

GENERAL **PURPOSE** RESISTORS

General Purpose Wire Wound / Fusible Resistors

Token Electronics Industry Co., Ltd.

Taiwan: No. 137, Sec. 1, Chung Shin Rd., Wu Ku Hsiang, Taipei Hsien, Taiwan, R.O.C

TEL: 886-2-2981 0109; FAX: 886-2-2988 7487

China: 12F, Zhongxing Industry Bld., Chuangye Rd., Nanshan District, Shenzhen, Guangdong

TEL: 86-755-2605 5363, 2605 5364; FAX: 86-755-2605 5365

rfq@token.com.tw www.DataSheet4U.com

Product Index

	Information	
	General Information	01
	Terminology & Glossary	03
0	Selecting The Optimum Resistor	05
	Wire Wound Resistors	
	BWW Series - High Precision Wirewound Resistor	07
	KNP-R Series - Power Precision Wirewound Resistor	10
	KNP-VE Series - Vitreous Enamel Coated Wirewound Resistor	13
	KNP Series - General Purpose Wirewound Resistor	16
	KNPN Series - Non-Inductive Wirewound Resistor	19
	Fusible Resistors	
	FRN Series - Precision Fusible Resistor	22
	FKN Series - Wirewound Fusible Resistor	22
	FSQ Series - Thermal Dissipation Fusible Resistor	22
	FKU, FRU Series - Cement Resistor with Thermal Cut-offs	26
	General Purpose Resistors	
	PGM Series - Light Dependent / CdS Photoresistor	29
	RCR Series - Pulse Load Anti-Surge Resistor	36
	CCR Series - Carbon Composition Resistor	39
	MF Series - Precision Resistor	42
	RSS, RSN Series - Power Film Resistor	45
	CF Series - General Purpose Carbon Film Resistor	48
	ZO, JW Series - Zero Ohm and Jumper Wire	51
	SQ Series - Thermal Dissipation Ceramic Housed Cement Resistor	54

Notice: Specification Changed or Version Updated will be posted at irregular intervals. All Updated and Final Specifications, Please Confirm with TOKEN ELECTRONICS REPRESENITIVES.

rfq@token.com.tw

http://www.token.com.tw

Information of General Purpose Resistors

General Purpose Resistors With Customized Service

Token Electronics is expanding business to include a broad range of General Purpose Resistor products designed for high volume applications. This expanded range of commercial resistor presents a more comprehensive product offering for Customer Experience Management (CEM) and other high volume customers that require quality products at competitive pricing.

Backed by the same customer service, technical support and quality assurance that Token has always provided, these new commercial products enable you the opportunity to source a wider range of resistors from a trusted supplier.

General Use

When an ambient temperature exceeds a rated ambient temperature, resistor shall be applied on the derating curve by derating the load power. General purpose resistor under overloads is not combustion resistant and is likely to emit, flame, gas, smoke, red heat, etc. Flame retardant resistor generally emit smoke and red heat in a certain power and over but do not emit fire or flame.

When resistors are shielded or coated with resin etc., stress from the storage heat and the resin are applied. So, performance and reliability should be checked well before use.

When a voltage higher than rated is applied in a short time (single pulse, repeated pulses, surge, etc.), it does not necessarily ensure safety that an effective wattage is not higher than a rated wattage. Then consult with us with your specified pulse wave shape. Resistors shall be used in a condition causing no dew condensation.

Resistors General Information

Keep temperature from rising by choosing resistor with a higher rated capacity; do not use a component having the exact load value required. For considerations of safety in extended period applications, the rating should be more than four times higher than the actual wattage involved, but never use resistors at less than 25% of its rated power.

In applications where resistors are subject to intermittent current surges and spikes, be sure in advance that the components selected are capable of withstanding brief durations of increased load.

Do not exceed the recommended rated load. Resistor must used within the rated voltage range to prevent the shortening of service life and/or failure of the wound resistance elements.

Minimum load: Resistor must be utilized at 1/10 or more of the rated voltage to prevent poor conductance due to oxidation build-up. For basic particulars for cautions, refer to EIAJ Technical Report RCR-2121 "Guidance for care note on fixed-resistors".

Glossary Terminology of General Purpose Resistors

Fusible Resistor (Fuse Resistor, Circuit Protect Resistor)

A resistor designed to protect a circuit against overload; its resistance limits current flow and thereby protects against surges when power is first applied to a circuit; its fuse characteristic opens the circuit when current drain exceeds design limits.

Thermal Cutoff Resistor

The maximum nominal resistance value at which the rated power can be applied continuously without exceeding the maximum working voltage is the critical resistance value. The rated voltage is equal to the maximum working voltage in the critical resistance value. If the circuit designs permits, the choice of a high ohmic value resistor or divider network will eliminate this consideration.

A thermal fuse is a cutoff which uses a one-time fusible link. Unlike the thermostat which automatically resets itself when the temperature drops, the thermal fuse is more like an electrical fuse: a single-use device that cannot be reset and must be replaced when it fails or is triggered. A thermal fuse is most useful when the overheating is a result of a rare occurrence, such as failure requiring repair (which would also replace the fuse) or replacement at the end of service life.

Token offers "Thermal Cut-off Resistor", a thermal Cut-offs is a fusible alloy and a resistor is a voltage divider, both are surrounded by a ceramic cement with special resin. Under normal operating temperatures the fusible alloy joins the two lead wires within the body of the cutoff and the power resistor acts as a normal function resistor. When the preset temperature of the cutoff is reached, the fusible alloy melts and with the aid of the special resin, complete cutoff is ensured.

Thermal fuse resistors are usually found in heat-producing electrical appliances such as coffeemakers and hair dryers. They function as safety devices to disconnect the current to the heating element in case of a malfunction (such as a defective thermostat) that would otherwise allow the temperature to www.Darise to dangerous levels, possibly starting a fire.

Resistors Glossary Terminology

Anti-Surge Resistor (RCR)

Surges in electronic circuits are caused by internal conditions — switching operations from other electronic components or due to external conditions on the AC power mains — switching operations in the power grid or from nearby lightning strikes, either directly to the power distribution system or to nearby ground. Electronic products have to be surge immune to ensure their continued reliable operation if subjected to realistic levels of surge voltages, and they are required to comply with safety requirements. Token's RCR series is a perfect fit when an anti-surge resistor is required.

Light Dependent Resistor (LDR)

A photoresistor or light dependent resistor or cadmium sulfide (CdS) cell is a resistor whose resistance decreases with increasing incident light intensity. It can also be referenced as a photoconductor.

A photoresistor is made of a high resistance semiconductor. If light falling on the device is of high enough frequency, photons absorbed by the semiconductor give bound electrons enough energy to jump into the conduction band. The resulting free electron (and its hole partner) conduct electricity, thereby lowering resistance.

Carbon Composition Resistor (CCR)

CCR is made up of a solid rod of conductive composite material, the chemical composition of which is altered to produce different resistance values. The general composition consists of the carbon conductor and ceramic filler materials. By altering the ratio of filler to conductor it is possible to change the resistance value. Interference-fit end caps are attached to the rods, leads are welded onto these caps, and the resistor body is then protected with a specially formulated epoxy coating. The resistors are then colour code marked.

Ayrton-Perry Winding

Winding of two wires in parallel but opposite directions to give better cancellation of magnetic fields than is obtained with a single winding.

Wirewound technology has long been known as a leading technology for power resistor needs. The most critical drawback with this technology is that it is inherently inductive. This is logical given that a wirewound inductor and a wirewound resistor are made with essentially the same materials and processes. This fact limits the use of wirewounds for applications with high switching speeds, which require low inductance.

Now the same standard wirewounds can be used for these applications by using a non-inductively wound version. This manufacturing method greatly reduces the inductance of any given resistor size and value combination, however it does not completely eliminate the inductance. A non-inductively wound wirewound has one winding in one direction and one in the other direction; known as Ayrton Perry winding. This non-inductive winding is available in all Token standard wire-wound resistor series.

Selecting The Optimum Resistors

Selecting The Optimum Resistor Technology to Best Match The Performance Requirements

Comparision	of Axial Lea	ad Resisto	r Charact	eristics Table				
		Thin Film Thick Film			Film	Wire	Alloy	
Characte	eristics	Carbon Film	Metal	Metal	Metal	Standard	Non-	Strip
			Film	Oxide Film	Glaze Film		Inductive	
Tolerance	±0.01		✓			✓		
(%)	±0.02		✓			✓		
	±0.05		✓			✓		
	±0.1		✓			✓		
	±0.25		✓			✓		
	±0.5		✓			✓		
	±1.0		✓		✓	✓	✓	✓
	±2.0	✓		✓	✓	✓	✓	\checkmark
	±5.0	✓		✓	✓	✓	✓	✓
	±10	✓		✓	✓	✓	✓	✓
Temperature	5		✓					
Coefficient	10		✓					
(PPM/°C)	15		✓					
	25		✓			✓		✓
	50		✓			✓	✓	✓
	100		✓		✓	✓	✓	✓
	200	✓		✓	✓	✓	✓	
	400	✓		✓	✓	✓	✓	
	1,000	✓						
Operating	200			✓				✓
Temperature	165		✓	✓	✓	✓	✓	✓
Range (°C)	125	✓	✓	✓	✓	✓	✓	✓
	70	✓	✓	✓	✓	✓	✓	✓
	40	✓		✓	✓	✓	✓	✓
	10	✓		✓	✓	✓	✓	✓
Wattage (W)	1/16							
	1/8	✓	✓					
	1/4	✓	✓	✓	✓	✓		
	1/2	✓	✓	✓	✓	✓	✓	✓
	1	✓	✓	✓	✓	✓	✓	✓
vw.DataSheet4U.	2 ⁿ	✓	✓	✓	✓	✓	✓	✓
	3	✓	✓	✓	✓	✓	✓	✓
	5			✓	✓	✓	✓	
	10			✓	✓	✓		

Continued on the following page.

Selecting The Optimum Resistors

Continued from the preceding page.

Characteristics		Thin	Film	Thick	Film	Wire V	Wound	
		Carbon Film	Metal Film	Metal Oxide Film	Metal Glaze Film	Standard	Non- Inductive	Alloy Strip
Resistance	0.1							
Range	1		✓					
(Ω)	10	✓	✓	✓	✓	✓	✓	
	100	✓	✓	✓	✓	✓	✓	
	1K	✓	✓	✓	✓	✓		
	10K	✓	✓	✓	✓	✓		
	100K	✓	✓		✓	✓		
	1M	✓	✓		✓	✓		
	10M	✓			✓	✓		
Volume Size	e	Standard	Standard	Standard	Standard	Standard	Bigger	Compact
High Frequency		Available	Available	Available	Available	None	Available	Available
Cost		Cheap	Fair	Fair	Fair	High	High	Fair
Noise		Fair	Good	Fair	Fair	Fair	Good	Good
Stability		Fair	Excellent	Good	Good	Excellent	Good	Excellent

Comparision of Axial Lead Resistor Functions Table						
Class	Advantage	Disadvantage				
Carbon Resistors	Cheap, General Purposes	High TCR,				
Metal Film Resistors	Low TCR, Tight Tolerance, High Stability	Fair Withstanding Voltage				
Metal Oxide Resistors	Replace high resistance wire wound	Resistance Range Limitation,Fair				
	resistor, Good withstanding voltage	Tolerance				
Wirewound Resistors	High Pulse Load, Anti-Surge, High	High Inductance, Resistance Range				
	Stabililty	Limitation				
Non-Inductive Resis-	High Pulse Load, Anti-Surge, High	Resistance Range Limitation, High				
tors	Stabililty	Cost				
Ceramic Housed Ce-	Rugged, excellent heat dissipation, with-	Heavy Weight, Big Volume				
ment Resistors	standing high temperature					
Metal Glaze Resistors	High Pulse Load, Anti-Surge, High Sta-	High TCR, Fair Tolerance				
	bililty					
Alloy Strip	Low TCR, Low Ohmic	Fair Tolerance				

06 of 58

Precision Moulded Virewound Resistors

(BWW) Precision Wirewound Power Resistors **Operate in Harsh Environments**

Preview

The new BWW series moulded axial leaded wirewound resistors from Token use high-purity alumina ceramic cores with wire winding which are spot welded by precision CNC machine tools to ensure total operational consistency throughout.

Also, using advanced encapsulation die/mould technologies, this precision power resistors are encapsulated with epoxy molding compound.

The BWW models possess a wide resistance value from 0.1Ω to $39K\Omega$ and meets the stringent requirements of MIL-R-93. Ayrton Perry noninductive windings are available on request. The BWW precision version has low ohmic values for current sensing applications.

