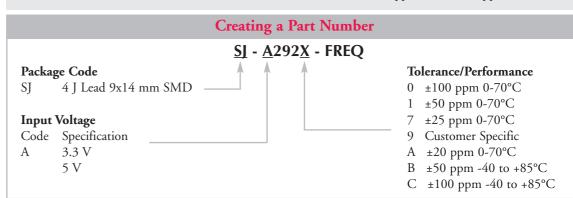
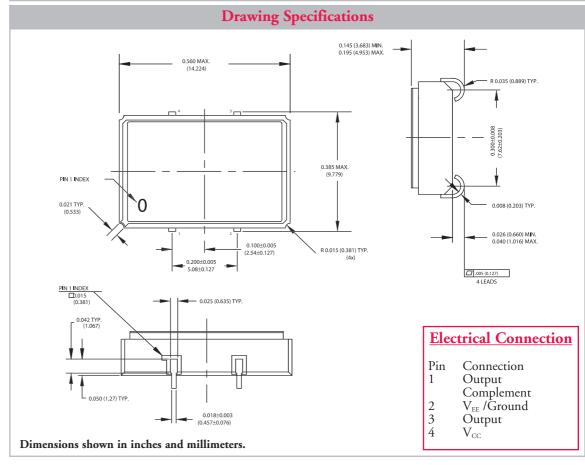
SJ-A2920 Series

Size, mm9 x 14 **I/O**4 J Lead **Supply Voltage**3.3V / 5V

Differential Positive ECL (DPECL) Fast Edge SJ-A2920 Series Rev K

Frequency Range: 50.0 MHz to 200.0 MHz


Description


The SJ-A2920 Series of quartz crystal oscillators provide DPECL Fast Edge compatible signals. Systems designers may now specify space-saving, cost-effective packaged PECL oscillators to meet their timing requirements.

Features

- High Reliability NEL HALT/HASS qualified for crystal oscillator start-up conditions
- Low jitter Wavecrest jitter characterization available
- Wide frequency range—50.0 MHz to 200.0 MHz
- User specified tolerance available
- Will withstand vapor phase temperatures of 253°C for 4 minutes maximum
- Space-saving alternative to discrete component oscillators
- High shock resistance, to 3000g

- 3.3 Volt operation
- Metal lid electrically connected to ground to reduce EMI
- Fast rise and fall times, <600 ps
- Overtone technology
- High Q crystal actively tuned oscillator circuit
- Power supply decoupling internal
- No internal PLL avoids cascading PLL problems
- High frequencies due to proprietary design
- Gold plated leads—Solder dipped leads available upon request
- RoHS Compliant, Lead Free Construction (unless solder dipped leads are supplied)

For the most up to date specifications on each NEL product, log on to our website—www.nelfc.com

Differential Positive ECL (DPECL) Fast Edge SJ-A2920 Series Rev K

Frequency Range: 50.0 MHz to 200.0 MHz

Operating Conditions and Output Characteristics

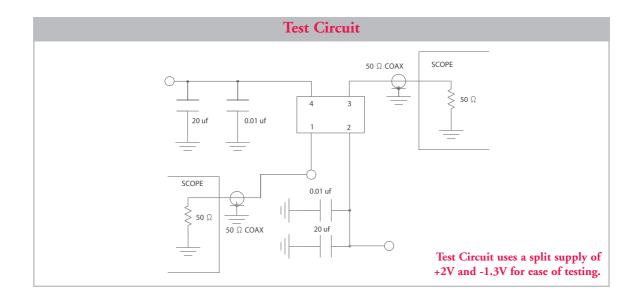
Electrical Characteristics								
Parameter	Symbol	Conditions	Min	Typical	Max			
Frequency	· —		50.0 MHz	_	200.0 MHz			
Duty Cycle		@V _{CC} −1.29 V	45/55%		55/45%			
Logic 0 ⁽²⁾	$V_{\scriptscriptstyle m OL}$	_	1.35 V		1.70 V			
Logic 0 ⁽²⁾ Logic 1 ⁽²⁾	$ m V_{OH}$		2.28 V		2.56 V			
Rise & Fall Time	t _r , t _f 20-	$-80\%~{ m V_o}$ with 50 ohm load to ${ m V_{CC}}$ -2	2 V —		600 psec			
$\operatorname{Tpd}^{(4)}$		_	-200 psec		+200 psec			
Jitter, RMS ⁽⁵⁾		_	_		3 psec			
Frequency Stability ⁽¹⁾	dF/F	Overall conditions including: voltage, calibration, temp., 10 yr aging, shock, vibration	-100 ppm	_	+100 ppm			

General Characteristics

Parameter	Symbol	Conditions	Min	Typical	Max
Supply Voltage	$ m V_{cc}$		3.15 V	3.3 V	3.45 V
Supply Current	I_{cc}	50 ohm termination to 2.00 V below V_{CC}	0.0 mA		80 mA
Output Current	I_{o}	Low level Output Current	0.0 mA	_	±50.0 mA
Operating Temperature	$T_{\scriptscriptstyle A}$	<u>_</u>	0°C	_	70°C
Storage Temperature	T_s	_	-55°C		125°C
Power Dissipation	$P_{\scriptscriptstyle \mathrm{D}}$				276 mW
Lead Temperature	$T_{\scriptscriptstyle m L}$	Soldering, 10 sec.		_	300°C
Load	50 ohm to Vcc -	2 V or Thevenin Equivalent, Bias Required			
Start-up Time	t_s	_	_	2 ms	10 ms

Environmental and Mechanical Characteristics

Mechanical Shock Per MIL-STD-202, Method 213, Condition E Thermal Shock Per MIL-STD-833, Method 1011, Condition A


Vibration 0.060" double amplitude 10 Hz to 55 Hz, 35g's 55 Hz to 2000 Hz

Soldering Condition 300°C for 10 seconds

Hermetic Seal Leak rate less than 1 x 10⁻⁸ atm.cc/sec of helium

Footnotes:

- 1) Standard frequency stability (±20, ±25, ±50 ppm & others available).
- 2) V_{OL} , V_{OH} , referenced to ground (V_{EE}) with $V_{CC} = 3.3 \text{ V}$.
- 3) Jitter performance is frequency dependent. Please contact factory for full Wavecrest characterization. RMS jitter bandwidth of 12kHz to 20MHz.
- 4) Tpd is phase shift between the falling edge of pin 3 at 2.0 V and the rising edge of pin 1 at 2.01 V.

