF 6.3V	NONE	NONE	100pF	7	114	230	30	6	13.3
3.3	2 × 10μF 25V	150µF 35V	1 × 100μF 6.3V	470µF 4V	NONE	100pF	12	110	214	30	6	13.3
3.3	2 × 10μF 25V	150µF 35V	3 × 22μF 6.3V	470µF 4V	NONE	150pF	12	110	214	35	6	13.3
3.3	2 × 10μF 25V	150µF 35V	2 × 100μF 6.3V	330µF 6.3V	NONE	100pF	12	110	214	35	6	13.3
3.3	2 × 10μF 25V	150µF 35V	4 × 100μF 6.3V	NONE	NONE	100pF	12	114	230	30	6	13.3
5	2 × 10μF 25V	150µF 35V	4 × 100μF 6.3V	NONE	NONE	22pF	15	188	375	25	6	8.25
5	2 × 10μF 25V	150µF 35V	4 × 100μF 6.3V	NONE	NONE	22pF	20	159	320	25	6	8.25
	- Λ ΤΟ μ Ι 20 V	100µ1000	1 / 100μ1 0.00	I ITOITE	IIII	bi		1.00	020			

4601afb

Table 3. 1.5V Output at 12A

DERATING CURVE	V _{IN} (V)	POWER LOSS CURVE	AIR FLOW (LFM)	HEAT SINK	θ _{JA} (°C/W)
Figures 9, 11	5, 12	Figure 7	0	None	15.2
Figures 9, 11	5, 12	Figure 7	200	None	14
Figures 9, 11	5, 12	Figure 7	400	None	12
Figures 10, 12	5, 12	Figure 7	0	BGA Heat Sink	13.9
Figures 10, 12	5, 12	Figure 7	200	BGA Heat Sink	11.3
Figures 10, 12	5, 12	Figure 7	400	BGA Heat Sink	10.25

Table 4. 3.3V Output at 12A

DERATING CURVE	V _{IN} (V)	POWER LOSS CURVE	AIR FLOW (LFM)	HEAT SINK	θ _{JA} (°C/W)
Figure 13	12	Figure 8	0	None	15.2
Figure 13	12	Figure 8	200	None	14.6
Figure 13	12	Figure 8	400	None	13.4
Figure 14	12	Figure 8	0	BGA Heat Sink	13.9
Figure 14	12	Figure 8	200	BGA Heat Sink	11.1
Figure 14	12	Figure 8	400	BGA Heat Sink	10.5

Heat Sink Manufacturer

Wakefield Engineering	Part No: LTN20069	Phone: 603-635-2800	
Aavid Thermalloy	Part No: 375424B00034G	Phone: 603-224-9988	

Tables 3 and 4 provide a summary of the equivalent θ_{JA} for the noted conditions. These equivalent θ_{JA} parameters are correlated to the measured values, and are improved with air flow. The case temperature is maintained at 100°C or below for the derating curves. The maximum case temperature of 100°C is to allow for a rise of about 13°C to 25°C inside the μ Module with a thermal resistance θ_{JC} from junction to case between 6°C/W to 9°C/W. This will maintain the maximum junction temperature inside the μ Module below 125°C.

Safety Considerations

The LTM4601A modules do not provide isolation from V_{IN} to V_{OUT} . There is no internal fuse. If required, a slow blow fuse with a rating twice the maximum input current needs to be provided to protect each unit from catastrophic failure.

Layout Checklist/Example

The high integration of LTM4601A makes the PCB board layout very simple and easy. However, to optimize its electrical and thermal performance, some layout considerations are still necessary.

- Use large PCB copper areas for high current path, including V_{IN}, PGND and V_{OUT}. It helps to minimize the PCB conduction loss and thermal stress.
- Place high frequency ceramic input and output capacitors next to the V_{IN}, PGND and V_{OUT} pins to minimize high frequency noise.
- Place a dedicated power ground layer underneath the unit. Refer frequency synchronization source to power ground.
- To minimize the via conduction loss and reduce module thermal stress, use multiple vias for interconnection between top layer and other power layers.
- Do not put vias directly on pads unless they are capped.
- Use a separated SGND ground copper area for components connected to signal pins. Connect the SGND to PGND underneath the unit.

