www.DataSheersy.com

ADVANCE DATA SHEET

SKY77521 TX-RX FEM for Quad-Band GSM / GPRS / EDGE – Triple-Band WCDMA Antenna Switch Support

Applications

- Quad-band cellular handsets
 encompassing
 - Class 4 GSM850/900
 - Class 1 DCS1800 PCS1900
 - Class 12 GPRS multi-slot operation
 - EDGE polar modulation
 - Triple band WCDMA antenna switch support

Features

- Small outline: 7 mm x 6 mm
- Very low profile: 1 mm max.
- 30-pad package
- Low input power range - 0 to 6 dBm
- High efficiency
- GSM850 40%
- GSM900 40%
- DCS 34%
- PCS 34%
- TX-VCO-to-antenna and antennato-RX-SAW filter RF interface
- TX harmonics below -35 dBm
- Wideband envelop control path
- Input/Output matching 50 Ω internal
- Low APC current: 20 μA
- High impedance control inputs 15 µA, typical

Skyworks offers lead (Pb)-free, RoHS (European Parliament for the Restriction of Hazardous Substances) -compliant packaging.

Description

SKY77521 is a transmit and receive Front End Module (FEM) designed in a very low profile (1 mm), compact form factor for quad-band cellular handsets comprising GSM850/900, DCS1800, and PCS1900 operation — a complete transmit VCO-to-Antenna and Antenna-to-receive SAW filter solution. The FEM also supports Class 12 General Packet Radio Service (GPRS) multi-slot operation and EDGE Polar Modulation. WCDMA switch-through support is provided by three dedicated high-linearity ports.

The module consists of a GSM850/900 PA and DCS1800/PCS1900 PA block, impedancematching circuitry for 50 Ω input and output impedances, TX harmonic filtering, high linearitylow insertion loss switches, and a CMOS Power Amplifier Control (PAC) block. A custom silicon integrated circuit contains decoder circuitry to control the RF switch while providing a low current external control interface.

Fabricated in InGaP/GaAs, the Heterojunction Bipolar Transistor (HBT) PA blocks support the GSM850/900 bands and DCS1800/PCS1900 bands. Both PA blocks share common power supply pads to distribute current. The output of the PA block and the outputs to the seven receive pads connect to the antenna pad through a highly linear antenna switch. The InGaP/GaAs die, switch die, Silicon (Si) controller die, and passive components are mounted on a multi-layer laminate substrate and the entire assembly is encapsulated with plastic overmold.

RF input and output ports of the SKY77521 are internally matched to a 50 Ω load to reduce the number of external components for a quad-band design. Extremely low leakage current (10 μ A, typical) of the FEM maximizes handset standby time. Band selection and control of transmit and receive RF signal flows are performed by use of four external control pads. See Figure 1 shown below. Mode of operation TX, RX, Band (GSM850, GSM900, DCS, PCS, and UMTS) is controlled with 4 logic inputs: BS1, BS2, Mode, and Enable. Proper timing of the TXEN input and the VAPC input ensures high isolation between the antenna and TX-VCO while the VCO is being tuned prior to the transmit burst. The Enable input controls the initial turn-on of the PAC circuitry to minimize battery drain.

The integrated power amplifier control (PAC) function provides envelope amplitude control by reducing sensitivity to input drive, temperature, power supply, and process variation.

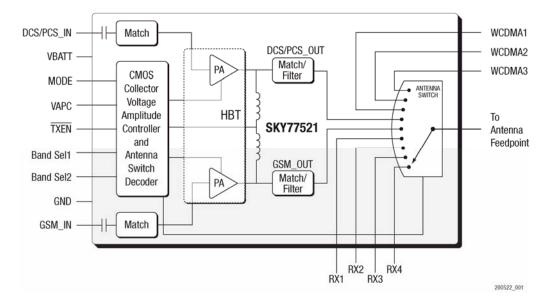


Figure 1. SKY77521 Functional Block Diagram

Electrical Specifications

The following tables list the electrical characteristics of the SKY77521 Front-End Module. Table 1 lists the absolute maximum ratings and Table 2 shows the recommended operating conditions. Table 3 through Table 14 list the electrical characteristics of the SKY77521 for modes GSM850, GSM900, DCS1800 and PCS1900, including control logic descriptions for

the various modes. Table 2 is a suggested timing diagram for the SKY77521 and Figure 6 shows an application schematic.

The SKY77521 is a static-sensitive electronic device and should not be stored or operated near strong electrostatic fields. Detailed information on device dimensions, pad descriptions, packaging and handling can be found in later sections of this data sheet.

			-		
	Parameter	Symbol	Minimum	Maximum	Units
Supply Voltage for $\leq 1 \mu s$,	(measured to ground)	VBATT	—	7	V
DC Continuous Current D	uring Burst	IBATT	—	2.5	Α
Burst Duty Cycle		dB	—	50	%
Input Power		Pin	—	14.5	
Operating TCASE Storage TSTG	Operating	TCASE	-30	+100	°C
	Тѕтс	-55	+125	U	
	Human Body Model –All Ports	JESD22-A114-C	—	TBD	
Electrostatic Discharge	Machine Model –All Ports	JESD22-A115-A	—	TBD	V
(ESD)	Charged Device Model –All Ports	JESD22-C101-A	—	TBD	
()	Human Body Model –ANT and VBATT Ports	JESD22-A114-C	—	8 (Direct Contact) 15 (Air Discharge)	kV
Reflow Solder Temperatu	re	TSOLDER	—	J-STD-020C	°C
Moisture Sensitivity Level		MSL	—	3/260	°C
Voltage Standing Wave Ra	atio	VSWR	—	100:1	

Table 1. Absolute Maximum Ratings¹

¹ Beyond which the device may be damaged. Assumes only one parameter is set at limit at a time with all other parameters set at nominal value. Applied voltage must be current-limited to specified range. The limits shall be valid for all bands: 850-, EGSM-, DCS- and PCS-bands.