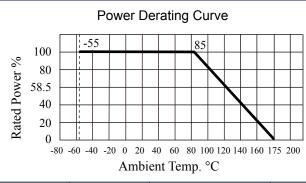
All versions are miniaturised for better power to dimension ratios and are available in 0.5W to 10W rated power at 25°C. Tolerance is available in $\pm 0.1\%$, $\pm 0.25\%$, $\pm 0.5\%$, $\pm 1\%$ and $\pm 2\%$ with TCR ± 25 PPM/°C, ± 50 PPM/°C and ± 150 PPM/°C which makes them ideally suited for use in precision applications.

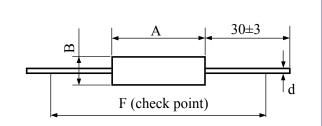
The BWW series is RoHS compliant with 100% Sn (lead free) coated terminals. To address your need for technical and economic success in a timely manner, our custom solutions are the best option. Contact us with your specific needs.

Features

- Axial Moulded
- Excellent load life stability
- Insulation, Moisture Proof
- High Precision and reliability
- Meets the Standards of MIL-R-93
- RoHS compliant with 100% lead free

Applications


- Electrical loads, Filament dropping www.DataSh.DC/DC.converters, AC/DC inverters
 - High-voltage bleeders, Dynamic braking
 - Capacitor charging/discharging regulation
 - Motor speed controls, Voltage divider networks
 - Bias supply, Current shunts, Voltage dropping, Crow-bar circuits



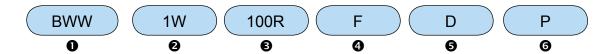
BWW Precision Wirewound Resistors

Technical Specifications

Туре	RateWatts at 25°C Resistance Ran		_	Tolerance	TCR (PPM/°C)	Dimensions (mm)													
	(W)	Min	Max	(%)	(FFIMI/ C)	A±0.25	ФВ±0.25	Фd	F										
BWW-0.5	0.5	0.1	100			7.0	3.0	0.8	27.0										
BWW-1	1.0	0.1	1K	±0.1 ±0.25	. 0.7	11.0	3.0	0.8	31.0										
BWW-3	3.0	0.1	10K		±0.25 ±0.5											±25 ±50	15.0	5.2	0.8
BWW-4	4.0	0.1	15K	±0.3 ±1	±30 ±150	18.0	6.5	0.8	38.0										
BWW-5	5.0	1	24K	±2	_150	24.0	8.4	1.0	44.0										
BWW-10	10.0	1	39K			46.5	10.0	1.0	66.0										

Performance

Test Items	Test Conditions	Specifications
Operating Temp. Range		-55°C ~ 175°C
Insulation Resistance	500V	>1GΩ
Dielectric Withstanding Voltage	500V AC 1 Min.	$\Delta R \le \pm 0.1\%R$
Load Life	70°C on~off cycle 1000 Hrs.	$\Delta R \le \pm 1\%R$
Moisture-Proof Load Life	40°C 95% RH on~off cycle 21 Hrs.	$\Delta R \le \pm 0.2\% R$
Resistance to soldering heat	350°C, 3.5s	$\Delta R \le \pm 0.1\%R$
Solderability	235±5°C, 5s(solder bath method)	IEC68-2-20(1968)


BWW Precision Wirewound Resistors

▶ Application Notes

Precision Wire-wound Resistors Application Notes:

- When being used in AC circuits, some wirewound structures give inductance ingredients or parasitic capacity, so they may cause unusual phenomena such as oscillations etc. Quorum deviations of other components should be carefully taken into account for use.
- Application and Placement: Wire wound resistors use different gauges of wire as resistance elements. Sometimes the gauge is extremely thin (finer than a strand of human hair) and very susceptible to breakage in environments containing salts, ash, dust and corrosives. Avoid utilization in such environments.
 - Do not install in dusty areas because the accumulation will cause shorts and poor conductance.

How to Order

- Part Number: BWW
- 2 Rated Power (W)
- **3** Resistance Value (Ω)

Code	Resistance Value (Ω)
OR1	0.1 Ω
100R	100Ω
1K	1000Ω

4 Resistance Tolerance (%)

Code	Resistance Tolerance
В	±0.1%
С	±0.25%
D	±0.5%
F	±1%
G	±2%

5 TCR (PPM/°C)

Code	TCR
С	±25PPM/°C
D	±50PPM/°C
K	±150PPM/°C

6 Package

Code	Package
P	Bulk

Power Precision Wirewound Resistors

Wirewound Resistors Boast Consistent Precision Power Operation

Preview

Token's highest quality conformal axial terminal ceramic-silicone coated KNP-R power resistors for applications requiring high stability and precision. The KNP-R wire-wound has a low temperature coefficient and maintain a high degree of stability under demanding conditions.

The power precision KNP-R series meeting MIL-R-26E (U and V characteristics) and surface temperature (hot spot) 375°C max. Resistors with a wide range of $0.01\Omega \sim 82k\Omega$, covering applications from precision to power. Products with lead-free terminations meet EU RoHS and China RoHS requirements.

Characteristics U:

275°C Maximum hot spot temperature. 1% Maximum ΔR in 1000 hours load life.

Characteristics V:

375°C Maximum hot spot temperature. 3% Maximum ΔR in 1000 hours load life.

Operating temperature range is -55° C $\sim +375^{\circ}$ C and derated power at high ambient temperatures as according to the chart below. Token is equipped to design and produce custom components to meet many design and reliability demands. In addition to standard military-grade resistor products, we also have many resistive products designed to meet various source-controlled drawings.

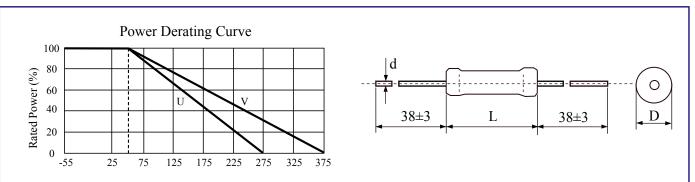
Contact us with your specific needs.

Features

- Excellent load life stability
- High Precision and reliability
- Axial ceramic-silicone coated
- Meets the Standards of MIL-R-26E
- RoHS compliant with 100% lead free

Applications

- Radar, Ground Vehicles


www.DataSlCommunications systems

- Bias supply, Current shunts, Voltage dropping
- Motor speed controls, Voltage divider networks
- Medical instrumentation and Medical implantables

▶ Technical Specifcations

Туре	MIL -	Power Rating (W)		Max. Working Voltage (V)		Resistance Range (Ω)		Dimensions (mm)		
	R-26E	U	V	U	V	0.1% 0.25% 0.5%	1% 2% 3% 5%	L±0.81	D±0.81	d±0.1
KNP-R1/4	-	0.40	-	20	-	10~950	1~3.4K	6.35	1.98	0.51
KNP-R1/2	RW70	0.75	-	29	-	10~1.3K	1~4.9K	7.92	1.98	0.51
KNP-R1A	-	1.00	-	53	-	1~2.7K	0.1~10.4K	10.31	2.36	0.64
KNP-R1	RW69	1.10	-	62	-	1~4.0K	0.1~15K	13.49	2.36	0.64
KNP-R2A	-	2.50	3.25	138	157	1~8.6K	0.01~32.3K	12.70	5.33	0.81
KNP-R2	RW79	3.00	3.75	135	148	1~5K	0.01~2K	13.49	4.06	0.81
KNP-R3A	-	3.00	3.75	135	148	1~6.5K	0.01~34.5K	14.27	5.33	0.81
KNP-R3	-	3.25	4.75	185	220	1~11.4K	0.01~42.1K	20.62	5.33	1.02
KNP-R4	RW67	4.00	5.50	210	250	1~12.7K	0.01~47.1K	15.88	7.62	1.02
KNP-R5	RW74	5.00	6.50	330	376	0.5~24.5K	0.01~51K	22.22	7.62	1.02
KNP-R7	RW68	7.00	9.00	504	576	0.5~41.4K	0.01~75K	30.94	9.52	1.02
KNP-R10	RW78	10.00	13.00	799	911	0.5~71.3K	0.01~82K	45.21	9.52	1.02

Temperature Coefficient: 1 Ω and below \pm 150 ppm/°C, 1 Ω to 9.9 Ω \pm 100 ppm/°C, 10 Ω and above \pm 100 ppm/°C, (50 ppm/°C on request)

Electrical Performance

Test Items	Test Method	Specifications		
Short Time Overload	2.5 times of rated voltage 5 sec.	$\Delta R \pm (2\% + 0.05\Omega)$		
Rated Load	Rated wattage 30 minutes.	$\Delta R \pm (1\% + 0.05\Omega)$		
Voltage Withstanding	500VAC 1 minute.	$\Delta R \pm (1\% + 0.05\Omega)$		
Insulation Resistance	500V	20ΜΩ		
Temp. Cycle	-20°C ~ 85°C 5 cycles	$\Delta R \pm (1\% + 0.05\Omega)$		
Soldering After Resistance	235°C for 3 sec	$\Delta R \pm (0.5\% + 0.05\Omega)$		
Incombustibility	16 times of rated wattage for 5 min.	Not flamed		
Load Life	+25°C, 1.5Hrs on ~ 0.5Hrs	U: ΔR±(1%+0.05Ω)		
Load Life	off cycle, 1000 Hrs.	V: $\Delta R \pm (3\% + 0.05\Omega)$		

KNP-R Power Wirewound Resistors

Application Notes

Wire-wound Resistors Application Notes:

- When being used in AC circuits, some wirewound structures give inductance ingredients or parasitic capacity, so they may cause unusual phenomena such as oscillations etc. Quorum deviations of other components should be carefully taken into account for use.
- Application and Placement: Wire wound resistors use different gauges of wire as resistance elements. Sometimes the gauge is extremely thin (finer than a strand of human hair) and very susceptible to breakage in environments containing salts, ash, dust and corrosives. Avoid utilization in such environments.
 - Do not install in dusty areas because the accumulation will cause shorts and poor conductance.

➤ How to Order

- Part Number: KNP-R
- **2** Characteristic (°C)

Code	Resistance Value (Ω)
U	275°C
V	375°C

3 Resistance Value (Ω)

Code	Resistance Value
0R1	1.0Ω
1R	1Ω
100R	100Ω
1K	1000Ω

4 Resistance Tolerance (%)

Code	Resistance Tolerance
В	±0.1%
C	±0.25%
D	±0.5%
F	±1%
G	±2%
Н	±3%
J	±5%

Package

Code	Package
ТВ	Taping Box
P	Bulk

Vitreous Enamel Coated **Wirewound Resistors**

Vitreous Enamel Coated Power High Energy Wirewound Resistors

Preview

The KNP-VE Series of vitreous enamel coated power resistors from Token offers a cost-competitive alternative over the 2.5W-12W power range. The range is available with resistance values of 1Ω to $39K\Omega$ in power ratings of 2.5W, 3W, 5W, 6W, 8W, 9W and 12W (at 25°C), and with body sizes that match the industry standards.

Vitreous enamelled resistors were introduced at a time when alternative directly applied coatings could not withstand the thermal stresses caused by the resistors' high body temperatures.

Token offers the durability of a lead free conformal vitreous enamel coating, permits the KNP-VE Series resistors to maintain a hard coating while operating at high temperatures. Mechanical integrity is enhanced by the all-welded construction.

Power KNP-VE Wirewound Series are ideal for computer, communications and industrial applications in which cost, quality, and reliability are key considerations. The KNP-VE series is RoHS compliant and Ayrton Perry noninductive windings are available on request.

To address your need for technical and economic success in a timely manner, our custom solutions are the best choise.

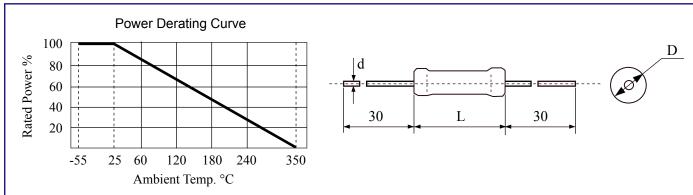
Contact us with your specific needs.