Figure 15 gives a good example of the recommended layout.

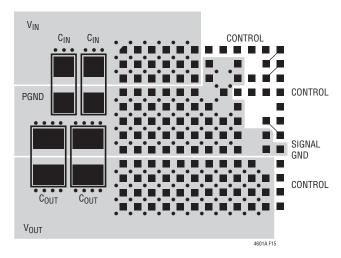


Figure 15. Recommended Layout

Frequency Adjustment

The LTM4601A is designed to typically operate at 850kHz across most input conditions. The f_{SET} pin is normally left open or decoupled with an optional 1000pF capacitor. The switching frequency has been optimized for maintaining constant output ripple noise over most operating ranges. The 850kHz switching frequency and the 400ns minimum off time can limit operation at higher duty cycles like 5V to 3.3V, and produce excessive inductor ripple currents for lower duty cycle applications like 20V to 5V. The 5V and 3.3V drop out curves are modified by adding an external resistor on the f_{SET} pin to allow for lower input voltage operation, or higher input voltage operation.

Example for 5V Output

LTM4601A minimum on time = 100ns; $t_{ON} = ((4.8 \cdot 10pf)/I_{fSFT})$

LTM4601A minimum off time = 400ns; $t_{OFF} = t - t_{ON}$, where t = 1/Frequency

Duty Cycle = t_{ON}/t or V_{OUT}/V_{IN}

Equations for setting frequency:

I_{fSET} = (V_{IN}/(3 • R_{fSET})), for 20V operation, I_{fSET} = 170µA, t_{ON} = ((4.8 • 10pF)/I_{fSET}), t_{ON} = 282ns, where the internal R_{fSET} is 39.2k. Frequency = (V_{OUT}/(V_{IN} • t_{ON})) = (5V/(20 • 282ns)) ≈ 886kHz. The inductor ripple current begins to get high at the higher input voltages due to a larger voltage across the inductor. This is noted in the "Inductor Ripple Current vs Duty Cycle" graph (Figure 3) where I_L ≈ 10A at 25% duty cycle. The inductor ripple current can be lowered at the higher input voltages by adding an external resistor from f_{SET} to ground to increase the switching frequency. An 8A ripple current is chosen, and the total peak current is equal to 1/2 of the 8A ripple current plus the output current. The 5V output current is limited to 8A, so the total peak current is less than 12A. This is below the

14A peak specified value. A 100k resistor is placed from f_{SFT} to ground, and the parallel combination of 100k and 39.2k equates to 28k. The IfSFT calculation with 28k and 20V input voltage equals 238µA. This equates to a t_{ON} of 200ns. This will increase the switching frequency from ~886kHz to ~1.25MHz for the 20V to 5V conversion. The minimum on time is above 100ns at 20V input. Since the switching frequency is approximately constant over input and output conditions, then the lower input voltage range is limited to 10V for the 1.25MHz operation due to the 400ns minimum off time. Equation: $t_{ON} = (V_{OUT}/V_{IN})$ • (1/Frequency) equates to a 400ns on time, and a 400ns off time. The "V_{IN} to V_{OLIT} Step-Down Ratio" curve reflects an operating range of 10V to 20V for 1.25MHz operation with a 100k resistor to ground, and an 8V to 16V operation for f_{SFT} floating. These modifications are made to provide wider input voltage ranges for the 5V output designs while limiting the inductor ripple current, and maintaining the 400ns minimum off time.

Example for 3.3V Output

LTM4601A minimum on time = 100ns; $t_{ON} = ((3.3 \cdot 10pF)/I_{fSFT})$

LTM4601A minimum off time = 400ns; $t_{OFF} = t - t_{ON}$, where t = 1/Frequency

Duty Cycle (DC) = t_{ON}/t or V_{OLIT}/V_{IN}

Equations for setting frequency:

 $I_{fSET} = (V_{IN}/(3 • R_{fSET}))$, for 20V operation, $I_{fSET} = 170 \mu A$, $t_{ON} = ((3.3 • 10 pf)/I_{fSET})$, $t_{ON} = 195 ns$, where the internal R_{fSET} is 39.2k. Frequency = $(V_{OUT}/(V_{IN} • t_{ON})) = (3.3 V/(20 • 195 ns)) \approx 846 kHz$. The minimum on time and minimum off time are within specification at 195 ns and 980 ns. The 4.5V minimum input for converting 3.3V output will not meet the minimum off-time specification of 400 ns. $t_{ON} = 868 ns$, Frequency = 850 kHz, $t_{OFF} = 315 ns$.