ADVANCE DATA SHEET

www.DataSheet4U.com

Table 2.	Recommended	Operating	Conditions
----------	-------------	------------------	------------

Param	eter	Symbol	Minimum	Typical	Maximum	Unit
Supply Voltage		VBATT	3.0	3.6	4.6 ¹	V
Supply Current		Ibatt	0	_	2.0 ¹	А
Operating Case Temperature (bottom surface of package)	1-Slot (12.5% duty cycle		-20	—	+100	
	2-Slot (25% duty cycle)	TCASE	-20	—	+100	°C
	3-Slot (37.5% duty cycle)		-20	—	+85	U
	4-Slot (50% duty cycle)		-20	—	+85	1

 1 In open loop operation, for charging conditions with VCC >4.6 V, derate ICC linearly down to 0.5 A max. at VCC = 5.5 V.

Table 3. SKY77521 Interface Impedances

Parameter	Symbol	Minimum	Typical	Maximum	Units
Impedance System for All RF Ports	Zrf	_	50	—	Ω
Impedance on TXEN Port	ZTXEN	—	200	—	kΩ
Impedance on BS1 Port	ZBS1	—	200	—	kΩ
Impedance on BS2 Port	ZBS2	—	200	—	kΩ
Impedance on MODE Port	Zmode	—	200	—	kΩ
Impedance on VAPC Port	ZVAPC		200	_	kΩ

Table 4. SKY77521 Modes and Functions

Mode	Parameter	Maximum Current
Standby (IDLE)	OFF state for radio where Radio current consumption is minimized. BS1, BS2 and TXEN are low and circuits are disabled.	10 µA
Pre-Transmit	VAPC < 0.2 V. TXEN is high for 10 μ s before transmit ramp while transitioning control bits into desired TX mode.	100 µA
Transmit	VAPC begins its ramp-up and controls the output power of the PA. Once the ramp is completed, VAPC ramps down to 0.	IPA
Receive	Receive mode. TXEN must be asserted high simultaneously or before BS1 or BS2 when transitioning from Standby mode to any RX state to avoid TX glitch.	150 µA

Table 5. SKY77521 Mode Control Logic

Mode	Input Control Bits					
WOUG	TXEN	MODE	BS1	BS2		
Standby	0	0	0	0		
TX_LOW BAND	0	0	0	1		
TX_HIGH BAND	0	0	1	1		
TBD	0	1	0	1		
TBD	0	1	1	1		
RX1	1	Х	0	0		
RX2	1	X	0	1		
RX3	1	Х	1	1		
RX4	1	Х	1	0		
WCDMA1	0	0	1	0		
WCDMA2	0	1	0	0		
WCDMA3	0	1	1	0		

ADVANCE DATA SHEET

SKY77521 TX-RX FEM FOR QUAD-BAND GSM / GPRS / EDGE – TRIPLE BAND WCDMA ANTENNA SWITCH SUPPORT

				===;===;		
Parameter		Symbol	Minimum	Typical	Maximum	Units
Input Logic Level	Low	VIL	-0.3	—	0.55	V
	High	Viн	1.2	—	VBATT	v

Table 6. SKY77521 Logic Control Levels (TXEN, BS1, BS2)¹

¹ Temperature range = -20 to +85 °C, unless otherwise specified.



Figure 2. SKY77521 Suggested Timing Diagram

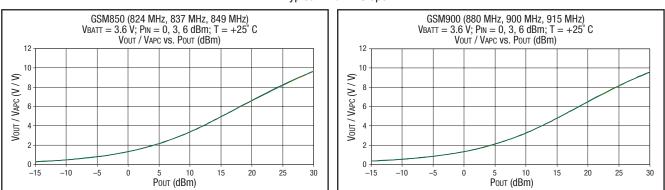
Table 7.	SKY77521	Transmit	Operating	Mode ¹
----------	----------	-----------------	-----------	-------------------

	-				
Parameter	Symbol	Minimum	Typical	Maximum	Units
Burst Duty Cycle	В	12.5 (1 slot)	_	50 (4 slots)	%
Supply Voltage Range	VBATT	3.0	3.6	4.6	V
Continuous Output Current Range During Burst	Ibatt	0	_	See Electrical Characteristics	A
Amplitude Control Voltage	VAPC	_	_	1.5	V

¹ Temperature range = -20 °C to +85 °C unless otherwise specified.