Applications

- Power tools
- Consumer applications
- Power supplies, Welders
- High voltage applications
- High-switching applications
- Home entertainment, appliances

Features

- Excellent pulse load capability


www.DataShAxial leads, All-welded construction

- A wide range of power ratings 2.5W to 12W
- A wide resistance range 1Ω to $39K\Omega$, Tolerance $\pm 5\%$, $\pm 10\%$
- Products with Pb-free Terminations and RoHS compliant
- Rugged vitreous enamel coating withstands high humidity and temperature cycling
- Durable construction, recommended for industrial applications where reliability is paramount

Technical Specifcations

	Rated Watts	Resistance	Limiting		Temperature	Dimen	sions (mm) (Max)		
Туре	(W)	Range (Ω)	Voltage (V)	Tolerance	Coefficient (PPM/°C)	L	ΦD	Фф		
KNP-VE-2.5	2.5	1 ~ 1K	100			12.7	5.6			
KNP-VE-3	3	1 ~ 1K	120			14.0	7.0			
KNP-VE-5	5	1 ~ 3.6K	160		.250	23.0	7.0	0.8		
KNP-VE-6	6	1 ~ 6.8K	200	±5% ±10%	±250 ±400	22.2	8.0			
KNP-VE-8	8	1 ~ 20K	400	10/0		33.9	8.0			
KNP-VE-9	9	1 ~ 27K	500					38.1	8.0	1.0
KNP-VE-12	12	1 ~ 39K	750			53.5	8.0	1.0		

Performance

Test Items	Condition	Specifications
Insulation Resistance	500V	20ΜΩ
Short Time Overload	2.5 times of rated voltage 5 sec.	$\Delta R \leq \pm (2\%R + 0.05\Omega)$
Rated Load	Rated wattage 30 min.	$\Delta R \leq \pm (1\%R + 0.05\Omega)$
Dielectric Withstanding Voltage	500V AC 1 min	$\Delta R \leq \pm (1\%R + 0.05\Omega)$
Temp. Cycle	-20°C ~ 85°C 5 cycles	$\Delta R \leq \pm (1\%R + 0.05\Omega)$
Load Life	70°C on ~ off cycle 1000 hrs.	$\Delta R \leq \pm (5\%R + 0.05\Omega)$
Moisture-Proof Load Life	40°C 95% RH on~off cycle 500 hrs.	$\Delta R \leq \pm (3\%R + 0.05\Omega)$
Soldering After Resistance	350°C for 3 sec	$\Delta R \leq \pm (0.5\%R + 0.05\Omega)$
Incombustibility	16 times of rated wattage for 5 min.	Not flamed

14 of 58

KNP-VE Wirewound Resistors

Application Notes

Wire-wound Resistors Application Notes:

- When being used in AC circuits, some wirewound structures give inductance ingredients or parasitic capacity, so they may cause unusual phenomena such as oscillations etc. Quorum deviations of other components should be carefully taken into account for use.
- Application and Placement: Wire wound resistors use different gauges of wire as resistance elements. Sometimes the gauge is extremely thin (finer than a strand of human hair) and very susceptible to breakage in environments containing salts, ash, dust and corrosives. Avoid utilization in such environments.
 - Do not install in dusty areas because the accumulation will cause shorts and poor conductance.

How to Order

- Part Number: KNP-VE
- 2 Rated Power (W)
- **3** Resistance Value (Ω)

Code	Resistance Value
1R	1Ω
100R	100Ω
1K	1000Ω

4 Resistance Tolerance (%)

Code	Resistance Tolerance
J	±5%
K	±10%

Package

Code	Package
TB	Taping Box
P	Bulk

Wirewound Resistors

Wirewound Resistors are Getting Economical Solution to Board Population

Preview

Token has launched its commercial wirewound resistor yet with the introduction of the various package size. Matching price with size to provide an economical solution to board population, Token's wire wound resistors are available in 15 standard size power ranging from 0.5W to 12.5W, all at 1%, 2%, and 5% tolerance.

The KNP series has been designed to give enhanced pulse handling capability and increased flameproof protection. The series is RoHS compliant with Pb-free terminations, and KNP wire-wound series can also be supplied with radial, goalpost or lancet preformed leads.

The KNP drive to miniaturise is as widespread within industrial process control and circuit break products as it is in the consumer sector. These resistors are ideal for high reliability industrial application as the technology removes the excessive temperature risk.

Produced on a high purity ceramic substrate, the resistor is assembled with interference-fit end caps to which are welded terminations. The resistive element is wound on the substrate and welded to the caps. Flameproof silicone cement coating is applied prior to marking with indelible link. The components are then leadformed, if required.

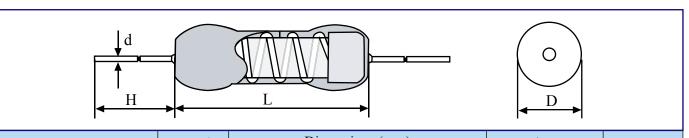
To address your need for technical and economic success in a timely manner, our custom solutions are available. Contact us with your specific needs.

Applications

- Ballast
- Power tools
- Consumer applications
- Power supplies, Welders
- High voltage applications
- Home entertainment, appliances

> Features

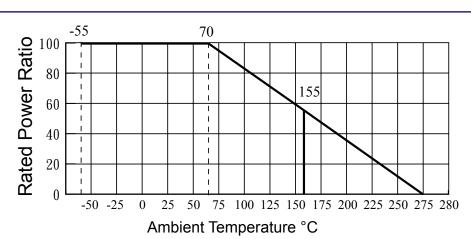
- Low cost


www.DataSExcellent pulse load capability

- A wide resistance range 0.1 Ω to 3 $k\Omega$
- Operating temperature range -55° C $\sim 155^{\circ}$ C
- A wide range of power ratings 0.5W to 12.5W
- Products with Pb-free Terminations and RoHS compliant

General Specifications

Type Rated		Rated	Dimensions (mm)			Resistance	Tolerance	
	Туре	Watts	$D \pm 0.5$	$L \pm 1$	$H \pm 3$	$d \pm 0.05$	Range (Ω)	Tolerance
	KNP-50	1/2W	4	9.0	26	0.50~0.55	0.1-50 Ω	
	KNP-100	1W	4	9.0	26	0.50~0.55	0.1-50 Ω	
	KNP-100B	1W	4.5	11.5	26	0.75~0.80	0.1-100 Ω	
	KNP-200	2W	4.5	11.5	26	0.75~0.80	0.1-100 Ω	
	KNP-200B	2W	5.5	15.5	35	0.75~0.80	0.1-200 Ω	
	KNP-300	3W	5.5	15.5	35	0.75~0.80	0.1-200 Ω	
	KNP-400	4W	6.5	17.5	35	0.75~0.80	0.1-300 Ω	± 1%
KNP	KNP-500	5W	6.5	17.5	35	0.75~0.80	0.1-400 Ω	± 2%
	KNP-500B	5W	8.5	24.5	38	0.75~0.80	0.1-400 Ω	± 5%
	KNP-600	6W	8.5	24.5	38	0.75~0.80	0.1-1K Ω	
	KNP-700	7W	8.5	24.5	38	0.75~0.80	0.1-1.5K Ω	
	KNP-800	8W	8.5	42	38	0.75~0.80	0.1-2K Ω	
	KNP-1000	10W	8.5	42	38	0.75~0.80	0.1-2K Ω	
	KNP-1000B	10W	8.5	54	38	0.75~0.80	0.1-3Κ Ω	
	KNP-1250	12.5W	8.5	54	38	0.75~0.80	0.1-3Κ Ω	


Application Notes

Wire-wound Resistors Application Notes:

- When being used in AC circuits, some wirewound structures give inductance ingredients or parasitic capacity, so they may cause unusual phenomena such as oscillations etc. Quorum deviations of other components should be carefully taken into account for use.
- Application and Placement: Wire wound resistors use different gauges of wire as resistance elements. Sometimes the gauge is extremely thin (finer than a strand of human hair) and very susceptible to breakage in environments containing salts, ash, dust and corrosives. Avoid utilization in such environments.
- Do not install in dusty areas because the accumulation will cause shorts and poor conductance.

> Electrical Performance

TEST ITEMS	CONDITION	SPEC
Resistance Temp. Coeff.	-55 °C ~ 155 °C	± 300 PPM / °C
Resistance Temp. Coeff.	Room temperature/100 °C up	± 300 PPM / °C
Short Time Overload	10 times of rated wattage for 5 sec.	± 2 %
Rated Load	Rated wattage 30 min. \pm 1 %	
Voltage Withstanding	500VAC 1 min ± 1 %	
Temperature Cycling	-20 °C ~ 85 °C 5 cycles	± 1 %
Load Life	70 °C on ~ off cycle 1000 hrs.	± 5 %
Moisture-Proof Load Life	40 °C 95% RH on \sim off cycle 500 hrs. \pm 3 %	
Incombustibility	16 times of rated wattage for 5 min	not flamed

How to Order

• Part Number: KNP

2 Rated Power (W)

 \bullet Resistance Value (Ω)

Code	Resistance Value
0R1	0.1Ω
1R	1RΩ
10R	10RΩ
100R	100RΩ
DataSheet4 K com	1000Ω

4 Resistance Tolerance (%)

Code	Resistance Tolerance
F	±1%
G	±2%
J	±5%

6 Package

Code	Package
TB	Taping Box
P	Bulk

Back to 1st Page - Wirewound Resistors (KNP)

Non-inductive Wirewound Resistors

Non-inductive Wirewound Resistors Improves Inductance for High Frequency Applications

Preview

Token Electronics has introduced a non-inductive version KNPN Series of conformal coated, leaded wire-wound resistors.

The KNPN series offers the expected performance of a wire wound resistor with the added characteristic of vastly improved inductance, making it suitable for high-switching applications.

Wirewound technology has long been known as a leading technology for power resistor needs though it is inherently inductive. Known as Ayrton Perry winding, a non-inductively wound wirewound has one winding in one direction and one in the other direction.

By using a non-inductively wound version this greatly reduces the inductance of any given resistor size and value combination; however, it does not completely eliminate the inductance.

This non-inductive winding is available in all standard KNPN sizes from 0.5 watts up to 6 watts with options 1%, 2% and 5% tolerance. The KNPN series is RoHS compliant and also can be supplied with radial, goalpost or lancet preformed leads.

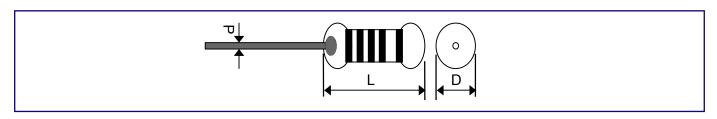
To address your need for technical and economic success in a timely manner, our custom solutions are available. Contact us with your specific needs.

Applications

- Power tools
- Current sensing
- Consumer applications
- Power supplies, Welders
- High voltage applications
- High-switching applications
- Home entertainment, appliances

Features

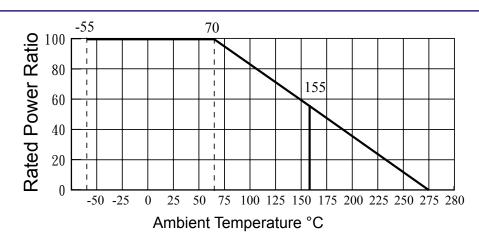
- Low cost


www.DataShExcellent pulse load capability

- Non-inductive Ayrton Perry winding
- A wide resistance range 0.1Ω to 50Ω
- Operating temperature range -55°C ~ 155 °C
- A wide range of power ratings 0.5W to 6W
- Products with Pb-free Terminations and RoHS compliant

General Specifications

Type		Rated		Dimen	sions (mn	Resistance	Tolerance		
	Type	Watts	$D \pm 0.5$	$L \pm 1$	$H \pm 3$	$d \pm 0.05$	Range (Ω)	Tolerance	
	KNPN-50	1/2W	4	9.0	26	0.50~0.55	0.1-10 Ω		
	KNPN-100	1W	4	9.0	26	0.50~0.55	0.1 - $10~\Omega$		
	KNPN-100B	1W	4.5	11.5	26	0.75~0.80	$0.1\text{-}10\Omega$		
	KNPN-200	2W	4.5	11.5	26	0.75~0.80	0.1-10 Ω	10/	
KNPN	KNPN-200B	2W	5.5	15.5	35	0.75~0.80	0.1 - 20Ω	± 1% ± 2%	
KINPIN	KNPN-300	3W	5.5	15.5	35	0.75~0.80	0.1-20 Ω	$\begin{array}{c c} \pm 2\% \\ \pm 5\% \end{array}$	
	KNPN-400	4W	6.5	17.5	35	0.75~0.80	0.1 - $30~\Omega$	- 570	
	KNPN-500	5W	6.5	17.5	35	0.75~0.80	0.1 - $30~\Omega$		
	KNPN-500B	5W	8.5	24.5	38	0.75~0.80	0.1-50 Ω		
	KNPN-600	6W	8.5	24.5	38	0.75~0.80	$0.1\text{-}50~\Omega$		


▶ Application Notes

Wire-wound Resistors Application Notes:

- When being used in AC circuits, some wirewound structures give inductance ingredients or parasitic capacity, so they may cause unusual phenomena such as oscillations etc. Quorum deviations of other components should be carefully taken into account for use.
- Application and Placement: Wire wound resistors use different gauges of wire as resistance elements. Sometimes the gauge is extremely thin (finer than a strand of human hair) and very susceptible to breakage in environments containing salts, ash, dust and corrosives. Avoid utilization in such environments.
 - Do not install in dusty areas because the accumulation will cause shorts and poor conductance.