Solution

Lower the switching frequency at lower input voltages to allow for higher duty cycles, and meet the 400ns minimum off time at 4.5V input voltage. The off time should be about 500ns with 100ns guard band. The duty cycle for (3.3V/4.5) $\approx 73\%$. Frequency = (1 - DC)/t_{OFF} or (1-0.73)/500ns = 540kHz. The switching frequency needs to be lowered to 540kHz at 4.5V input. t_{ON} = DC/frequency, or 1.35µs. The f_{SET} pin voltage compliance is 1/3 of V_{IN}, and the I_{fSET} current equates to 38µA with the internal 39.2k.

The I_{fSET} current needs to be $24\mu A$ for 540kHz operation. A resistor can be placed from V_{OUT} to f_{SET} to lower the effective I_{fSET} current out of the f_{SET} pin to $24\mu A$. The f_{SET} pin is 4.5V/3 =1.5V and V_{OUT} = 3.3V, therefore 130k will source $14\mu A$ into the f_{SET} node and lower the I_{fSET} current to $24\mu A$. This enables the 540kHz operation and the 4.5V to 20V input operation for down converting to 3.3V output. The frequency will scale from 540kHz to 1.1MHz over this input range. This provides for an effective output current of 8A over the input range.

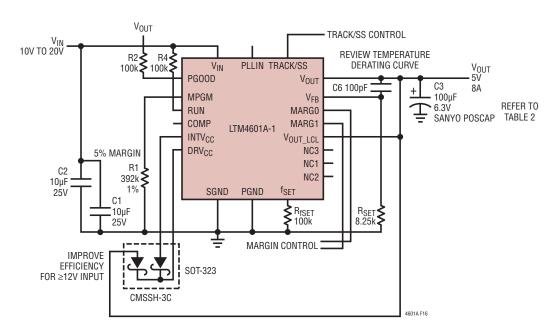


Figure 16. 5V at 8A Design Without Differential Amplifier

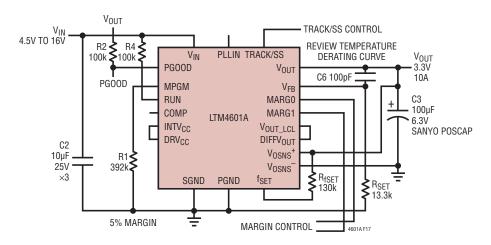


Figure 17. 3.3V at 10A Design

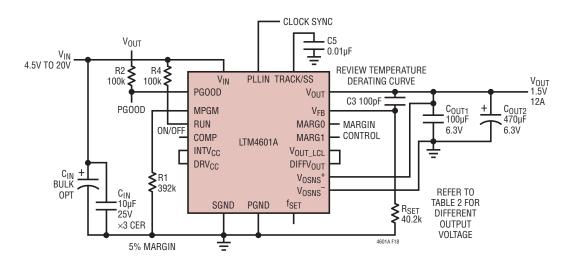


Figure 18. Typical 4.5V-20V_{IN}, 1.5V at 12A Design

www.DataSheet4U.com

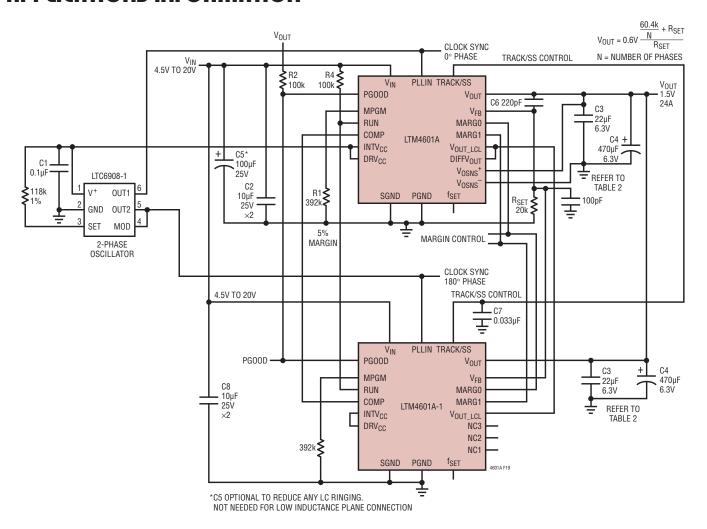


Figure 19. 2-Phase Parallel, 1.5V at 24A Design

TYPICAL APPLICATIONS

4-Phase, Four Outputs (3.3V, 2.5V, 1.8V and 1.5V) with Tracking