www.DataSheet4U.com

Table 8. SKY77521 Electrical Characteristics GSM850/900¹


			GMSK Mode					
Parameter		Symbol	Conditions	Minimum	Typical	Maximum	Unit	
Frequency Range	GSM850	f	_	824	_	849	MHz	
requency hange	GSM900	Ĩ		880		915	IVITIZ	
Input Power		Pin	_	0	_	6	dBm	
Supply Voltage		VBATT	—	3.0	3.6	4.6	۷	
Supply Current		Icc				2.0	А	
Leakage Current			VBATT = 3.6 V TCASE = +25 °C No input power VAPC = 0 V	_	_	10 standby 100 pre-TX	μA	
Power Added Efficiency		PAE	VBATT = 3.6 V $PIN = 6 dBm$ $POUT = 33.5 dBm$ $TCASE = +25 °C$	_	38	_	%	
		2fo to 15fo	$\begin{array}{l} BW=3\ MHz\\ 5\ dBm\leqPout\leq33.5\ dBm \end{array}$	_	-35	-34		
larmonics		2fo to 7fo	$\begin{array}{l} BW = 3 \mbox{ MHz} \\ 5 \mbox{ dBm} \leq \mbox{Pout} \leq 33.5 \mbox{ dBm} \\ V_{BATT} = 3.6 \mbox{ V} \\ T_{CASE} = +25 ^{\circ}\mbox{C} \\ Load \mbox{ VSWR of } 5:1 \mbox{ for all phases.} \end{array}$	_	-31	-30	dBm	
		Роит	$P_{IN} = 0 \text{ dBm}$ $V_{BATT} = 3.6 \text{ V}$ $T_{CASE} = +25 \text{ °C}$	33.5	34.0	_		
Output power		POUT_DEG 1	Pin = 0 dBm Vbatt = 3.3 V	31.5		_	dBm	
		POUT_DEG 2		30.5	_	—		
Input VSWR		ΓIN	Pout ≤ 33.5 dBm		_	2:1		
Isolation			$\frac{P_{IN} = -15 \text{ dBm}}{TXEN} = \text{high}$		-45	-40	dBm	
Stability		Stab	All combinations of the following parameters: $P_{IN} = min.$ to max. $V_{BATT} = 3.0$ to 4.6 V Load VSWR = 15:1, all phase angles	No parasitic oscillation > –36 dBm			dBm	
Load Mismatch		Load	All combinations of the following parameters: P_{IN} = min. to max. V_{BATT} = 3.0 to 4.6 V and V_{BATT} = 7.0 V \leq 1 μs Load VSWR = 100:1, all phase angles.	rameters: $V \leq 1 \ \mu s$ No module damage or permanent degradation		egradation		
	GSM 850	PNOISE_850	fo + 20 MHz (869–894 MHz)			-84.5		
Noise Power (TCASE = +25 °C)			fo + 20 MHz (935–960 MHz)	_	_	-84.5	dBm	
(VBATT = 3.6 V)	GSM 900	PNOISE_900	fo + 10 MHz (925–935 MHz)			-74.0	- arm	
			1805 – 1880 MHz	_	_	-78.0		
Phase Change			Pout = 5 to 33.5 dBm V _{APC} = sawtooth signal f = 2166 Hz	_	—	2	°/dB	
Phase Moulation Accura	су	εphase, RMS	RMS phase error			2	degrees	

¹ Unless otherwise noted: 50 Ω system, pulsed operation with pulse width 2308 μ s duty cycle 4:8, TCASE = -20 °C to +85 °C, VBATT = 3.0 V to 4.6 V. Terminate all unused RF ports with 50 Ω during test.

Table 9. SKY77521 Electrical Characteristics GSM 850/900	Table 9.	SKY77521 Electrical	Characteristics	GSM 850/900 ¹
--	----------	---------------------	------------------------	--------------------------

			EDGE Mode					
Parame	eter	Symbol	Conditions	Minimum	Typical	Maximum	Unit	
Frequency Range	EDGE 850	f		824		849	MHz	
Frequency Range	EDGE 900		—	880		915		
Input Power		Pin	_	0		6	dBm	
Supply Voltage		VBATT	—	3.0	3.6	4.6	V	
Supply Current		Icc	—	—		2.0	А	
Leakage Current			VBATT = 3.6 V TCASE = +25 °C No input power VAPC = 0 V	_	_	10 standby 100 pre-TX	μА	
Power Added Efficien	ncy	PAE	$V_{BATT} = 3.6 V$ $P_{IN} = 6 dBm$ $P_{OUT} = 28 dBm$ $T_{CASE} = +25 °C$		18	_	%	
Supply Current		Icc	VBATT = 3.6 V PIN = 6 dBm POUT = 28 dBm TCASE = $+25 \text{ °C}$ Load = 50Ω	_	TBD	_	mA	
Harmonics		2fo to 15fo	$\begin{array}{l} BW = 3MHz \\ 5 \ dBm \leq Pout \leq 28 \ dBm \end{array}$	_	-35	-34		
		2fo to 7fo	$\begin{array}{l} BW = 3 \mbox{ MHz} \\ 5 \mbox{ dBm} \leq \mbox{Pout} \leq 28 \mbox{ dBm} \\ V_{BATT} = 3.6 \mbox{ V} \\ T_{CASE} = +25 \mbox{ °C} \\ Load: VSWR \mbox{ of 5:1 for all phases.} \end{array}$	_	-31	-30	dBm	
		Роит	VBATT = 3.6 V TCASE = +25 °C	31.7		_		
Output Power		POUT_DEG 1	Pin = 0 dBm Vbatt = 3.3 V	29.5	_	_	dBm	
		POUT_DEG 2	Pin = 0 dBm Vbatt = 3.0 V	28.5		_		
Input VSWR		ΓΙΝ	Pout ≤ 28 dBm	_		2:1		
Isolation			$\frac{P_{IN} = -15 \text{ dBm}}{TXEN} = \text{high}$		-45	-40	dBm	
Stability		Stab	All combinations of the following parameters: $P_{IN} = min.$ to max. $V_{BATT} = 3.0$ to 4.6 V Load VSWR = 15:1, all phase angles	No parasitic oscillation > –36 dBm		JBm		
Load Mismatch		Load	All combinations of the following parameters: $P_{IN} = min.$ to max. $V_{BATT} = 3.0$ to 4.6 V and $V_{BATT} = 7.0$ V ≤ 1 µs Load VSWR = 100:1, all phase angles.	No modul	e damage or	permanent de	gradation	
	GSM 850	PNOISE_850	f0 + 20 MHz (869–894 MHz)	—	_	-84.5		
Noise Power (TCASE = $+25 \degree$ C)			fo + 20 MHz (935–960 MHz)	—		-84.5	dBm	
(VBATT = 3.6 V)	GSM 900	PNOISE_900	fo + 10 MHz (925–935 MHz)			-74.0		
			1805–1880 MHz	—	_	-78		