KNPN Non-inductive Resistors

Electrical Performance

TEST ITEMS	CONDITION	SPEC
Operating Temperature Range	-55 °C ~ 275 °C (0W)	
Resistance Temp. Coeff.	Room temperature/100 °C up	± 300 PPM / °C
Short Time Overload	10 times of rated wattage for 5 sec.	± 2 %
Rated Load	Rated wattage 30 min.	± 1 %
Voltage Withstanding	500VAC 1 min	± 1 %
Temperature Cycling	-20 °C ~ 85 °C 5 cycles	± 1 %

How to Order

• Part Number: KNPN

2 Rated Power (W)

3 Resistance Value (Ω)

	Code	Resistance Value
	0R1	0.1Ω
	1R	1Ω
	10R2	1.2Ω
	10R	10Ω
	12R	12ΜΩ
www.I	DataSheet4U.com	

4 Resistance Tolerance (%)

Code	Resistance Tolerance
F	±5%
G	±5%
J	±5%

6 Package

Code	Package
TB	Taping Box
P	Bulk

Back to 1st Page - Non-inductive Wirewound Resistors (KNPN)

Fusible Resistors

Fusible Resistors - FRN, FKN, FSQ Series

Fusible Resistor Features Best of Both Worlds

Preview

Designers of small power supplies and battery chargers for consumer products can benefit from a fusible resistor with superior lightning strike and pulse abilities in a cost effective package.

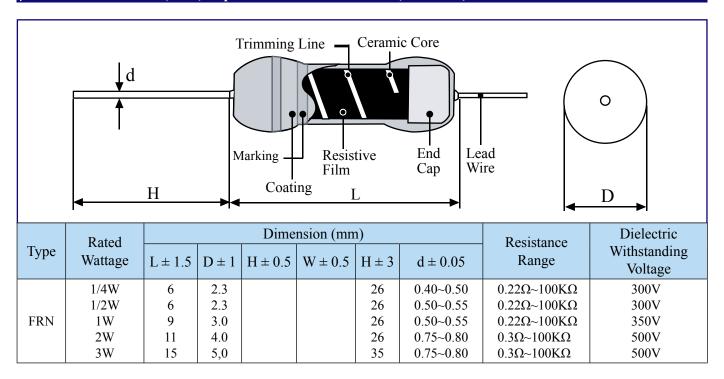
Token Electronics offers a combination resistor/fuses series of metal/carbon film fusbile resistor (FRN), wirewound fusbile resistor (FKN) and cement encased fusbile resistors (FSQ). Token offers fusbile FRN series a low-cost alternative to traditional solutions for applications that require surge protection.

The robust cement-coated wire-wound FSQ resistors and wirewound fusbile FKN resistors are ideal for power supply applications across the telecomms, military and industrial markets which require a replacement for carbon composition resistors within the circuit design.

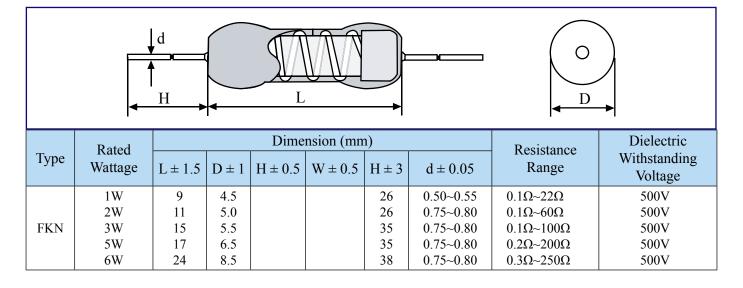
As part of the Token input protection range, this resistor provides a key fusible solution and is completely customisable to suit the individual application design requirements. Key design engineers with a need for a robust resistor, will find the FRN, FKN and FSQ series are a multifaceted product, providing comparable pulse performance with added fusing capabilities.

Our custom solutions are designed to address your need for technical and economic success in a timely manner. Contact us with your specific needs.

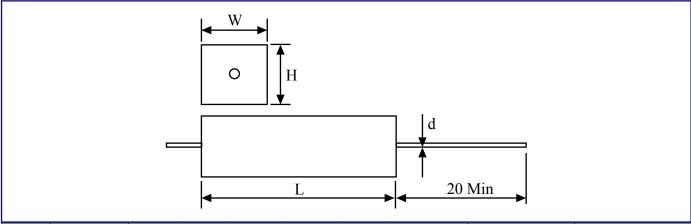
Features


- Low Cost
- Low Noise
- Reduced numbers of parts used in circuits
- Products with Pb-free Terminations and RoHS compliant

Applications


- Telecommunications
- Household appliances
- Inrush Pulse protection
- Lightning strike protection
- Input protection for small power supplies and battery chargers

➤ Metal Film Fusible (FRN) - Specifications & Dimensions (Unit: mm)



Wirewound Fusible (FKN) - Specifications & Dimensions (Unit: mm)

► Ceramic Cement Fusible (FSQ) - Specifications & Dimensions (Unit: mm)

	Rated	Dimension (mm)							Dielectric
Type	Wattage	L ± 1.5	D ± 1	$H \pm 0.5$	$W \pm 0.5$	H ± 3	$d \pm 0.05$	Resistance Range	Withstanding Voltage
	2W	18		7	7	35	0.50~0.55	0.1Ω~22Ω	1000V
	3W	22		8	8	35	$0.75 \sim 0.80$	$0.1\Omega\sim120\Omega$	1000V
FSQ	5W	22		9	10	35	$0.75 \sim 0.80$	$0.2\Omega\sim120\Omega$	1000V
	7W	35		9	10	35	$0.75 \sim 0.80$	$0.3\Omega\sim250\Omega$	1000V
	10W	48		9	10	35	$0.75 \sim 0.80$	$0.3\Omega{\sim}500\Omega$	1000V

> FRN, FKN, FSQ - Electrical Characteristics

Test Items	Condition	Spec.
Operating Temp.	-30°C~155°C	
Resistance Temp. Coeff.	-30°C~150°C	± 200PPM / °C
Short Time Overload	2 times of rated voltage for 5 sec.	± 2 %
Temp. Cycle	-30°C~85°C for 5 cycles	± 1 %
Load Life	25°C on-off cycle 1,000 hrs.	± 5 %
Moisture-Proof Load Life	40°C 95°C RH on-off cycle 1,000 hrs.	± 5 %
Solder Pot	270°C for 3 sec.	± 1 %
Incombustibility	16 times of rated wattage for 5 min.	not flamed

> FRN, FKN, FSQ - Electrical Characteristics

POWER WATTAGE	FUSING TIME
16 X Rated Wattage	Within 2 min
24 X Rated Wattage	Within 1 min
32 X Rated Wattage	Within 30 sec.

FRN, FKN, FSQ Fusible Resistors

FRN, FKN, FSQ - Application Notes

For fusible resistors, unlike fuses, fusing performance is given in terms of power rather than current. The power can be calculated:

Power = Amperes 2 × Ohms

Fusing Device Application Notes

- When using, it shall be made sure that the overload conditions at unusual moments lie within the fusing territory.
- Consult with Token in advance when overloaded higher than the rated voltage under an ordinary situation since such an overload may store up damages on resistors.
- Use at the maximum open-circuit voltage or lower as an arc phenomenon may arise when high voltage is applied again after fusing by an over current.
- Consult with us for the maximum open-circuit voltage because it varies with applications.

► How to Order

- 1 Part Number: FRN, FKN, FSQ
- 2 Rated Power (W)
- **3** Resistance Value (Ω)

Code	Resistance Value
R47	0.47Ω
47R	47Ω
470R	470Ω
4K7	4.7ΚΩ
47K	47ΚΩ

4 Resistance Tolerance (%)

Code	Resistance Tolerance		
J	±5%		

6 Package

Code	Package
TB	Taping Box
P	Bulk

Thermal Cut-offs Resistors

Cement Resistors with Thermal Cut-offs - FKU/FRU Series

Ultimate Protection Thermal Cutoffs for High Power Applications

Preview

Fast-acting protection device for high-power applications combines thermal fuse element and resistor on a single substrate.

Token offers FKU (Wirewound Resistor + Thermal Cut-offs) and FRU (Metal Oxide Film Resistor + Thermal Cut-offs) two Series, both are a new concept in thermal fuse technology and are designed to protect against overheating in electrical products.

The two active components, a thermal cutoff is a fusible alloy and a resistor is a voltage divider, both are surrounded by a ceramic cement with special resin. Under normal operating temperatures the fusible alloy joins the two lead wires within the body of the cutoff and the power resistor acts as a normal function resistor. When the preset temperature of the cutoff is reached, the fusible alloy melts and with the aid of the special resin, complete cutoff is ensured.

By combining a thermal fuse element and resistor on a single substrate, Token has created a fast-acting ultimate protection device for high power applications up to 10A/250V.

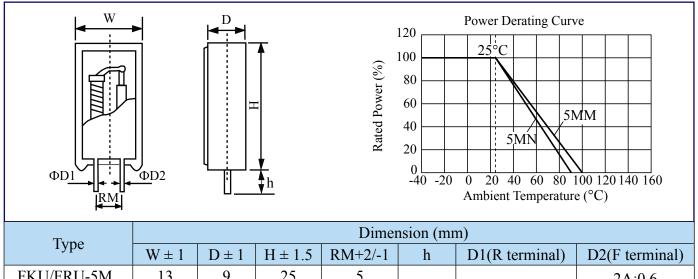
Resistance range of FKU Wirewound Type Thermal Cut-offs is 1Ω ~100 Ω and FRU Metal Oxide Film Type Thermal Cut-offs is $110\Omega \sim 10 \text{K}\Omega$. Both standard precision tolerance is $J(\pm 5\%)$.

Our custom solutions are designed to address your need for technical and economic success in a timely manner. Contact us with your specific needs.

Features

- Miniature size
- Radial leaded form
- Accurate fusing temperature
- Various temperature settings
- Current Rating: Up to 10Amp
- Products with Pb-free Terminations and RoHS compliant
- Economical by combining both function of a thermal fuse and a pulse resistor

v.token.com.tw


Applications ...

- Motors fans, copiers, washing machines, air conditioners, compressors.
- Electronics TVs, tape recorders, stereos, video recorders, fluorescent lamps, transformers, surge suppressors, computers, telecommunication equipment.
- Appliances electric blankets, space heaters, stoves, irons, hair dryers, cookers, toaster ovens, clothes dryers, toasters, mixers, microwave ovens, crock pots.

FKU/FRU Thermal Cut-offs Resistors

▶ General Specifications (Unit: mm)

Tymo	Dimension (mm)								
Type	$W \pm 1$	D ± 1	$H \pm 1.5$	RM+2/-1	h	D1(R terminal)	D2(F terminal)		
FKU/FRU-5M	13	9	25	5			2A:0.6		
FKU/FRU-7M	13	9	38	5	4.5 ± 1	0.8±0.1	±0.110A:1.0		
FKU/FRU-10M	16	12	35	7.5			±0.1		

Electrical Performance

	Fusing Temperature Protector			Rated Power at 25°C (W)				istance nge(Ω)	Tolerance(%)								
MARK	Fusing Temperature(°C)	Standard Current(A)	Standard Voltage(V)	5M	7M	10M	FKU	FRU	FKU	FRU							
A	109+1/-3			1.2	1.4	2.0											
В	129±4	10		1.6	2.0	2.5											
С	152±4		10	10	10	10			10	1.6	2.0	2.5					
D	188+3/-1				2.0	2.4	3.5										
Е	226+1/-3		250	2.0	2.4	3.5	1~100	110~10K	J(±5)	I(+5)							
F	95+3/-0	2	2	1	1			250	230	230	0.8	1.2		1~100	110~10K	K(±10)	J(±5)
G	110±4				1.2	1.4											
Н	126±4				1.4	1.6											
N	130±4			1.6	2.0												
M	145±4			2.1	2.4												

FKU/FRU Thermal Cut-offs Resistors

► How to Order

• Part Number

Code	Resistance Value
FRU	Metal Oxide type Thermal Cut-offs
FKU	Wirewound type Thermal Cut-offs

2 Rated Power (W): 5M, 7M, 10M

3 Thermal Cut-offs (Ω)

Code	Thermal Cut-offs
A	109+1/-3°C
В	129±4°C
C	152±4°C
D	188+3/-1°C
Е	226+1/-3°C
F	95+3/ - 0°C
G	110±4°C
Н	126±4°C
N	130±4°C
M	145±4°C

$oldsymbol{\Theta}$ Resistance Value (Ω)

Code	Resistance Value (Ω)
1R	1Ω
10R	10Ω
100R	100RΩ
1K	1000Ω

4 Resistance Tolerance (%)

Code	Resistance Tolerance (%)
J	±5%
K	±10%

6 Package

Code	Package
P	Bulk

CDS Light-Dependent Photoresistors

Light-Dependent Photoresistors for Sensor Applications

Preview

The cadmium sulfide (CdS) or light dependent resistor (LDR) whose resistance is inversly dependent on the amount of light falling on it, is known by many names including the photo resistor, photoresistor, photoconductor, photoconductive cell, or simply the photocell.

A typical structure for a photoresistor uses an active semiconductor layer that is deposited on an insulating substrate. The semiconductor is normally lightly doped to enable it to have the required level of conductivity. Contacts are then placed either side of the exposed area.