C15 470µF 6.3V + C15 470µF 6.3V 2.5V AT 12A С16 22µF 6.3V R23 60.4k **X** 3.3V R25 60.4k **₩**879 R13 40.2k **♣** R24 19.1k R26 40.2k C18 100pF MARGINCONTROL C24 100pF — MARGIN — CONTROL Vour_LcL DIFFVour Vour_LCL DIFFVour MARG1 Vosns MARG1 fSET. fSET LTM4601A LTM4601A PGND CLOCK SYNC 2 CLOCK SYNC 4 RUN COMP INTV_{CC} DRV_{CC} RUN COMP INTV_{CC} DRV_{CC} MPGM 8V TO 16V 8V TO 16V **₩**89 392k R14 392k 5% MARGIN 5% MARGIN R16 100K 100 100 100 100 C14 255V ×3 #35 **4** C14 X3 V F R17 59k SET MOD GND OUT4 C10 470µF 6.3V PH 0011 4-PHASE OSCILLATOR 3.3V AT 10A REFER TO TABLE 2 C9 22μF 6.3V R21 60.4k **~~~** 3.3V . R12 30.1k R8 13.3k 8V TO 16V ₩³³ %^{30.}¥ - MARGIN - CONTROL C8 100pF MARGIN
CONTROL C12 100pF Vout_LCL DIFFVout Vosns* Vout_lcl DIFFVout Vosns⁺ VFB MARG0 MARG1 Vosns_ CLOCK SYNC 3 CLOCK SYNC 1 fSET LTM4601A LTM4601A PGND MPGM RUN COMP INTVCC DRVCC RUN COMP INTV_{CC} DRV_{CC} MPGM H١ INTERMEDIATE BUS 8V T0 16V 8V TO 16V 5% MARGIN 5% MARGIN -W 100K R3. C8 10µF X3 X3 C2 10h 73 V -48V INPUT + 100pr 09% PG

DETAIL A

PACKAGE DESCRIPTION

PACKAGE IN TRAY LOADING ORIENTATION PACKAGE BOTTOM VIEW LTMXXXXXX µModule TRAY PIN 1 BEVEL COMPONENT PIN "A1" → 1.27 BSC PADS SEE NOTES 0.12 - 0.28NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994 DETAILS OF PAD #1 IDENTIFIER ARE OPTIONAL, BUT MUST BE LOCATED WITHIN THE ZONE INDICATED. THE PAD #1 IDENTIFIER MAY BE EITHER A MOLD OR MARKED FEATURE (Reference LTM DWG # 05-08-1755, Rev Ø) 133-Lead (15mm imes 15mm imes 2.82mm) 3 LAND DESIGNATION PER JESD MO-222, SPP-010 2.72-2.92 DETAIL B 2. ALL DIMENSIONS ARE IN MILLIMETERS 5. PRIMARY DATUM -Z- IS SEATING PLANE LGA Package 6. THE TOTAL NUMBER OF PADS: 133 -0.27 - 0.37SUBSTRATE ⊕ eee ® X Y SYMBOL TOLERANCE Z 0.10 0.10 DETAIL B MOLD 0.630 ±0.025 SQ. 133x DETAIL A Z qqq 🖂 aaa bbb 2.45 - 2.55 -SUGGESTED PCB LAYOUT TOP VIEW PACKAGE TOP VIEW 15 BSC 0000.0 0906.1

5.7150 —

6.9850 —

PAD 1

3.1750 —

1.9050 —

4.4450 —

0.6350 —

0.0000 -

1.9050 —

3.1750 -4.4450 -5.7150 -

C(0.30) PAD 1

6.9850 —

aaa Z

PACKAGE DESCRIPTION

Pin Assignment Table 5 (Arranged by Pin Number)

