APPROVALS

- UL recognised, File No. E91231

DESCRIPTION

The 6N137 / ICPL2601 optocouplers consist of a GaAsP light emitting diode and a high gain integrated photo detector to provide 2500 Volts ${ }_{\text {RM }}$ electrical isolation between input and output. An enable input allows the detector to be strobed. The output of the detector I.C. is an open collector Schottky clamped transistor. The ICPL2601 has an internal shield which provides a guaranteed common mode transient immunity specification of $1000 \mathrm{~V} / \mu \mathrm{s}$ minimum. This unique design provides maximum ac and dc circuit isolation while achieving TTL compatibility. The coupled parameters are guaranteed over the temperature range of $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$, such that a maximum input signal of 5 mA will provide a minimum output sink current of 13 mA (equivalent to fan-out of eight gates)

FEATURES

- High speed - 10MBit/s
- High Common Mode Transient Immunity $10 \mathrm{kV} / \mu$ s typical
- Logic gate output
- ICPL2601 has improved noise shield for superior common mode rejection
- Options :-

10mm lead spread - add G after part no. Surface mount - add SM after part no. Tape\&reel - add SMT\&R after part no.

APPLICATIONS

- Line receiver, data transmission
- Computer-peripheral interface
- Data multiplexing
- Pulse transformer replacement

INPUT	ENABLE	OUTPUT
H	H	L
L	H	H
H	L	H
L	L	H

ISOCOMCOMPONENTSLTD

Unit 25B, Park View Road West,
Park View Industrial Estate, Brenda Road Hartlepool, TS25 1YDEngland Tel: (01429)863609 Fax:(01429) 863581 e-mail sales @isocom.co.uk http://www.isocom.com

ABSOLUTE MAXIMUM RATINGS

($25^{\circ} \mathrm{C}$ unless otherwise specified)

Storage Temperature
Operating Temperature \qquad Lead Soldering Temperature
($1 / 16$ inch (1.6 mm) from case for 10 secs) $260^{\circ} \mathrm{C}$

INPUT DIODE

Average Forward Current	20 mA
Reverse Voltage	5 V

DETECTOR

| Enable Input Voltage $\left(\mathrm{V}_{\mathrm{E}}\right)$ 5.5 V
 (not to exceed V_{CC} by more than 500 mV$)$
 Reverse Supply Voltage $\left(-\mathrm{V}_{\mathrm{CC}}\right)$ -500 mV
 Supply Voltage $\left(\mathrm{V}_{\mathrm{CC}}\right)$ 7 V
 $(1$ minute maximum)
 Output Current $\left(\mathrm{I}_{\mathrm{O}}\right)$ 25 mA
 Output Voltage $\left(\mathrm{V}_{\mathrm{O}}\right)$ 7 V
 Collector Output Power Dissipation__ 40 mW |
| :--- | :--- |

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{A}}=\mathbf{0}^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ Unless otherwise noted)