¹ Unless otherwise noted: 50 Ω system, pulsed operation with pulse width 2308 µs duty cycle 4:8, TCASE = -20 °C to +85 °C, VBATT = 3.0 V to 4.6 V. Terminate all unused RF ports with 50 Ω during test.

Typical AM/AM Slope

Typical AM/PM Response

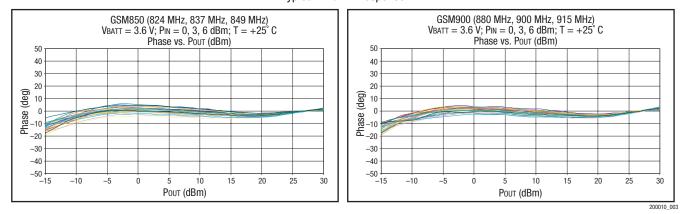
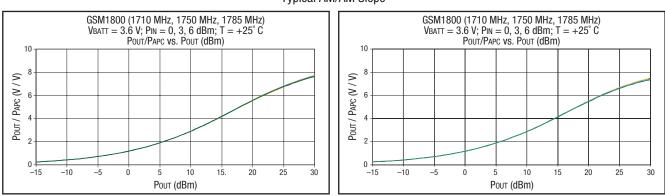


Figure 3. Typical Slope and Response Charts for Low Band - SKY77521 TX-RX Front-End Module

ADVANCE DATA SHEET

			GMSK Mode					
Paramet	er	Symbol	Conditions	Minimum	Typical	Maximum	Unit	
Frequency Range	SM1800 (DCS)	f	_	1710	_	1785	MHz	
G	SM1900 (PCS)			1850	_	1910	IVII IZ	
Input Power		Pin	_	0	_	6	dBm	
Supply Voltage		VBATT	—	3.0	3.6	4.6	V	
Supply Current		lcc	—	—		1.4	А	
Leakage Current			$V_{BATT} = 3.6 V$ $T_{CASE} = +25 °C$ No input power $V_{APC} = 0 V$	_	_	10 standby 100 pre-TX	μA	
Power Added Efficienc	су	PAE	VBATT = 3.6 V PIN = 6 dBm POUT = 30.5 dBm TCASE = $+25 \text{ °C}$	_	33	_	%	
		2fo to 7fo	$\begin{array}{l} BW=3\ MHz\\ 0\ dBm\leqPout\leq30.5\ dBm\\ Poutdeg\ 50\ ohm \end{array}$	_	-35	-34		
Harmonics		2fo to 3fo	$\begin{array}{l} BW = 3 \mbox{ MHz} \\ 0 \mbox{ dBm} \leq \mbox{Pout} \leq 30.5 \mbox{ dBm} \\ V_{BATT} = 3.6 \mbox{ V} \\ T_{CASE} = +25 \ ^{\circ}\mbox{C} \\ Load \mbox{ VSWR} = 5:1 \mbox{ for all phases.} \end{array}$	_	-31	-30	dBm	
		Роит	VBATT = 3.6 V TCASE =+25 °C	30.5	31.0	_		
Output Power		Pout_deg 1	Pin = 0 dBm Vbatt = 3.3 V	28.5		_	dBm	
		Pout_deg 2	Pin = 0 dBm Vbatt = 3.0 V	27.5		_		
Input VSWR		ΓΙΝ	Pout ≤ 30 dBm	—	_	2:1		
Isolation			$P_{IN} = -20 \text{ dBm } \overline{TXEN} = \text{high}$	—	-55	-52	dBm	
Stability		Stab	All combinations of the following parameters: $P_{IN} = min.$ to max. $V_{BATT} = 3.0$ to 4.6 V Load VSWR = 15:1, all phase angles	No parasitic oscillation >–36 dBm			dBm	
Load Mismatch		Load	All combinations of the following parameters: $P_{IN} = min.$ to max. $V_{BATT} = 3.0$ to 4.6 V and $V_{BATT} = 7.0$ V ≤ 1 µs Load VSWR = 100:1, all phase angles.	No module damage or permanent degrada		egradation		
			fo + 20 MHz	—	_	-78.0		
Noise Power	GSM 1800	PNOISE_DCS	935–960 MHz			-84.5	dBm	
(TCASE = +25 °C)	GSM 1900		925–935 MHz	—		-74.0		
(Vbatt = 3.6 V)		GSM 1000	Pnoise pcs	fo + 20 MHz			-78.0	
			869–894 MHz			-84.5		
Phase Modulation Acc	curacy	εphase, RMS	RMS phase error		_	2	degrees	
Phase Change			Pout = 0 to 30.0 dBm VAPC = sawtooth signal f = 2166 Hz.	_	_	2	°/dB	