Р	IN NAME	Р	IN NAME	Р	IN NAME	PI	N NAME	PI	N NAME	P	IN NAME
A1	V_{IN}	B1	V_{IN}	C1	V_{IN}	D1	PGND	E1	PGND	F1	PGND
A2	V_{IN}	B2	V_{IN}	C2	V_{IN}	D2	PGND	E2	PGND	F2	PGND
А3	V_{IN}	В3	V_{IN}	C3	V_{IN}	D3	PGND	E3	PGND	F3	PGND
A4	V_{IN}	B4	V_{IN}	C4	V_{IN}	D4	PGND	E4	PGND	F4	PGND
A5	V_{IN}	B5	V_{IN}	C5	V_{IN}	D5	PGND	E5	PGND	F5	PGND
A6	V_{IN}	B6	V_{IN}	C6	V_{IN}	D6	PGND	E6	PGND	F6	PGND
A7	$INTV_{CC}$	В7	PGND	C7	PGND	D7	-	E7	PGND	F7	PGND
A8	PLLIN	B8	-	C8	-	D8	PGND	E8	-	F8	PGND
A9	TRACK/SS	В9	PGND	C9	PGND	D9	$INTV_{CC}$	E9	PGND	F9	PGND
A10	RUN	B10	-	C10	MTP1	D10	MPT2	E10	-	F10	-
A11	COMP	B11	MPGM	C11	f _{SET}	D11	MPT3	E11	-	F11	PG00D
A12	MPGM	B12	f _{SET}	C12	MARG0	D12	MARG1	E12	DRV _{CC}	F12	V_{FB}

PI	IN NAME	Р	IN NAME	P	IN NAME	PI	N NAME	PI	N NAME	PI	N NAME
G1	PGND	H1	PGND	J1	V _{OUT}	K1	V _{OUT}	L1	V _{OUT}	M1	V _{OUT}
G2	PGND	H2	PGND	J2	V _{OUT}	K2	V _{OUT}	L2	V _{OUT}	M2	V _{OUT}
G3	PGND	НЗ	PGND	J3	V _{OUT}	K3	V _{OUT}	L3	V _{OUT}	M3	V _{OUT}
G4	PGND	H4	PGND	J4	V _{OUT}	K4	V _{OUT}	L4	V _{OUT}	M4	V _{OUT}
G5	PGND	H5	PGND	J5	V _{OUT}	K5	V _{OUT}	L5	V _{OUT}	M5	V _{OUT}
G6	PGND	H6	PGND	J6	V _{OUT}	K6	V _{OUT}	L6	V _{OUT}	M6	V _{OUT}
G7	PGND	H7	PGND	J7	V _{OUT}	K7	V _{OUT}	L7	V _{OUT}	M7	V _{OUT}
G8	PGND	H8	PGND	J8	V _{OUT}	K8	V _{OUT}	L8	V _{OUT}	M8	V _{OUT}
G9	PGND	Н9	PGND	J9	V _{OUT}	K9	V _{OUT}	L9	V _{OUT}	M9	V _{OUT}
G10	-	H10	-	J10	V _{OUT}	K10	V _{OUT}	L10	V _{OUT}	M10	V _{OUT}
G11	SGND	H11	SGND	J11	-	K11	V _{OUT}	L11	V _{OUT}	M11	V _{OUT}
G12	PG00D	H12	SGND	J12	V _{OSNS} ⁺	K12	DIFFV _{OUT}	L12	V _{OUT_LCL}	M12	V _{OSNS} -

PACKAGE DESCRIPTION

Pin Assignment Table 6 (Arranged by Pin Function)

PIN I	NAME
A1	V _{IN}
A2	V _{IN}
A3	V _{IN}
A4	VIN
A5	V_{IN}
A6	V _{IN}
B1	V _{IN}
B2	V _{IN}
B3	V _{IN}
B4	V _{IN}
B5	V_{IN}
B6	V _{IN}
C1	V _{IN}
C2	V _{IN}
C3	V_{IN}
C4	V _{IN}
C5	V _{IN}
C6	V_{IN}