The photo-resistor, CdS, or LDR finds many uses as a low cost photo sensitive element and was used for many years in photographic light meters as well as in other applications such as smoke, flame and burglar detectors, card readers and lighting controls for street lamps.

Providing design engineers with an economical CdS or LDR with high quality performance, Token Electronics now offers commercial grade PGM photoresistor. Designated the PGM Series, the photoresistors are available in 5mm, 12mm and 20mm sizes, the conformally epoxy or hermetical package offer high quality performance for applications that require quick response and good characteristic of spectrum.

Token has been designing and manufacturing high performance light dependent resistors for decades. Our product offerings are extensive and our experience with custom photoresistor is equally extensive. Contact us with your specific needs.

Features

- Quick Response
- Reliable Performance
- Epoxy or hermetical package
- Good Characteristic of Spectrum

Applications

www.DataShePhotoswitch

Version 2010

- Photoelectric Control
- Auto Flash for Camera
- Electronic Toys, Industrial Control

Terminology

• Light Resistance :

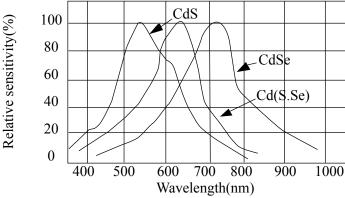
Measured at 10 lux with standard light A (2854K-color temperature) and 2hr. preillumination at 400-600 lux prior testing.

• Dark Resistance:

Measured at 10th seconds after closing 10 lux.

Sensitive surface Electrodes Ceramic substrate Resin Encapsulation Conducting resin Lead wires

• Gamma characteristic:


Under 10 lux and 100 lux and given by $\gamma = \log(R10/R100) / \log(100/10) = \log(R10/R100)$ R10, R100: resistance at 10 lux and 100 lux. The tolerance of γ is ± 0.1 .

• Pmax:

Max. power dissipation at ambient temperature of 25°C.At higher ambient temperature, the maximum power permissible may be lowered.

• Vmax:

Max. voltage in darkness that may be applied to the device continuously.

• Spectral peak:

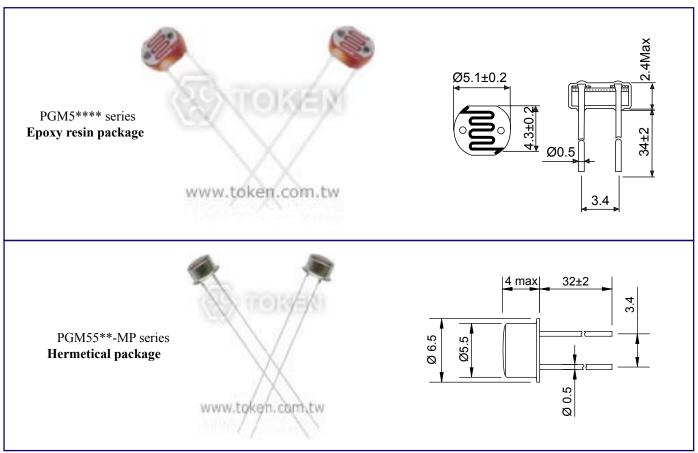
Spectral sensitivity of photoresistors depends on the wavelength of light they are exposed to and in accordance with figure 'Spectral Response'.

The tolerance of spectral peak is ± 50 nm.

Physical and Environmental Characteristics

ITEM	CONDITIONS	PERFORMANCE
Solderability	Put the terminals into welding tank at temp. 230±5°C for 2±0.5s (terminal roots are 5mm away from the tin surface).	wetting>95%
Temperature Changing	Change of temperature in accordance with: TA: -40°C TB: +60°C Number of cycles: 5 Exposure duration: 30min	Drift of R10 = \pm 20% No visible damage
Constant humidity and heat	1. Put the device in test box at Temperature: $60\pm5^{\circ}$ CHumidity: 90-95% Illumination: 0lux Duration: 100h 2. Take the device and measure after24h at normal temperature and humidity.	Drift of R10= ± 30% No visible damage
Constant load Temperature	At 25±5°C Illumination: 150lux at rated power Duration: 600h	No visible damage
Wire Terminals Strength	Bend the wire terminal at its root to 90 degree, and then bend it to a opposite direction.	No visible damage
Vibration	Frequency: 50Hz Swing: 1.5mm with Directions: parallel to ceramic substrate normal to ceramic substrate. Duration:2h	No visible dam

▶ How to Order


PGM5516

• Part Number

6 Package

Configurations & Dimensions

Note: All dimensions are in mm and NTS.

Electronics Characteristics

Model	Model Vmax (VDC)		Ambient Temp	Spectral Peak	Photo Resistance	Dark Resistance	γ	ResponseTime (ms)	
	(VDC)	(mW)	(°C)	(nm)	$(10Lx)(K\Omega)$	(MΩ)min	mın	Rise	Decay
PGM5506	100	90	-30 ~ +70	540	2 ~ 6	0.15	0.6	30	40
PGM5516	100	90	-30 ~ +70	540	5 ~ 10	0.2	0.6	30	40
PGM5526	150	100	-30 ~ +70	540	8 ~ 20	1.0	0.6	20	30
PGM5537	150	100	-30 ~ +70	540	16 ~ 50	2.0	0.7	20	30
PGM5539	150	100	- 30 ∼ +70	540	30 ~ 90	5.0	0.8	20	30
PGM5549	150	100	- 30 ∼ +70	540	45 ~ 140	10.0	0.8	20	30
PGM5616D	150	100	- 30 ∼ +70	560	5 ~ 10	1.0	0.6	20	30
PGM5626D	150	100	- 30 ∼ +70	560	8 ~ 20	2.0	0.6	20	30
PGM5637D	150	100	- 30 ∼ +70	560	16 ~ 50	5.0	0.7	20	30
PGM5639D	150	100	-30 ~ +70	560	30 ~ 90	10.0	0.8	20	30
PGM5649D	150	100	-30 ~ +70	560	50 ~ 160	20.0	0.8	20	30
PGM5659D	150	100	- 30 ∼ +70	560	150 ~ 300	20.0	0.8	20	30

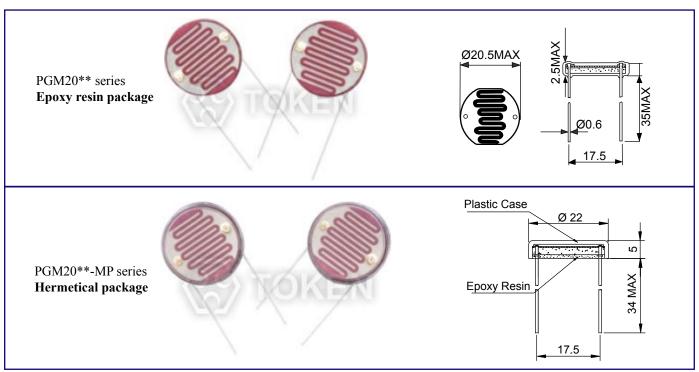
Electronics Characteristics

Model	Vmax	Pmax (mW)	Ambient Temp	Spectral Peak	Photo Resistance	Dark Resistance	γ	_	se Time
	(VDC)) (III W)	$ (^{\circ}C) $	(nm)	$(10Lx)(K\Omega)$	(MΩ)min	mın	Rise	Decay
PGM5506-MP	100	90	- 30 ∼ +70	540	2 ~ 6	0.15	0.6	30	40
PGM5516-MP	100	90	- 30 ∼ +70	540	5~10	0.2	0.6	30	40
PGM5526-MP	150	100	- 30 ∼ +70	540	8 ~ 20	1.0	0.6	20	30
PGM5537-MP	150	100	-30 ~ +70	540	16 ~ 50	2.0	0.7	20	30
PGM5539-MP	150	100	-30 ~ +70	540	30 ~ 90	5.0	0.8	20	30
PGM5549-MP	150	100	- 30 ∼ +70	540	45 ~ 140	10.0	0.8	20	30

Configurations & Dimensions Ø12Max PGM12** series Epoxy resin package 9 32typ. Ø 0.5 Ø 12.6 PGM12**-MP series Hermetical package 5.5 Max

Note: All dimensions are in mm and NTS.

► (PGM12**) Electronics Characteristics


Model	Vmax (VDC)	Pmax	Ambient Temp	Spectral Peak	Photo Resistance	Dark Resistance	γ	Respons (m	
	(VDC)	(mW)	(°C)	(nm)	$(10Lx)(K\Omega)$	$(M\Omega)$ min	mın	Rise	Decay
PGM1200	250	250	-30 ~ +70	560	2~5	1.0	0.6	30	40
PGM1201	250	250	-30 ~ +70	560	4~10	2.0	0.7	30	30
PGM1202	250	250	-30 ~ +70	560	8~20	5.0	0.7	30	30
PGM1203	250	250	-30 ~ +70	560	18~50	10	0.8	30	30
PGM1204	250	250	-30 ~ +70	560	45~150	20	0.8	30	30
PGM1205	250	250	-30 ~ +70	560	140~300	20	0.8	30	30

► (PGM12-MP) Electronics Characteristics**

	Model	Vmax (VDC)	Pmax (mW)	Ambient Temp (°C)	Spectral Peak (nm)	Photo Resistance (10Lx) (KΩ)	Dark Resistance (MΩ)min	γ min	Response Time (ms)	
									Rise	Decay
	PGM1200-MP	250	250	-30 ~ +70	560	2~5	1.0	0.6	30	40
W	PGM1201-MP	ⁿ 250	250	- 30 ∼ +70	560	4~10	2.0	0.7	30	30
	PGM1202-MP	250	250	- 30 ∼ +70	560	8~20	5.0	0.7	30	30
	PGM1203-MP	250	250	-30 ~ +70	560	18~50	10	0.8	30	30
	PGM1204-MP	250	250	-30 ~ +70	560	45~150	20	0.8	30	30
	PGM1205-MP	250	250	-30 ~ +70	560	140~300	20	0.8	30	30

Electronics Characteristics

Note: All dimensions are in mm and NTS.

► (PGM20**) Electronics Characteristics

Model	Vmax	Pmax	Ambient	Spectral Peak	Photo Resistance	Dark Resistance	γ	_	seTime ns)
	(VDC)	(mW)	Temp (°C)	(nm)	$(10Lx)(K\Omega)$	(MΩ)min	mın	Rise	Decay
PGM2000	500	500	- 30 ∼ +70	560	2~5	1.0	0.6	30	40
PGM2001	500	500	- 30 ∼ +70	560	4~10	2.0	0.7	30	30
PGM2002	500	500	- 30 ∼ +70	560	8~20	5.0	0.7	30	30
PGM2003	500	500	- 30 ∼ +70	560	18~50	10	0.8	30	30
PGM2004	500	500	-30 ~ +70	560	45~150	20	0.8	30	30
PGM2005	500	500	- 30 ∼ +70	560	140~300	20	0.8	30	30

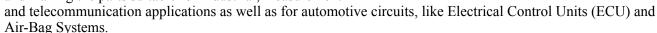
▶ (PGM20**-PP) Electronics Characteristics

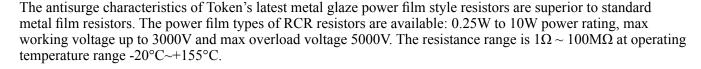
	Model	Vmax	Pmax	Ambient	Spectral Peak (nm)	Photo Resistance	Resistance Resistance		Response Time (ms)	
		(VDC)	(mW)	Temp (°C)	reak (IIIII)	$(10Lx)(K\Omega)$	(MΩ)min	mın	Rise	Decay
	PGM2000-PP	500	500	-30 ~ +70	560	2~5	1.0	0.6	30	40
	PGM2001-PP	500	500	-30 ~ +70	560	4~10	2.0	0.7	30	30
VW	w.PGM20024PPcor	n 500	500	-30 ~ +70	560	8~20	5.0	0.7	30	30
	PGM2003-PP	500	500	-30 ~ +70	560	18~50	10	0.8	30	30
	PGM2004-PP	500	500	-30 ~ +70	560	45~150	20	0.8	30	30
ĺ	PGM2005-PP	500	500	-30 ~ +70	560	140~300	20	0.8	30	30

Back to 1st Page - CdS Photo Resistors (PGM)

Version 2010

Anti-Surge Resistors


Thick-Film Power Resistors Handles Large Surges


Preview

A new range of Antisurge axial leaded power resistors, metal glaze resistive element on ceramic substrates, from Token Electronics.

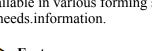
A carbon film resistor replacement, the new RCR series thick-film style resistors offer numerous benefits over the previous style devices, namely reduced costs, excellent thermal compliance, optimised a variety of surge capabilities and better solder joint reliability against temperature cycles.

Token succeeded in commercialising the compact thick-film type leaded resistors with high power and high antisurge characteristics, meeting latest design engineer requirements and making the parts suitable for industrial, measurement

All RCR series devices are RoHS-compliant, and compatible with high temperature soldering processes normally employed for lead free solders. Resistors are also available in various forming styles and different leads for different applications. Contact us with your specific needs.information.