Table 10. SKY77521 Electrical Characteristics GSM 1800/1900¹


¹ Unless otherwise noted: 50 Ω system, pulsed operation with pulse width 2308 µs, duty cycle 4:8, TCASE = -20 °C to +85 °C, VBATT = 3.0 V to 4.6 V. Terminate all unused RF ports with 50 Ω during test.

www.DataSheet4U.com

			EDGE Mode							
Parameter		Symbol	Conditions	Minimum	Typical	Maximum	Unit			
Frequency Range	GSM1800 (DCS)	f	_	1710		1785	MHz			
Trequency hange	GSM1900 (PCS)	1		1850		1910	IVITIZ			
Input Power		Pin	_	0		6	dBm			
Supply Voltage		VBATT	_	3.0	3.6	4.6	V			
Supply Current		Icc	_	—	_	1.4	А			
Leakage Current			VBATT = 3.6 V TCASE = +25 °C No input power VAPC = 0 V	_	_	10 standby 100 pre-TX	μA			
Power Added Efficie	ency	PAE	VBATT = 3.6 V PIN = 6 dBm POUT = 27 dBm TCASE = $+25 \text{ °C}$	_	18		%			
Supply Current		Icc	VBATT = 3.6 V $P_{IN} = 6 \text{ dBm}$ $P_{OUT} = 27 \text{ dBm}$ $T_{CASE} = +25 \text{ °C}$ Load = 50 Ω	_	TBD		mA			
		2fo to 7fo	$\begin{array}{l} BW=3\ MHz\\ 0\ dBm\leqPout\leq27\ dBm \end{array}$	_	-35	-34				
Harmonics		2fo to 3fo	BW = 3 MHz 0 dBm \leq Pout \leq 27 dBm VBATT = 3.6 V TCASE = +25 °C Load VSWR = 5:1, all phases.	_	-31	-30	dBm			
		Роит	Vbatt = 3.6 V Tcase = +25 °C	30.7	_	_				
Output Power		POUT_DEG 1	Pin = 0 dBm Vbatt = 3.3 V	28.5		_	dBm			
		Pout_deg 2	Pin = 0 dBm Vbatt = 3.0 V	27.5		_				
Input VSWR		Γin	$Pout \le 26.3 \text{ dBm}$	—		2:1				
Isolation			$P_{IN} = -20 \text{ dBm } TXEN = \text{high}$	—	-55	-52	dBm			
Stability		Stab	All combinations of the following parameters: $P_{IN} = min.$ to max. VBATT = 3.0 to 4.6 V Load VSWR = 15:1, all phase angles	No parasitic oscillation >–36 dBm			dBm			
Load Mismatch		Load	All combinations of the following parameters: $P_{IN} = min.$ to max. $V_{BATT} = 3.0$ to 4.6 V and $V_{BATT} = 7.0$ V ≤ 1 µs. Load VSWR = 100:1, all phase angles.	No module	e damage or	permanent de	egradation			
			fo + 20 MHz		_	-78.0				
Noise Power	GSM 1800	PNOISE_DCS	935–960 MHz	—		-84.5	dBm			
(TCASE = +25 °C)		925–935 MHz	925–935 MHz	—		-74.0				
(Vbatt = 3.6 V)	GSM 1900	PNOISE_PCS	fo + 20 MHz	—	_	-78.0				
	69M 1900	0300 1900	G9M 1900	USINI 1900		869–894 MHz	-	—	-84.5	

Table 11. SKY77521 Electrical Characteristics GSM 1800/1900¹

¹ Unless otherwise noted: 50 Ω system, pulsed operation with pulse width 2308 µs, duty cycle 4:8, TCASE = -20 °C to +85 °C, VBATT = 3.0 V to 4.6 V. Terminate all unused RF ports with 50 Ω during test.

Typical AM/AM Slope

Typical AM/PM Response

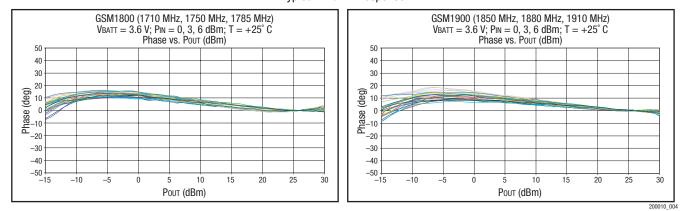


Figure 4. Typical Slope and Response Charts for High Band – SKY77521 TX-RX Front-End Module

RX Mode							
Parameter		Symbol	Conditions	Minimum	Maximum	Unit	
Frequency Range	EGSM RX	f_egsm rx	—	925	960	MHz	
Trequency hange	850 RX	f_850 RX	—	869	894	1911 12	
Insertion Loss	ANT – EGSM RX		f_egsm rx Tcase = +25 °C	_	1.3	dB	
	ANT – 850 RX		f_850 rx Tcase = +25 °C	—	1.3	ub	
	EGSM/850 TX-850 RX			—	10		
Leakage from TX-to-RX ports	EGSM/850 TX-EGSM RX		f egsm tx	-	12	dBm	
	EGSM/850 TX-DCS RX			—	12	UDIII	
	EGSM/850 TX-PCS RX			_	12		

Table 12. SKY77521 Electrical Characteristics GSM 850/900 – Ports RX1, RX2¹

¹ Unless otherwise noted: 50 Ω system, pulsed operation with pulse width 2308 µs, duty cycle 4:8, TCASE = -20 °C to +85 °C. Terminate all unused RF ports with 50 Ω during test.