	N NARAE
	NAME
D1	PGND
D2	PGND
D3	PGND
D4	PGND
D5	PGND
D6	PGND
D8	PGND
E1	PGND
E2	PGND
E3	PGND
E4	PGND
E5	PGND
E6	PGND
E7	PGND
F1	PGND
F2	PGND
F3	PGND
F4	PGND
F5	PGND
F6	PGND
F7	PGND
F8	PGND
F9	
G1	PGND
G2	PGND
G3	PGND
G4	PGND
G5	PGND
G6	PGND
G7	PGND
G8	PGND
G9	
H1 H2 H3 H4 H5 H6 H7	PGND PGND PGND PGND PGND PGND PGND PGND

Н9

PGND

PIN NAME	rangea by	PIII FUIICI							
J2	PIN NAME								
J2	J1	Volit							
J3	J2	V _{OLIT}							
J4 VOUT J5 VOUT J6 VOUT J7 VOUT J8 VOUT J9 VOUT K1 VOUT K2 VOUT K3 VOUT K4 VOUT K5 VOUT K6 VOUT K7 VOUT K8 VOUT K10 VOUT K11 VOUT L1 VOUT L2 VOUT L2 VOUT L4 VOUT L4 VOUT L5 VOUT L4 VOUT L5 VOUT L6 VOUT L7 VOUT L8 VOUT L9 VOUT L10 VOUT L11 VOUT L11 VOUT L10 VOUT M1 VOUT M2 VOUT M3 VOUT M4 VOUT M5 VOUT M6 VOUT M6 VOUT M8 VOUT M9 VOUT M9 VOUT M9 VOUT M9 VOUT M9 VOUT		Volit							
J5 VOUT J6 VOUT J7 VOUT J8 VOUT J9 VOUT J10 VOUT K1 VOUT K2 VOUT K3 VOUT K4 VOUT K5 VOUT K6 VOUT K7 VOUT K8 VOUT K1 VOUT K1 VOUT K1 VOUT L1 VOUT L1 VOUT L2 VOUT L3 VOUT L4 VOUT L5 VOUT L6 VOUT L7 VOUT L8 VOUT L6 VOUT L7 VOUT L8 VOUT L9 VOUT L10 VOUT L11 VOUT M1 VOUT M2 VOUT M3 VOUT M4 VOUT M5 VOUT M6 VOUT M6 VOUT M7 VOUT M8 VOUT M9 VOUT M9 VOUT		Volit							
J6 VOUT J7 VOUT J8 VOUT J9 VOUT J10 VOUT K1 VOUT K2 VOUT K3 VOUT K4 VOUT K5 VOUT K6 VOUT K7 VOUT K8 VOUT K10 VOUT K11 VOUT L1 VOUT L2 VOUT L2 VOUT L3 VOUT L4 VOUT L5 VOUT L6 VOUT L6 VOUT L7 VOUT L8 VOUT L8 VOUT L9 VOUT L10 VOUT L11 VOUT M1 VOUT M1 VOUT M2 VOUT M3 VOUT M4 VOUT M5 VOUT M6 VOUT M6 VOUT M7 VOUT M8 VOUT M8 VOUT M9 VOUT	J5	V _{OLIT}							
J/ J8	J6	V _{OLIT}							
J8	J7	V _{OUT}							
J9	J8	V _{OUT}							
Nout Nout	J9	V _{OUT}							
K1 K2 Vout K3 Vout K4 Vout K5 Vout K6 Vout K7 Vout K8 Vout K9 Vout K10 Vout K11 Vout L1 L2 L3 L4 Vout L5 L6 Vout L7 L6 Vout L7 L8 Vout L9 Vout L10 Vout L11 Vout L11 Vout L10 Vout L11 Vout M1 Vout M2 Vout M3 Vout M4 Vout M5 Vout M6 Vout M7 Vout M8 Vout M9 Vout Vout M9 Vout M9 Vout M9 Vout M10 Vout	J10	V _{OUT}							
K2 Vout K3 Vout K4 Vout K5 Vout K6 Vout K7 Vout K8 Vout K10 Vout K11 Vout L2 Vout L3 Vout L4 Vout L5 Vout L6 Vout L7 Vout L8 Vout L9 Vout L10 Vout M1 Vout M2 Vout M3 Vout M4 Vout M5 Vout M6 Vout M7 Vout M8 Vout M9 Vout M10 Vout	K1								
K3		V _{OUT}							
K4 K5 VOUT K6 VOUT K7 VOUT K8 VOUT K9 VOUT K10 VOUT K11 VOUT L2 VOUT L3 VOUT L4 VOUT L5 VOUT L6 VOUT L7 L8 VOUT L9 VOUT L10 VOUT L11 VOUT M1 VOUT M1 VOUT M2 VOUT M3 VOUT M4 VOUT M4 VOUT M5 VOUT M6 VOUT M6 VOUT M7 VOUT M8 VOUT M9 VOUT M9 VOUT	K3	V _{OUT}							
K5 VOUT K6 VOUT K7 VOUT K8 VOUT K9 VOUT K10 VOUT K11 VOUT L1 VOUT L2 VOUT L3 VOUT L4 VOUT L5 VOUT L6 VOUT L7 VOUT L8 VOUT L10 VOUT L11 VOUT M1 VOUT M1 VOUT M2 VOUT M3 VOUT M4 VOUT M5 VOUT M6 VOUT M6 VOUT M7 VOUT M8 VOUT M9 VOUT M9 VOUT	K4	V _{OUT}							