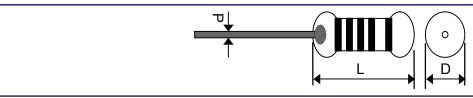
Applications

- Ballasts
- Amplifiers
- Industrial power supplies


www.DataSTelecommunications

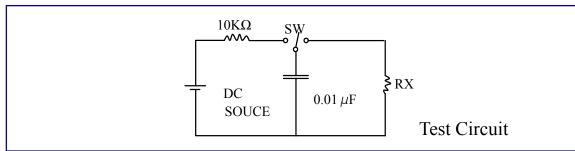
- Household appliances
- Automotive circuits, Computer, Instrumentation

Features


- High power at small sizes
- Max working voltage up to 3000V
- Lead (Pb)-free and RoHS compliant
- Operating temperature range: -20°C~+155°C
- Metal glaze power film, axial leaded type
- Max overload voltage 5000V, Tolerances: J (±5%)

www.token.com.tw

> Specifications & Dimensions (Unit: mm)



Type	Power Rating	L	D	$d \pm 0.05$	Н
RCR25	1/4W	6.5±1	2.3±0.5	0.5 ~ 0.6	
RCR50	1/2W	9.5±1	3.4±0.5	0.5 ~ 0.0	
RCR100	1W	12.0±1	4.0±0.5		
RCR200	2W	16.0±1	6.1±0.5		26±3
RCR300	3W	17.0±1	7.0±0.5	$0.7 \sim 0.8$	
RCR500	5W	24.0±1	8.0±0.5		
RCR1000	10W	max.50	max.10		

Power Rating

Туре	Power Rating	Max Working Voltage	Max Overload Voltage	Dielectric With-standing Voltage	TCP. (ppm/°C)	Resistance Range E24. J(±5%)(Ω)	Operating Temp.range
RCR25	1/4W	500V	700V	500V	±350	$1 \sim 33M$	
RCR50	1/2W	1000V	1500V	600V	±350	$1 \sim 68M$	
RCR100	1W	1500V	2500V	800V	±350	$1 \sim 100M$	-20°C~+155°C
RCR200	2W	2000V	3000V	800V	±350	$1\sim 100M$	-20 C~+133 C
RCR300	3W	2500V	4000V	1000V	±350	1 ~ 100M	
RCR500	5W	3000V	5000V	1000V	±350	1 ~ 100M	

Power Rating

	Power	Resistance Range (Ω)	Surge Voltage	Anti-Surge Characteristics	Surge Test Condition	
	0.25 W	50K < R	3KV			
WW	w.DataSheet4U.	$10K \le R < 100K$	3KV	(2.5 Sec. ON + 2.5 Sec. Off)	In accordance with	
	0.5 W	$100K \le R < 360K$	5KV	× 10 Cycles	IEC65 Safety	
	0.5 W	$360K \le R < 1M$	7KV	$\Delta R \le \pm (50\% R + 0.1\Omega)$	specification.	
		$1M \le R$	10KV			

> How to Order

• Part Number: RCR

2 Rated Power (W)

3 Resistance Value (Ω)

Code	Resistance Value (Ω)
1R0	1.0Ω
100R	100Ω
220K	220ΚΩ
22M	22ΜΩ

• Resistance Tolerance (%)

Code	Resistance Tolerance
J	±5%

6 Package

Code	Package
P	Bulk
TB	Taping Box

Carbon Composition Resistors

The High Pulse Withstanding Carbon Composition Resistors Handle Big Peaks and Pulses

Preview

The high pulse withstanding capability of the CCR series of carbon composition resistors from Token Electronics offers designers a compact solution for applications involving high voltages and high-energy pulses.

Though, many resistor manufacturers claim to offer carbon composition replacements. However, these wirewound or thick film alternatives do not fully match the pulse performance and low inductance of carbon composition.

Token's CCR series now offers the industry a carbon composition resistor made up of a solid rod of conductive composite material, the chemical composition of which is altered to produce different resistance values.

The main advantage of carbon composition is their pulse handling capability. This is due to the fact that the entire rod conducts and so the thermal mass is far higher, which results in a higher energy capability. Due to the need for higher peak voltages, the CCR range is perfect for vehicle ignition system applications, medical monitoring equipment and as output resistors in defibrillators.

The standard carbon composition CCR resistor offers a power rating of 1/4W and 1/2W at 25°C and is made up of a solid rod of conductive composition material, which can be altered to produce different resistance values. With a typical resistance range of $2.2\Omega \sim 22M\Omega$, resistance tolerance is $J(\pm 5\%)$ and $K(\pm 10\%)$. Resistors with 5% and 10% tolerance have four bands indicating value and tolerance in accordance with IEC62.

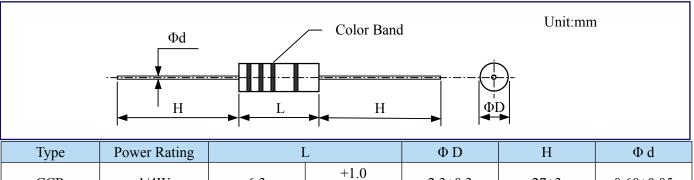
Our custom solutions are designed to address your need for technical and economic success in a timely manner. Contact us with your specific needs.

Features

- Low inductance
- Solid rod carbon composition
- Power rating 1/4W and 1/2W

www.DataSh Resistance range $2.2\Omega \sim 22M\Omega$

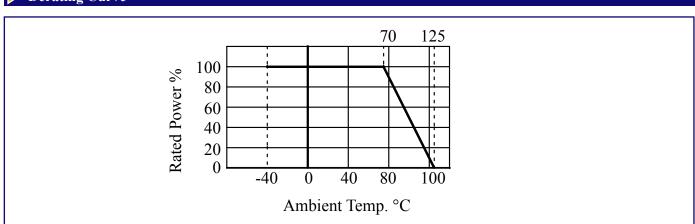
- Resistance tolerance $J(\pm 5\%)$ and $K(\pm 10\%)$
- High pulse withstanding and high energy capability
- Products with Pb-free Terminations and RoHS compliant


Applications

- Strobe Lighting
- High Power Lighting
- Medical defibrillators
- Welding, Automotive
- Inrush Current Limiting
- High Voltage Power Supplies
- Protection (e.g. Discharge Circuits, Surge Protection)

CCR Carbon Composition Resistors

Dimensions (Unit: mm)

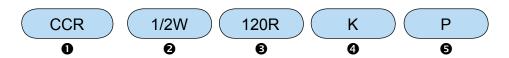

Type	Power Rating	L		ΦD	Н	Φd
CCR	1/4W	6.3	+1.0	2.3±0.3	27±3	0.60±0.05
CCR	1/2W	10	+0.5 -1.5	3.5±0.3	27±3	0.68±0.05

> Ratings Specifications

Туре	Power Rating	Resistance Range	Tolerance E12,E24	Max Working voltage	Max overload Voltage	Rated Ambient Temp.	Operating Temp. Range
CCR	1/4W	$\begin{array}{c} 2.2\Omega \\ \sim 12M\Omega \end{array}$	I/+50/\W+100/	250V	350V	+70°C	-40°C~+125°C
CCR	1/2W	2.2Ω ~22MΩ	J(±5%)K±10%	400V	700V	+70°C	-40°C~+125°C

Rated Voltage=√Power Rating × Resistance Value or Max. working voltage, whichever is lower.

Derating Curve



CCR Carbon Composition Resistors

Performance

Desci	ription	Perform	ance Require	ments	Test Method	
		Resistance Range	Maximum R Value Chan	ge %		
		Runge	-40~+20°C	+20~+100°C		
Resistance		<1ΚΩ	±6.5% ±5.0%		T T.	
Temperatu	re	1.1ΚΩ ~10ΚΩ	±10%	±6.0%	Test Temperature +20°C /-40°C /+20°C /+100°C /+20°C	
Coefficien	t	11ΚΩ ~100ΚΩ	±13%	±7.5%	120 67-40 67+20 67+100 67+20 6	
		11KΩ ~1MΩ	±15%	±10%		
		$1.1M\Omega \sim 10M\Omega$	±20%	±15%		
		>11ΜΩ	±25%	±20%		
Short-time	Overload	Δ R≤±2.5%			Rate Voltage*2.5 or maximun overload voltage (the lower)5sec.	
With Standing Voltage		No flashover or b	reakdown		2times maxium working voltage 1 minute	
T 1	Pulled				Load 10N 10s	
Terminal Strength	Winded	ΔR≤±2% No visi	ble damage		Load 10N 4*90°	
Suchgui	Twisted				3*360° in opposite direction	
Resistance vibration	to	No visible damage			10~50Hz 3 direction 2 hours each	
Solder-hea Resistance		ΔR≤±5% Marks legible,no visible damage			350°C 4mm from the body,3 seconds	
Solderability		At least 95% if the dipping surface must be covered by new solder, no flaws gathered.			235°C 2mm from the body,2 seconds	
Temperature Cycle		ΔR≤±2% No visible damage			-40°C(30min.)/85°C(30min.)5 cycles	
Humidity		ΔR≤±10% No visible damage			40°C 95% RH 240 hours	
Load Life		ΔR≤±10% No vi	isible damage	marks legible,	Rated voltage or maximum working voltage, 1.5 hours on, 0.5 hours off, 40°C 1000 hours	

How to Order

• Part Number: CCR

2 Rated Power (W)

3 Resistance Value (Ω)

	Code	Resistance Value
- T	2R2	2.2Ω
	120R	120Ω
	1M2	1.2ΜΩ
	22M	22ΜΩ

• Resistance Tolerance (%)

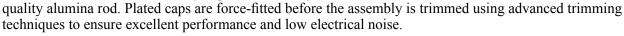
Code	Resistance Tolerance
J	±5%
K	±10%

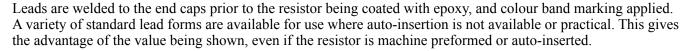
6 Package

Code	Package
P	Bulk

Back to 1st Page - Carbon Composition Resistors (CCR)

Metal Film Precision Resistors


Precision Metal-Film Resistors for Low-Cost Uses


Preview

Token offers a low-cost alternative commercial metal film resistor for precision applications. The MF series offers tight tolerances and low TCRs over a wide resistance range and are suitable for applications where long-term stability is paramount.

The MF is available in a resistance range of 10Ω to $1M\Omega$ with a standard resistance tolerance of $\pm 1\%$ and a temperature coefficient of resistance (TCR) of +15/-25ppm/°C, although other tolerances and TCR s are available.

The resistance element in these devices is a precisely controlled thin film of metal alloy deposited on a high

The MF is RoHS compliant with 100% lead free, Contact us with your specific needs.

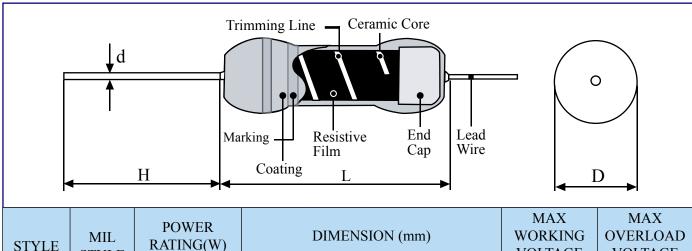
Features

- Low cost, low noise, operating temperature range -55° C $\sim 155^{\circ}$ C
- Precision tighted tolerance available in $\pm 0.1\%$, $\pm 0.25\%$, $\pm 0.5\%$, $\pm 1\%$
- Pure tin plating provides compatibility with lead (Pb)-free and lead containing soldering processes

Applications

- Telecom

www.DataSlTest and measurement

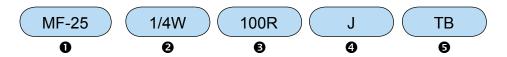

- All general purpose applications

Dimensions & Specifications (Unit: mm)

STYLE	LE MIL POWER RATING(W)			DIMENSION (mm)			MAX WORKING VOLTAGE		MAX OVERLOAD VOLTAGE		
		RN	RNS	L	D	Н	$d \pm 0.05$	RN	RNS	RN	RNS
MF - 12	RN-50	1/8W	1/4W	3.2 ± 0.2	1.5 ± 0.2	26 ± 1.0	0.40~0.45	200	150	400	300
MF - 25	RN-55	1/4W	1/2W	6.0 ± 0.3	2.3 ± 0.3	26 ± 1.0	0.40~0.50	250	200	500	400
MF - 50	RN-60	1/2W	1W	9.0 ± 0.5	3.0 ± 0.5	26 ± 1.0	0.50~0.55	350	250	700	500
MF - 100	RN-65	1W	2W	11 ± 1.0	4.0 ± 0.5	35 ± 3.0	0.75~0.80	500	300	1000	600
MF - 200	RN-70	2W	3W	15 ± 1.0	5.0 ± 0.5	35 ± 3.0	0.75~0.80	500	350	1000	700