	RX Mode						
Pa	rameter	Symbol	Conditions	Minimum	Maximum	Unit	
Frequency range	DCS RX	f_dcs rx	—	1805	1880	MHz	
Trequency range	PCS RX	f_PCS RX	—	1930	1990	IVITIZ	
Insertion Loss	ANT-DCS RX		f_dcs rx Tcase = +25 °C	_	1.8 ²	dB	
	ANT-PCS RX		f_pcs rx Tcase = +25 °C	_	1.8 ²	ŭD	
	DCS/PCS-TX-850 RX		f DCS TX	—	12		
Leakage from TX- to RX-ports	DCS/PCS-TX-EGSM RX			—	12	dBm	
	DCS/PCS-TX-DCS RX		f PCS TX	—	10	uDIII	
	DCS/PCS-TX-PCS RX			—	12		

Table 13. SKY77521 Electrical Characteristics GSM 1800/1900 – Ports RX3, RX4¹

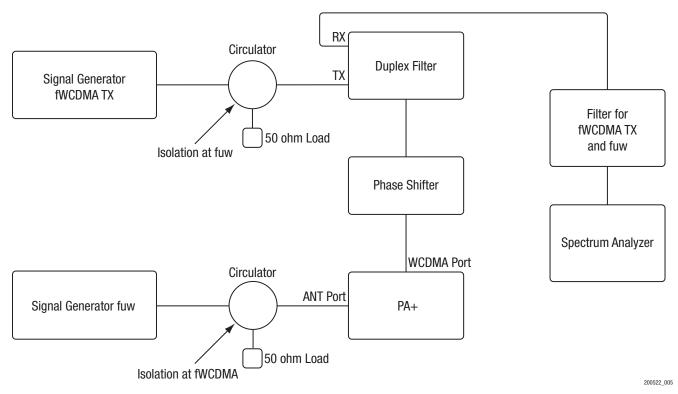
¹ Unless otherwise noted: 50 Ω system, pulsed operation with pulse width 2308 μs, duty cycle 4:8, TCASE = -20 °C to +85 °C. Terminate all unused RF ports with 50 Ω during test.

² With external shunt capacitor, insertion loss is about 1.4 dBm.

Table 14. SKY77521 Electrical Characteristics¹

	WCDMA TX-RX Mode							
Parameter		Symbol Conditions		Minimum	Typical	Maximum	Unit	
Frequency Range	WCDMA_TX/RX	f_wcdma_tx/rx	_	824	_	2170	MHz	
			824–960 MHz	_	_	1.1		
nsertion Loss	ANT – WCDMA_TX/RX	WCDMA_TX/RX	1710–1990 MHz	_	-	1.4	dB	
			2110–2170 MHz	_	-	1.5		
	WCDMA TX-850 RX			20	_	_		
	WCDMA TX-EGSM RX			20	-	_		
Isolation	WCDMA TX-DCS RX		f_wcdma_tx	20	_	_	dB	
	WCDMA TX-PCS RX			20	-	_		
	WCDMA TX–WCDMA TX			20	_	_		
Harmonics		2fo to 6fo	f_wcdma_tx Pout \leq 29 dBm BW = 1 MHz 50 ohm	_	-46	-44	dBm	
Harmonics at Mismatch		2fo to 3fo	$ f_wcdma_tx \\ Pout \le 29 \ dBm \\ BW = 1 \ MHz \\ VBATT = 3.6 \ V \\ TCASE = +25 \ ^{\circ}C \\ Load: VSWR \ of 5:1 \ for \ all \ phases. $	_	-40	-36	dBm	
Input 3 rd order interc	cept at WCDMA inband	IM3_point	CW1 and CW2 within WCDMA frequency range with 10 MHz separation and power \leq 0 dBm	63.25	_	_	dBm	
			CW Carrier on WCDMA port: $P_{0UT} = 20 \text{ dBm}$ IM products to be measure at the WCDMA port: $P_{0UT} = 2.94 \text{ MHz}$		_	-101.5		
IM Products		IM_wcdma	BW = 3.84 MHz *See test bench setup in Figure 5 2nd Order Spread WCDMA TX Signal: Pout = 20 dBm				dBm	
			IM products to be measure at the WCDMA port: BW = 3.84 MHz *See test bench setup in Figure 5	_		-98.5		

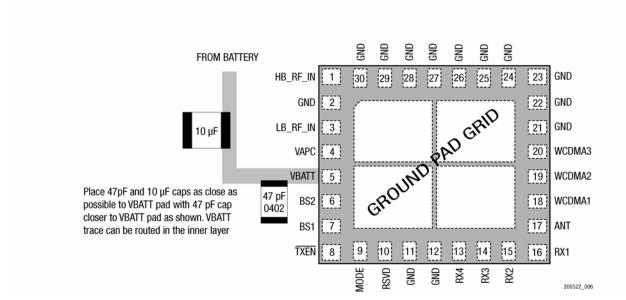
¹ Unless otherwise noted:

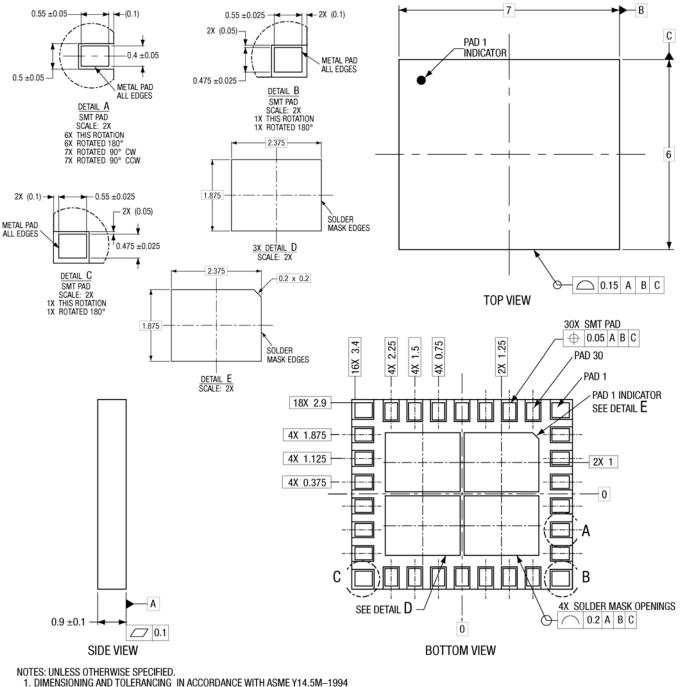

50 Ω system, pulsed operation with pulse width 2308 µs, duty cycle 4:8, TCASE = -20 °C to +85 °C,

VBATT = 3.0 V to 4.6 V.

Terminate all unused RF ports with 50 Ω during test.

www.DataSheet4U.com



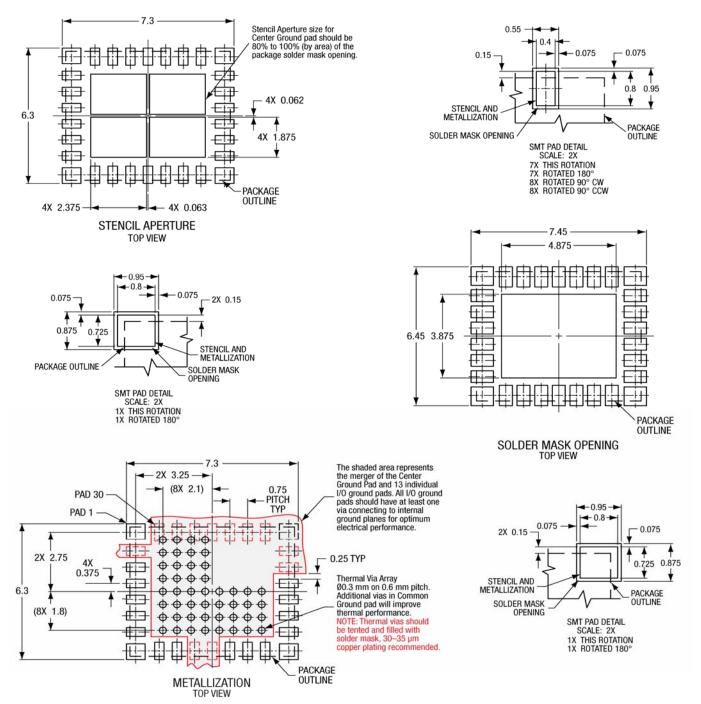

Figure 6. Application Schematic for the SKY77521

Package Dimensions and Descriptions

Figure 7 is a mechanical drawing of the pad layout for the SKY77521, a 30-pad leadless quad-band FEM with three WCDMA pass-through ports. Figure 8 provides a recommended phone board layout footprint for the FEM to help the designer attain optimum thermal conductivity, good grounding, and minimum RF discontinuity for the 50-ohm terminals. Figure 9 shows the device

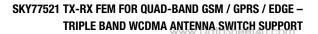
pad configuration and the pad numbering convention, which starts with pad 1 in the upper left and increments counterclockwise around the package.

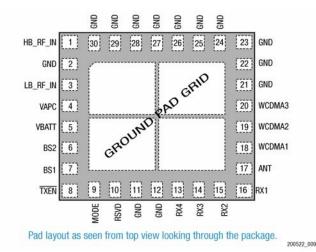
Table 15 lists the pad names and signal descriptions. Typical case markings are illustrated in Figure 10.



2. DIMENSIONS ARE IN MILLIMETERS.

3. PAD DEFINITIONS PER DETAILS ON DRAWING.


Figure 7. Dimensional Diagram for 7 x 6 mm, 30-Pad Leadless Package – SKY77521 (All Views)


www.DataSheet4U.com

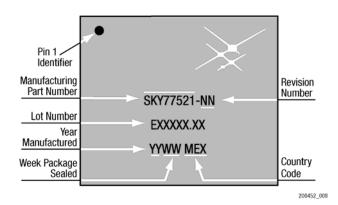

200522_008

Figure 8. Phone PCB Layout for 7 x 6 mm, 30-Pad Package - SKY77521 Specific

Pad ¹	Name	Description	Pad ¹	Name	Description
1	HB_RF_IN	Input TX Signal 1800-1900 MHz	13	RX4	RX Signals 1805–1990 MHz (869-960 MHz optional)
3	LB_RF_IN	Input TX Signal 850-900 MHz	14	RX3	
4	VAPC	Input Modulating Signal	15	RX2	RX Signals 869-960 MHz (1805–1990 MHz optional)
5	VBATT	Battery Supply Voltage	16	RX1	
6	BS2	Band Select 2	17	ANT	TX-RX Signals 824-2170 MHz
7	BS1	Band Select 1	18	WCDMA1	
8	TXEN	$\overline{\text{TXEN}}$ (0 = TX, 1 = RX)	19	WCDMA2	WCDMA Signals 824-2170 MHz
9	MODE	Truepower Mode Enable	20	WCDMA3	
10	RSVD	No Connect	GND	Ground Pad Grid	Ground Pad Grid (device underside)

Table 15. SKY77521 Signal Descriptions

¹ Pads 2, 11, 12, 21-30 are ground pads

Package and Handling Information

Because of its sensitivity to moisture absorption, this device package is baked and vacuum-packed prior to shipment. Instructions on the shipping container label must be followed regarding exposure to moisture after the container seal is broken, otherwise, problems relate to moisture absorption may occur when the part is subjected to high temperature during solder assembly.