K6 VOUT K7 VOUT K8 VOUT K9 VOUT K10 VOUT K11 VOUT L1 VOUT L2 VOUT L3 VOUT L4 VOUT L5 VOUT L6 VOUT L7 VOUT L8 VOUT L10 VOUT L11 VOUT M1 VOUT M1 VOUT M2 VOUT M3 VOUT M4 VOUT M5 VOUT M6 VOUT M7 VOUT M8 VOUT M9 VOUT M9 VOUT	K5	V _{OUT}							
K7 VOUT K8 VOUT K9 VOUT K10 VOUT K11 VOUT L1 VOUT L2 VOUT L3 VOUT L4 VOUT L5 VOUT L6 VOUT L7 VOUT L8 VOUT L10 VOUT L11 VOUT M1 VOUT M2 VOUT M3 VOUT M4 VOUT M5 VOUT M6 VOUT M7 VOUT M8 VOUT M9 VOUT M9 VOUT	K6	V _{OUT}							
K8 VOUT K9 VOUT K10 VOUT K11 VOUT L1 VOUT L2 VOUT L3 VOUT L4 VOUT L5 VOUT L6 VOUT L7 VOUT L8 VOUT L10 VOUT L11 VOUT M1 VOUT M2 VOUT M2 VOUT M3 VOUT M4 VOUT M5 VOUT M6 VOUT M7 VOUT M8 VOUT M9 VOUT M9 VOUT	K7	V _{OUT}							
K9 K10 K10 Vout K11 Vout L1 L2 Vout L3 Vout L4 Vout L5 Vout L6 Vout L7 Vout L8 Vout L9 Vout L10 Vout L11 Vout M1 Vout M2 Vout M3 Vout M4 Vout M5 Vout M6 Vout M7 Vout M8 Vout M9 Vout M9 Vout M9 Vout M1 Vout M7 Vout M8 Vout M9 Vout Vout Vout Vout Vout Vout Vout Vout		V _{OUT}							
K10		V _{OUT}							
K11 VOUT L1 VOUT L2 VOUT L3 VOUT L4 VOUT L5 VOUT L6 VOUT L7 VOUT L8 VOUT L10 VOUT L11 VOUT M1 VOUT M2 VOUT M3 VOUT M4 VOUT M5 VOUT M6 VOUT M8 VOUT M9 VOUT M10 VOUT	K10	V _{OUT}							
L1	K11	V _{OUT}							
L2	L1								
L3		V_{OUT}							
L4 VOUT L5 VOUT L6 VOUT L7 VOUT L8 VOUT L9 VOUT L10 VOUT L11 VOUT M1 VOUT M2 VOUT M3 VOUT M4 VOUT M5 VOUT M6 VOUT M7 VOUT M8 VOUT M9 VOUT M10 VOUT	L3	V _{OUT}							
L5	L4	V _{OUT}							
L6 VOUT L7 VOUT L8 VOUT L9 VOUT L10 VOUT L11 VOUT M1 VOUT M2 VOUT M3 VOUT M4 VOUT M5 VOUT M6 VOUT M7 VOUT M8 VOUT M9 VOUT M10 VOUT		V_{OUT}							
L/ VOUT L8 VOUT L9 VOUT L10 VOUT L11 VOUT M1 VOUT M2 VOUT M3 VOUT M4 VOUT M5 VOUT M6 VOUT M7 VOUT M8 VOUT M9 VOUT M10 VOUT	L6	V_{OUT}							
L8		Vout							
L9	L8	V_{OUT}							
L10		V _{OUT}							
Nout Nout		v_{OUT}							
M2 VOUT M3 VOUT M4 VOUT M5 VOUT M6 VOUT M7 VOUT M8 VOUT M9 VOUT M10 VOUT	L11	V _{OUT}							
M2 VOUT M3 VOUT M4 VOUT M5 VOUT M6 VOUT M7 VOUT M8 VOUT M9 VOUT M10 VOUT		V_{OUT}							
M3 VOUT M4 VOUT M5 VOUT M6 VOUT M7 VOUT M8 VOUT M9 VOUT M10 VOUT		V_{OUT}							
M4 VOUT M5 VOUT M6 VOUT M7 VOUT M8 VOUT M9 VOUT M10 VOUT	M3	V_{OUT}							
M5 VOUT M6 VOUT M7 VOUT M8 VOUT M9 VOUT M10 VOUT		V _{OUT}							
M6 V _{OUT} M7 V _{OUT} M8 V _{OUT} M9 V _{OUT} M10 V _{OUT}	-	V_{OUT}							
M7 V _{OUT} M8 V _{OUT} M9 V _{OUT} M10 V _{OUT}	-	V_{OUT}							
M8 V _{OUT} M9 V _{OUT} M10 V _{OUT}		V _{OUT}							
M10 V _{OUT}	-	V_{OUT}							
M10 V _{OUT}	M9	V_{OUT}							
M11 V _{OUT}	-	V_{OUT}							
	M11	V _{OUT}							