Resistance Range

STYLE	MIL STYLE	TOLERANCE	TC+15-25PPM	TC+50PPM	TC+100PPM	REMARK
MF-12	RN-50	±1% ±0.5% ±0.25%	100Ω-100ΚΩ 100Ω-100ΚΩ 100Ω-100ΚΩ	10Ω-1ΜΩ	10Ω-1ΜΩ	
MF-25	RN-55	±1% ±0.5% ±0.25% ±0.1%	51.1Ω-511ΚΩ 51.1Ω-511ΚΩ 100Ω-300ΚΩ 100Ω-300ΚΩ	10Ω-1ΜΩ	10Ω-1ΜΩ	*C. 1 1
MF-50	RN-60	±1% ±0.5% ±0.25% ±0.1%	51.1Ω-1ΚΩ 51.1Ω-1ΚΩ 100Ω-551ΚΩ 100Ω-330ΚΩ	10Ω-1ΜΩ	10Ω-1ΜΩ	*Standard resistance is 10Ω -1M Ω , below or over this resistance
MF-100	RN-65	±1% ±0.5% ±0.25% ±0.1%	51.1Ω-1ΚΩ 51.1Ω-1ΚΩ 100Ω-551ΚΩ 100Ω-330ΚΩ	10Ω-1ΜΩ	10Ω-1ΜΩ	on request.
ww.DataSheet4U MF-200	J.com RN-70	±1% ±0.5% ±0.25% ±0.1%	51.1Ω-1ΚΩ 51.1Ω-1ΚΩ 100Ω-551ΚΩ 100Ω-330ΚΩ	10Ω-1ΜΩ	10Ω-1ΜΩ	



MF Metal Film Precision Resistors

Electrical Performance

REQUIREMENTS	CHARACTERISTICS	JIS C 5202	MIL-R-10509F
Operating Temp.Range	-55°C ~ 155°C		
Temp Coefficient (°C)	±25 ±50 ±100	5.2	4.6.12
Short Time Overload	$\pm (0.5\%\% + 0.05\Omega)$	5.5 A	4.6.6
Dielectric Withstanding V	$\pm (0.5\% + 0.05\Omega)$	5.7 A	4.6.8
Effect of Soldering	$\pm (0.5\% + 0.05\Omega)$	6.4 350°C 3 sec	4.6.10
Temperature Cycling	$\pm (0.5\% + 0.05\Omega)$	7.4	4.6.4
Low Temp Operation	$\pm (0.5\% + 0.05\Omega)$		4.6.5
Terminal Strength	$\pm (0.5\% + 0.05\Omega)$	6.1	4.6.7
Moisture Resistance	±(1%+0.05Ω)	7.9 1,000hr	MIL R-22684 4.6.10
Load Life	±(1%+0.05Ω)	7.10 1,000hr	4.6.13
Storage	±(0.2%+0.05Ω)	Shelved one year in a room of humidity	f normal temperature and

How to Order

- Part Number: MF
- 2 Rated Power (W)
- **3** Resistance Value (Ω)

Code	Resistance Value
10R	10Ω
100R	100Ω
1K	1ΚΩ
1M	1ΜΩ

4 Resistance Tolerance (%)

Code	Resistance Tolerance
J	±5%

6 Package

Code	Package
P	Bulk

Metal Oxide Resistors

Metal Oxide Resistors on The Pulse in Various Forming Styles for Different Applications

Preview

Now available from Token Electronics is a new range of highly stable and reliable metal oxide resistors providing high power in a small package with various forming styles and different leads for different applications.

New RS series resistors are ideal for pulse applications in adverse conditions and are available in different sizes with power ratings of 0.5W to 10W for a power voltage range from 200V to 850V. Highly temperature resistant the devices feature a resistance range from 10Ω to $47K\Omega$.

RS series resistors are available in various forming styles and different leads for different applications like power supplies, amplifiers, household appliances and ballasts.

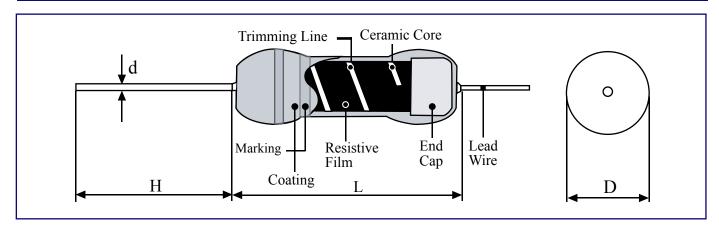
Manufactured by depositing a homogeneous oxide film of metal alloy onto a high-grade ceramic body, the metal oxide resistors are coated with a nonflammable lacquer providing mechanical, electrical and climatic protection.

The devices come packaged in ammo pack boxed or tape and reel format. All RS Series devices are RoHScompliant, and compatible with high temperature soldering processes normally employed for lead free solders.

Contact us with your specific needs.

Applications

- Ballasts
- Amplifiers
- Power supplies
- Telecommunications
- Household appliances
- Automotive, Computer, Instrumentation


Features

- Tolerances: G ($\pm 2\%$), J ($\pm 5\%$)
- Lead (Pb)-free and RoHS compliant
- **Power wattages up to 10W at + 25 °C
 - Operating temperature range: -55°C~200°C
 - Axial leaded type, high power at compact sizes
 - Replace carbon composition components in some applications

> Specifications & Dimensions (Unit: mm)

Ту	pe	т	D	II	H d ± 0.05	MAX Working Volta		Dielectric Withstanding Voltage	
RSS	RSN	L	D	П		RSS	RSN	RSS	RSN
1/2W	1/4W	6.0 ± 0.3	2.3 ± 0.3	26 ± 1	0.40~0.50	200V	300V	400V	500V
1W	1/2W	9.0 ± 0.5	3.0 ± 0.5	26 ± 1	0.50~0.55	250V	350V	500V	600V
2W	1W	11 ± 1.0	4.0 ± 0.5	26 ± 3	0.75~0.80	300V	350V	600V	700V
3W	2W	15 ± 1.0	5.0 ± 0.5	35 ± 3	0.75~0.80	350V	350V	700V	700V
5W	3W	17 ± 1.0	6.0 ± 0.5	35 ± 3	0.75~0.80	350V	500V	700V	1000V
6W	5W	24 ± 1.0	8.0 ± 0.5	38 ± 3	0.75~0.80	500V	700V	800V	1000V
7W	6W	24 ± 1.0	8.0 ± 0.5	38 ± 3	0.75~0.80	500V	700V	800V	1000V
10W	7W	41 ± 1.0	8.0 ± 0.5	38 ± 3	0.75~0.80	750V	850V	850V	1000V
	10W	53 ± 1.0	8.0 ± 0.5	38 ± 3	0.75~0.80	750V	850V	850V	1000V

Electrical Performance

Requirements		Characteristics	Test Method		
		Characteristics	JIS C 5202	MIL-R-22684B	
Operating Temp.Range		-55°C~200°C			
Temp.Coefficio	ent (ppm C)	± 300	5.2	4.6.11	
	Short Time Overload	$\pm (1\% + 0.05\Omega)$	5.2A	4.6.5	
Max.	Effect of Soldering	$\pm (1\% + 0.05\Omega)$	6.4 350°C 2Sec	4.6.9	
Ressitance	Temp.Cycling	$\pm (1\% + 0.05\Omega)$	7.4-55°C / 85°C	4.6.3	
Changes	Moisture Resistance	± 5%	7.9 1,000hr	4.6.10	
	Load Life	± 5%	7.10 1,000hr	4.6.12	
Dielectric Withstanding Voltage		$\pm (0.5\% + 0.05\Omega)$	5.7A	4.6.7	
Non-Combustibility		The resistor shall withstand Overload test in accordance with Artice UL492.2 13 without producing a fire hazard.			
Resistance to S	Solvents	No damage on the appearance,co.or bands.			

RSS, RSN Metal Oxide Resistors

> Application Notes

- Never use organic solvents to clean non-flammable resistors.
- Maintaining a surface temperature of 200°C or less will extend resistors service life.
- Although the hardness exceeds that of a 3H pencil lead, do not nick the coating with screwdrivers or other pointed objects.
- Smoke emitted from non-flammable resistors on initial use in powered circuits is a normal phenomenon and the component can be safely utilized.
- Non-flammable resistors cannot be utilized in oil. Non-flammable resistors cannot be used in high frequency machinery because of the inductance produced by the grooving.
- Avoid touching non-flammable resistors in operation; the surface temperature ranges from approximately 350 °C to 400°C when utilized at the full rated value.
- All metal oxide film resistors (RSS, RSN) manufactured by Token Electronics Co., Ltd. comply with the U.S. UL-94 non-flammability test, Class V-0, a continuous combustion period of zero seconds.
- Less resistant against external shocks than ordinary resistors due to special flame retardant coating. So, never give shocks or vibrations on the resistors. Also never damage them by picking up the coated films with pliers, tweezers, etc.
- After cleaning, no external power should be put on the coated films before they are well dried.

How to Order

- Part Number: RSS, RSN
- 2 Rated Power (W)
- **3** Resistance Value (Ω)

Code	Resistance Value
10R	10Ω
100R	100Ω
DataSheet] K .com	1ΚΩ
10K	10ΚΩ

4 Resistance Tolerance (%)

Code	Resistance Tolerance
J	±5%

5 Package

Code	Package
TB	Taping Box

Back to 1st Page - Metal Oxide Resistors (RSS, RSN)

Carbon Film Resistors

Carbon Film Resistors are Cost-Effective Option

Preview

Providing design engineers with an economical power resistor with high quality performance, Token Electronics now offers commercial grade low power carbon film resistors.

Designated the CF series, the resistors are available in both standard CFN and miniature CFS sizes, the conformally coated resistors offer high quality performance for applications that do not require surge protection or precision tolerances.

The commercial grade carbon CF series is available in flame retardant packaging and have ideal specifications for consumer electronic or electrical devices. The CF devices offer a wide resistance range for devices with power ratings up to 3W in standard CFN size, and 5W in miniature CFS sizes, delivering high quality performance for general purpose applications.

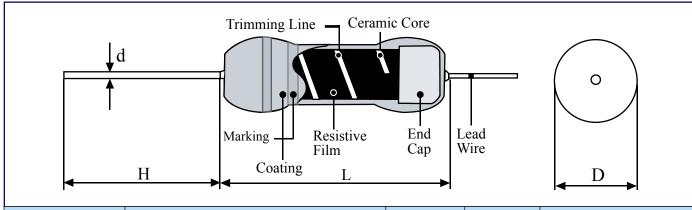
The CF series resistors are ideal for general use applications including electrical equipment, small appliances and consumer electronics, such as televisions and other high-volume products. The CF series feature standard tolerances is G ($\pm 2\%$) and J ($\pm 5\%$), with a resistance range from 0.5 Ω to 22M Ω .

All CF series devices are RoHS-compliant, and compatible with high temperature soldering processes normally employed for lead free solders. Also, CF resistors are available in various forming styles and different leads for different applications. Contact us with your specific needs.

Features

- Tolerances: G ($\pm 2\%$), J ($\pm 5\%$)
- Power wattages up to 5W at +25°C
- Lead (Pb)-free and RoHS compliant
- Operating temperature range: -55°C~+155°C
- Axial leaded type, high power at small sizes

Applications


www.DataShConsumer Electronic

- Telecommunications
- Household Appliances
- Automotive, Computer, Instrumentation

Dimensions & Specifications (Unit: mm)

Type			Dimensi	on (mm)		Maximum	Maximum	Resistance	Tolerance
CFN	CFS	L	D	Н	d±0.05	Working Voltage			± 5%(J)
1/8 W		3.2±0.2	1.5±0.2	26±1	0.40~0.45	200	400	10Ω-470K	1Ω-4.7M
1/6 W	1/4 W	3.2±0.2	1.5±0.2	26±1	0.40~0.45	200	400	1Ω-10M	0.5Ω-22Μ
1/4 W	1/2 W	6.2±0.5	2.3±0.3	26±1	0.40~0.50	250	500	1Ω-10M	0.5Ω-22Μ
1/3 W	1/2 W	8.5±0.5	2.8±0.3	26±1	0.50~0.55	250	500	1Ω-10M	0.5Ω-22Μ
1/2 W	1 W	9.0±0.5	3.0±0.5	26±1	0.50~0.55	350	700	1Ω-10M	0.5Ω-22Μ
1 W	2 W	11±1.0	4.0±0.5	35±3	0.75~0.80	500	1000	1Ω-10M	0.5Ω-22Μ
2 W	3 W	15±1.0	5.0±0.5	35±3	0.75~0.80	500	1000	1Ω-10M	0.5Ω-22Μ
3 W	5 W	17±1.0	6.0±0.5	35±3	0.75~0.80	500	1000	1Ω-10M	0.5Ω-22Μ

Electrical Performance

Test Items	Condition	Spec
Operating Temp.range	-55°C ~ +155°C	
Short Time Over Load	2.5 Times of rated voltage for 5sec.	± 1%
Load Life	70 °C on-off cycle 1,000hrs.	± 5%
Moisture-Proof Load Life	40 °C 95% RH on-off cycle 1,000hrs	± 5%
Soldering After Resistance	350 °C for 3sec.	± 0.5%
Temperature Cycle	-30 °C~85 °C 5cycles	± 2%
	1Ω~22ΚΩ	± 300PPM / °C
	22ΚΩ~510ΚΩ	± 450PPM / °C
Resistance Temperature Coefficient	510KΩ~1MΩ	± 800PPM / °C
	$1M\Omega\sim2.2M\Omega$	± 1000PPM / °C
	2.2ΜΩ~5.1ΜΩ	± 1400PPM / °C

► How to Order

• Part Number: CFN, CFS

2 Rated Power (W)

3 Resistance Value (Ω)

Code	Resistance Value
1R	1Ω
10R	10Ω
100R	100Ω
10K	10ΚΩ
10M	10ΜΩ
22M	22ΜΩ

4 Resistance Tolerance (%)

Code	Resistance Tolerance
G	±2%
J	±5%

5 Package

Code	Package
TB	Taping Box

Zero Ohm Jumper Wire Resistors

A Quick Solution to PCB Board Connections

Preview

Jumper Wire (JW series a zero-ohm link) and zero-ohm resistor (ZO series) are a link used to connect traces on a printed circuit board that is packaged in the same format as a resistor.