PARAMETER	SYM	DEVICE	MIN	TYP*	MAX	UNITS	TEST CONDITION
High Level Output Current	$\mathrm{I}_{\text {OH }}$			0.02	250	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=5.5 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{F}}=250 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{E}}=2 \mathrm{~V} \end{aligned}$
Low Level Output Voltage	$\mathrm{V}_{\text {oL }}$			0.4	0.6	V	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{E}}=2 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{OL}}(\text { sinking })=13 \mathrm{~mA} \end{aligned}$
High Level Supply Current	$\mathrm{I}_{\text {CCH }}$			10	15	mA	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{E}}=0.5 \mathrm{~V} \end{aligned}$
Low Level Supply Current	$\mathrm{I}_{\text {CLL }}$			15	18	mA	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{E}}=0.5 \mathrm{~V} \end{aligned}$
High Level Enable Current	$\mathrm{I}_{\text {EH }}$			-1.0		mA	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{E}}=2 \mathrm{~V}$
Low Level Enable Current	I_{EL}			-1.5	-2.0	mA	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{E}}=0.5 \mathrm{~V}$
High Level Enable Voltage (note 10)	$\mathrm{V}_{\text {EH }}$		2			V	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$
Low Level Enable Voltage	$\mathrm{V}_{\text {EL }}$				0.8	V	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$
Input Forward Voltage	V_{F}			1.55	1.75	V	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
Input Reverse Breakdown Voltage	$\mathrm{V}_{\text {BR }}$		5			V	$\mathrm{I}_{\mathrm{R}}=10 \mu \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
Input Capacitance	$\mathrm{C}_{\text {IN }}$	DataSh	eet4U.	${ }^{\text {c }} 60$		pF	$\mathrm{V}_{\mathrm{F}}=0, \mathrm{f}=1 \mathrm{MHz}$
Temperature Coefficient of Forward Voltage	$\frac{\Delta \mathrm{V}_{\mathrm{F}}}{\Delta \mathrm{~T}_{\mathrm{A}}}$			-1.4		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$
Input-output Isolation Voltage (note 3)	$\mathrm{V}_{\text {ISO }}$		2500	5000		$\mathrm{V}_{\text {RMS }}$	R.H.equal to or less than $50 \%, \mathrm{t}=1 \mathrm{~min}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
Input-output Insulation Leakage Current (note 3)	$\mathrm{I}_{\mathrm{I}-\mathrm{O}}$				1	$\mu \mathrm{A}$	$\begin{aligned} & \text { R.H. }=45 \% \\ & \mathrm{t}=5 \mathrm{~s}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{t}-\mathrm{O}}=3000 \mathrm{~V} \mathrm{dc} \end{aligned}$
Resistance (Input to Output) (note 3)	$\mathrm{R}_{\mathrm{I} \mathrm{O}}$			10^{12}		Ω	$\mathrm{V}_{\mathrm{I}-\mathrm{O}}=500 \mathrm{~V} \mathrm{dc}$
Capacitance (Input to Output) (note 3)	$\mathrm{C}_{\mathrm{I}-\mathrm{O}}$			0.6		pF	$\mathrm{f}=1 \mathrm{MHz}$

* All typicals at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

RECOMMMENDED OPERATING CONDITIONS

PARAMETER	SYMBOL	MIN	MAX	UNITS
Input Current, Low Level	I_{FL}	0	250	$\mu \mathrm{~A}$
Input Current, High Level	I_{FH}	6.3^{*}	15	mA
Supply Voltage, Output	V_{CC}	4.5	5.5	V
Enable Voltage, Low Level	V_{EL}	0	0.8	V
Enable Voltage, High Level	V_{EH}	2.0	$\mathrm{~V}_{\mathrm{CC}}$	V
Fan Out (TTL Load)	N		8	
Operating Temperature	T_{A}	0	70	${ }^{\circ} \mathrm{C}$

*6.3mA is a guard banded value which allows for at least 20% CTR degradation.
Initial input current threshold value is 5.0 mA or less

SWITCHING SPECIFICATIONS AT $T_{A}=25^{\circ} \mathrm{C}\left(\mathrm{V}_{\mathrm{CC}}=\mathbf{5 V}, \mathrm{I}_{\mathrm{F}}=7.5 \mathrm{~mA}\right.$ Unless otherwise noted $)$