The SKY77521 is capable of withstanding an MSL3/260 °C solder reflow. Care must be taken when attaching this product, whether it is done manually or in a production solder reflow environment. If the part is attached in a reflow oven, the temperature ramp rate should not exceed 3 °C per second; maximum temperature should not exceed 260 °C. If the part is manually attached,

precaution should be taken to insure that the part is not subjected to temperatures exceeding 260 °C for more than 10 seconds. For details on attachment techniques, precautions, and handling procedures recommended by Skyworks, please refer to Skyworks Application Note: *PCB Design and SMT Assembly/Rework,* Document Number 101752. Additional information on standard SMT reflow profiles can also be found in the *JEDEC Standard J-STD-020*.

Production quantities of this product are shipped in the standard tape-and-reel format. For packaging details, refer to Skyworks Application Note: *Tape and Reel Information – RF Modules,* Document Number 101568.

www.DataSheet4U.com

Technical Information

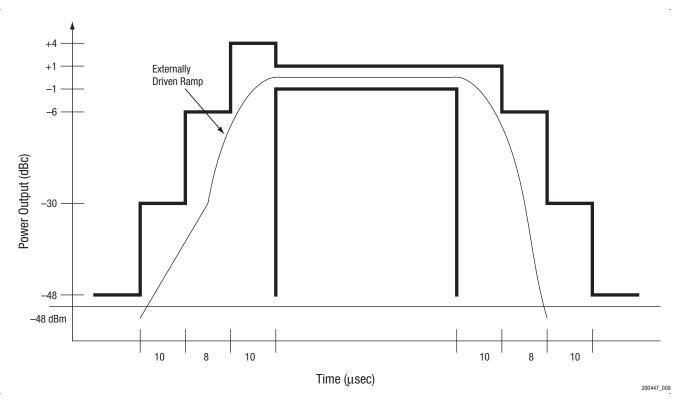


Figure 11. Example of RF Output vs. Time Mask Specification

Ordering Information

Model Number	Manufacturing Part Number	Product Revision	Package	Operating Temperature
SKY77521	SKY77521		7x6 MCM	-20 °C to +100 °C

Revision History

Revision	Level	Date	Description
P1		July 26, 2006	Initial Issue – Advance Information
A			Revise: Change data sheet Revision suffix from P1 to A (Advance data sheet status continues); Features list (page 1); Tables 1, 5, 8–15; Figures 1, 2, 6–10; Package and Handling Information section (p16)
В		August 23, 2007	Revise: Tables 2, 4, 7–15; Figures 2, 6–10

References

Application Note: PCB Design and SMT Assembly/Rework, Document Number 101752

Application Note: Tape and Reel Information – RF Modules, Document Number 101568

Standard SMT Reflow Profiles: JEDEC Standard J-STD-020

ELECTROSTATIC DISCHARGE (ESD) SENSITIVITY TESTING HUMAN BODY MODEL (HBM) - JESD22-A114-C

ELECTROSTATIC DISCHARGE (ESD) SENSITIVITY TESTING HUMAN BODY MODEL (MM) – JESD22-A115–A

FIELD-INDUCED CHARGED-DEVICE MODEL TEST METHOD FOR ELECTROSTATIC DISCHARGE – JESD22-C101–A

© 2006–2007, Skyworks Solutions, Inc. All Rights Reserved.

Information in this document is provided in connection with Skyworks Solutions, Inc. ("Skyworks") products. These materials are provided by Skyworks as a service to its customers and may be used for informational purposes only by the customer. Skyworks assumes no responsibility for errors or omissions in these materials. Skyworks may make changes to its documentation, products, specifications and product descriptions at any time, without notice. Skyworks makes no commitment to update the information and shall have no responsibility whatsoever for conflicts, incompatibilities, or other difficulties arising from future changes to its documentation, products, specifications and product descriptions.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by or under this document. Except as may be provided in Skyworks Terms and Conditions of Sale for such products, Skyworks assumes no liability whatsoever in association with its documentation, products, specifications and product descriptions.

THESE MATERIALS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED OR OTHERWISE, RELATING TO SALE AND/OR USE OF SKYWORKS PRODUCTS INCLUDING WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, PERFORMANCE, QUALITY OR NON-INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. SKYWORKS FURTHER DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. SKYWORKS SHALL NOT BE LIABLE FOR ANY DAMAGES, INCLUDING SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS THAT MAY RESULT FROM THE USE OF THESE MATERIALS WHETHER OR NOT THE RECIPIENT OF MATERIALS HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Skyworks products are not intended for use in medical, lifesaving or life-sustaining applications. Skyworks customers using or selling Skyworks products for use in such applications do so at their own risk and agree to fully indemnify Skyworks for any damages resulting from such improper use or sale.

The following are trademarks of Skyworks Solutions, Inc.: Skyworks[®], the Skyworks logo, and Breakthrough Simplicity[®]. Product names or services listed in this publication are for identification purposes only, and may be trademarks of Skyworks or other third parties. Third-party brands and names are the property of their respective owners. Additional information, posted at www.skyworksinc.com, is incorporated by reference.