The resistance of JW and ZO series is only approximately zero; only a maximum 0.05Ω is specified. Thus, a fractional tolerance (as a percentage of the zero-ohm ideal value) would be infinite and is not specified.

Axial through-hole zero-ohm resistors are especially suited for automatic machine insertion and generally marked with a single black band.

Token's JW and ZO Series offer a quick solution to the following problems:

- 1. Circuit tuning by changing point connections.
- 2. An "after the fact design" the requires new point connections.
- 3. Inability to connect two points on a PCB board due to other circuit paths which must be crossed over.

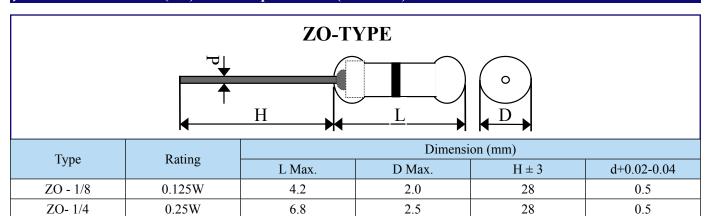
Allowing customers to standardise on the PCB layout and use jumper wire and zero ohm resistor for required model variations, Token has developed a wider version for the interconnection device between points on a PCB board as jumper wires or crossovers. Contact us with your specific needs.

> Applications

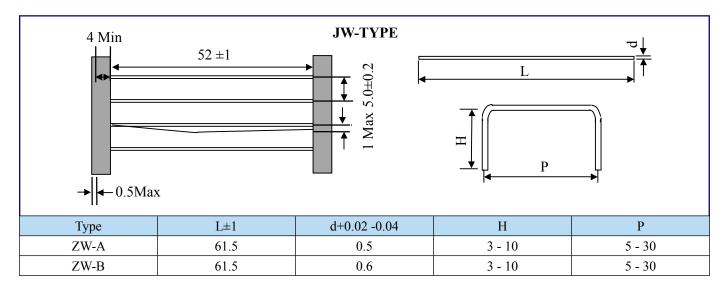
- Interrupt processing
- Input and output distribution
- Ideal connection for circuit boards
- Dummy components on a PCB test board

> Features

- Maximum resistance 0.05Ω


www.DataShPacking:,Tape/Reeled or Bulk

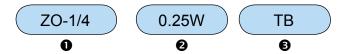
- RoHS compliant with 100% lead free
- Lead Material: Tin-plated copper lead
- Ideal straight through between point on PC Boards



TOKEN ZO, JW Zero Ohm Jumper Wire Resistors

Zero Ohm Resistors (ZO) General Specification (Unit: mm)

▶ Jumper Wire Resistors (JW) General Specification (Unit: mm)


> Electrical Performance

Requirements	Characteristics
Maximum Resistance	0.05Ω
Lead Material	tin-plead copper
Body Material	Electrical grade, high performance molding compound
Dielectric Withstanding Voltage	Atomspheric-500V RMS, Reduced-325V RMS
Insulation Flammability	Resistor Insulation is self extinguishing within 10 seconds after externally applied flame is removed.
Current Rating	25 AMPS at 25°C, dreading to 0 AMPS at 150°C

www.DataSheet4U.com

TOKEN ZO, JW Zero Ohm Jumper Wire Resistors

▶ How to Order

1 Part Number: ZO-1/4, ZO-1/8, ZW-A, ZW-B

2 Rated Power (W): 0.25W, 0.125W

Package

Code	Package
р	Bulk
TB	Taping Box

Cement Resistors - SQP, SQM, SQT, SQH, SQZ Series

Low-cost Ceramic Cased Resistors Suit High Volumes and High Temperatures

Preview

Token electronics offers commercial grade ceramic-housed power wirewound and film resistors. For medium to high rated power (2W...50W), SQ resistors provide full electrical insulation mounted in a ceramic case.

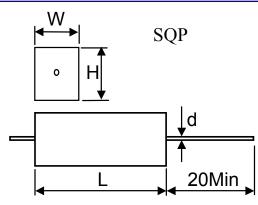
Axial, radial, vertical styles and several mounting techniques of wire leads or quick disconnects are available from Token's SQP, SQM, SQZ, and SQH.

The SQ series power resistors feature ideal specifications for high volume and high-temperature applications. Frequently used in power supplies, motor controllers, and automotive applications, these products can be custom tailored to individual needs.

With the extended resistance range and high-temperature rating, the resistors can be specified for operation in harsh environments. The SQ series wirewound resistors feature a resistance range from 0.1Ω to $3K\Omega$, while the SQ series power film resistors have a resistance range of 80Ω to 150K Ω .

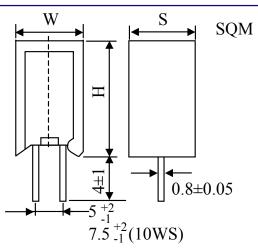
Standard tolerances for both devices are to $\pm 5\%$, with TCRs of ± 300 ppm/°C and above. Token is equipped to design and produce custom components to meet many design and reliability demands. Contact us with your specific needs.

Applications


- Power supplies
- Voltage dividers
- Motor controllers
- Automotive applications
- Power electronics circuits

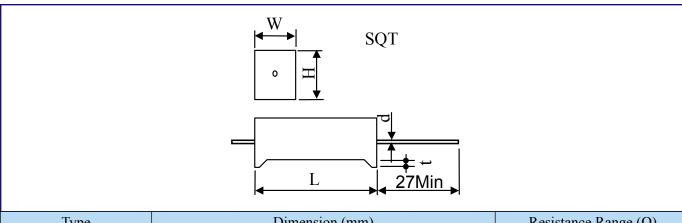
Features

- Low cost, space saving
- RoHS compliant with 100% lead free
- www.DataS Direct mounting on printed circuit board
 - Circuit board lock-in mounting tabs available
 - High performance for power required applications
 - High power to size ratio, Special inorganic potting compound
 - Ceramic case provide high thermal conductivity in a fireproof package

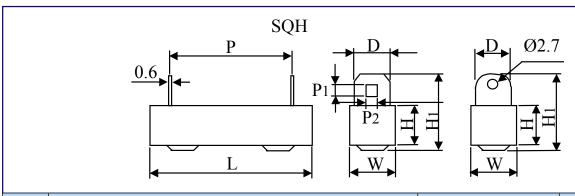


SQP - Dimensions

Type		Dimens	Resistance	Range (Ω)		
SQP	W±1 H±1		L±1.5	d±0.05	SQP	RS+SQP
2W	7	7	18	0.5~0.6	0.1~82	
3W	8	8	22	0.7~0.8	0.1~180	181~33K
5W	10	9	22	0.7~0.8	0.1~180	181~50K
7W	10	9	35	0.7~0.8	0.1~430	431~50K
10W	10	9	48	0.7~0.8	0.1~470	471~50K
15W	12.5	11.5	48	0.7~0.8	0.5~600	601~150K
20W-25W	14	13.5	60	0.7~0.8	0.8~1K	1.1~150K


SQM - Dimensions

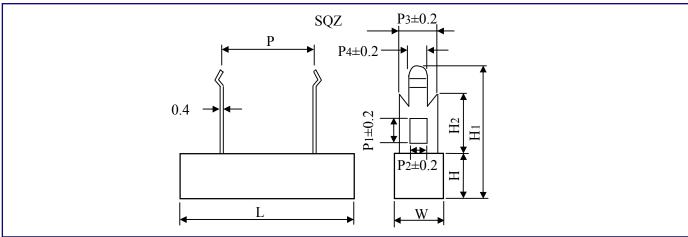
	Type	I	Dimension (mm)	Resistance Range (Ω)		
	SQM	H±1.5	W±1	S±1	SQM	RS+SQM
	2W	20	12	8	0.1-8.0	81-50K
VV	w.DataSheet 3W com	25	12	8	0.1-180	181-50K
	5W	25	13	9	0.1-180	181-50K
	7W	39	13	9	0.1-430	431-47K
	10W	51	13	12	0.1-470	471-47K
	10WS	35	16	12	0.1-430	431-47K



> SQT - Dimensions

Type		Dimensio	Resistance Range (Ω)			
SQT	H±1.5	W±1	L±1	t±1	SQT	RS+SQM
3W	9	10	22	1.5	0.1-180	181-50K
5W	9	10	22	1.5	0.1-180	181-50K
7W	9	10	35	3.0	0.1-430	431-47K
10W	9	10	48	3.0	0.1-470	471-47K

> SQH - Dimensions



Type		Dimension (mm)								ce Range (Ω)	MaxWorkingVoltage
SQH	W±1	H±1	L±1.5	P±1	H1±1	D±0.5	P1±0.2	P2±0.2	SQH	RS+SQH	
10W	10	9	48	32	21	5	2.5	2	0.1~500	500~50K	500V
15W	12.5	11.5	48	32	21	5	2.5	2	1~1K	1K~150K	600V
20W	14.5	13.5	60	43	24	6	3.0	2.5	1~2K	2K~150K	700V
30W	19	19	75	56	29	6	3.0	2.5	1~2K		700V
40W	19	19	90	67	29	6	3.0	2.5	2~3K		700V
50W	19	19	90	67	29	6	3.0	2.5	2~3K		700V

www.DataSheet4U.com

> SQZ - Dimensions

Type		Dimension (mm)									Resistance Range (Ω)	
SQZ I	L±1.5	W±1	H±1	P±1.5	P1	P2	Р3	P4	H1±1	H2±1	SQZ	RS+SQZ
5W	25(28)	10	10	9.5(15)	4.2	2	5	1.5	25	10.5	0.1-130	131-50K
7W	36	10	10	20	4.2	2	5	1.5	25	10.5	0.1-430	431-50K
10W	48	10	10	32	4.2	2	5	1.5	25	10.5	0.2-470	471-50K
15W	48	12.5	12	32	4.2	2	5	1.5	26	10.5	1-600	601-150K
20.25W	60	15	13	42	7	6	10	2.7	36	15.0	1-1K	1.1K-150K

SQP, SQM, SQT, SQH, SQZ - Electrical Performance

TEST ITEMS	CONDITION	SPEC.
Resistance Temp Coeff.	-30°C~ 200°C	±300ppm / °C
Short Time Over Load	2.5 times of rated wattage for 5 sec.	±2 %
Rated Load	Rated wattage for 30 min.	±1 %
Voltage Withstanding	800 v AC 1 min.	no charge
Temp. Cycle	-30°C~ 85°C for 5 cycles	±1 %
Load Life	70°Con-off cycle 1000hrs.	±5 %
Moisture-proof Load Life	40°C95% RH on-off cycle 500 hrs.	±5 %
Incombustibility	16 times of rated wattage for 5 min.	not flammed

> SQP, SQM, SQT, SQH, SQZ - Material Specifications

• Core :

High purity grade alumina ceramic rod.

• Terminals:

Tin/lead plated (Lead (Pb)-free will be 100 % tin).

• Body:

Steatite ceramic case with inorganic potting compound.

• Element:

Copper-nickel alloy, nickel-chrome alloy, resistive wirewound or power film depending on resistance value.

> How to Order

- Part Number: SQP, SQM, SQT, SQH, SQZ
- 2 Rated Power (W)
- **3** Resistance Value (Ω)

Code	Resistance Value
0R1	0.1Ω
100R	100Ω
1K	1ΚΩ
100K	100ΚΩ

• Resistance Tolerance (%)

Code	Resistance Value
J	±5%

5 Package

www.DataSheet4U.com