PARAMETER	SYM	DEVICE	MIN	TYP	MAX	UNITS	TEST CONDITION
Propagation Delay Time to Logic Low at Output (fig 1)(note4)	$\mathrm{t}_{\text {PHL }}$			55	75	ns	$\mathrm{R}_{\mathrm{L}}=350 \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$
Propagation Delay Time to Logic High at Output (fig 1)(note5)	$\mathrm{t}_{\text {PLH }}$			45	75	ns	$\mathrm{R}_{\mathrm{L}}=350 \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$
Propagation Delay Time of Enable from $V_{E H}$ to $V_{E L}$ (note6)	$\mathrm{t}_{\text {EHL }}$			14		ns	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=350 \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{EL}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EH}}=3 \mathrm{~V} \end{aligned}$
Propagation Delay Time of Enable from $V_{E L}$ to $V_{E H}$ (note7)	$\mathrm{t}_{\text {ELH }}$			25		ns	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=350 \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{EL}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EH}}=3 \mathrm{~V} \end{aligned}$
Common Mode Transient Immunity at Logic High Level Output (fig 2)(note8)	CM_{H}	6N137 ICPL2601	1000	$\begin{aligned} & 10000 \\ & 10000 \end{aligned}$		$\begin{aligned} & \mathrm{V} / \mu \mathrm{s} \\ & \mathrm{~V} / \mu \mathrm{s} \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CM}}=50 \mathrm{~V}_{\mathrm{PP}} \\ & \mathrm{R}_{\mathrm{L}}=350 \Omega, \mathrm{~V}_{\mathrm{OH}}=2 \mathrm{Vmin} . \end{aligned}$
Common Mode Transient Immunity at Logic Low Level Output (fig 2)(note9)	CM_{L}	6N137 ICPL2601	-1000	$\begin{array}{\|} -10000 \\ -10000 \end{array}$		V/us V/ $\mu \mathrm{s}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CM}}=50 \mathrm{~V}_{\mathrm{PP}} \\ & \mathrm{R}_{\mathrm{L}}=350 \Omega, \mathrm{~V}_{\mathrm{OL}}=0.8 \mathrm{Vmax} . \end{aligned}$

NOTES:-
1 Bypassing of the power supply line is required, with a $0.01 \mu \mathrm{~F}$ ceramic disc capacitor adjacent to each isolator. The power supply bus for the isolator(s) should be seperate from the bus for any active loads. Otherwise a larger value of bypass capacitor (up to $0.1 \mu \mathrm{~F}$) may be needed to supress regenerative feedback via the power supply.
2 Peaking circuits may produce transient input currents up to $50 \mathrm{~mA}, 50 \mathrm{~ns}$ maximum pulse width, provided average current does not exceed 20 mA .
3 Device considered a two terminal device; pins 1,2,3, and 4 shorted together, and pins 5, 6, 7 and 8 shorted together.
4 The $\mathrm{t}_{\mathrm{PHL}}$ propagation delay is measured from the 3.75 mA level Low to High transition of the input current pulse to the 1.5 V level on the High to Low transition of the output voltage pulse.
5 The $\mathrm{t}_{\text {pLH }}$ propagation delay is measured from the 3.75 mA level High to Low transition of the input current pulse to the 1.5 V level on the Low to High transition of the output voltage pulse.
$6 \quad$ The $\mathrm{t}_{\text {EHL }}$ enable input propagation delay is measured from the 1.5 V level on the Low to High transition of the enable input voltage pulse to the 1.5 V level on the High to Low of the output voltage pulse.
$7 \quad$ The $\mathrm{t}_{\text {ELH }}$ enable input propagation delay is measured from the 1.5 V level on the High to Low transition of the enable input voltage pulse to the 1.5 V level on the Low to High of the output voltage pulse.
$8 \quad \mathrm{CM}_{\mathrm{H}}$ is the maximum tolerable rate of rise of the common mode voltage to assure that the output will remain in a high logic state (ie Vout $>2.0 \mathrm{~V}$).
$9 \quad \mathrm{CM}_{\mathrm{L}}$ is the maximum tolerable rate of fall of the common mode voltage to assure that the output will remain in a low logic state (ie Vout $<0.8 \mathrm{~V}$)
10 No external pull up is required for a high logic state on the enable input.

FIG. 1 SWITCHING TEST CIRCUIT

FIG. 2 TEST CIRCUIT FOR TRANSIENT IMMUNITY AND TYPICAL WAVEFORMS

Output Voltage vs. Forward Input Current

High Level Output Current vs. Ambient Temperature