PIN	NAME
A7 A8 A9 A10 A11 A12	INTVCC PLLIN TRACK/SS RUN COMP MPGM
B12	f _{SET}
C12	MARG0
D12	MARG1
E12	DRV _{CC}
F12	V_{FB}
G12	PG00D
H12	SGND
J12	V _{OSNS} ⁺
K12	DIFFV _{OUT}
L12	V _{OUT_LCL}
M12	V _{OSNS} -

PIN NAME						
PGND -						
PGND						
- MPGM						
PGND						
PGND MTP1 f _{SET}						
PGND INTVCC MTP2 MTP3						
- PGND -						
- PGOOD						
- SGND						
- SGND						
-						

....<u>LTM4601A/LTM4601A-1</u>

RELATED PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LTC2900	Quad Supply Monitor with Adjustable Reset Timer	Monitors Four Supplies; Adjustable Reset Timer
LTC2923	Power Supply Tracking Controller	Tracks Both Up and Down; Power Supply Sequencing
LT3825/LT3837	Synchronous Isolated Flyback Controllers	No Optocoupler Required; 3.3V, 12A Output; Simple Design
LTM4600	10A DC/DC μModule	Basic 10A DC/DC μModule
LTM4601	12A DC/DC µModule with PLL, Output Tracking/ Margining and Remote Sensing	Synchronizable, PolyPhase Operation to 48A, LTM4601-1 Version has no Remote Sensing
LTM4602	6A DC/DC μModule	Pin Compatible with the LTM4600
LTM4603	6A DC/DC µModule with PLL and Output Tracking/ Margining and Remote Sensing	Synchronizable, PolyPhase Operation, LTM4603-1 Version has no Remote Sensing, Pin Compatible with the LTM4601
LTM4604A	4A Low Voltage DC/DC μModule	$2.7V \le V_{IN} \le 5.5V$; $0.8V \le V_{OUT} \le 5V$, $9mm \times 15mm \times 2.3mm$ (Ultra-thin) LGA Package
LTM4608A	8A Low Voltage DC/DC μModule	$2.7V \le V_{IN} \le 5.5V$; $0.6V \le V_{OUT} \le 5V$; $9mm \times 15mm \times 2.8mm$ LGA Package