

SANYO Semiconductors DATA SHEET

Bi-CMOS IC LV8042LG — For Digital Still Cameras 7-Channel Single-Chip Motor Driver ICs

Overview

The LV8042LG is Motor driver 7ch single-chip for DSC.

Features

- Micro-step driven stepping motor driver×2
- PWM driven forward/reverse motor driver (changeover to the micro-step driving stepping motor driver 1ch possible) $\times 2$
- PWM driven forward/reverse motor driver×2
- Constant-current forward/reverse motor driver × 1
- Two-phase, single-two phase full torque, single-two phase, 4W1-2, phase excitation drive changeover possible (1/2/3/4ch)
- Progress of micro-step driven excitation steps by clock signal input only (1/2/3/4ch)
- Holding electrification current changeover in four steps possible by serial data (1/2/3/4ch)
- Constant-current control chopping frequency variable with external resistor (1/2/3/4ch)
- 8-bit wire serial data control

Actuator application example

	Shutter Iris		Focus	Zoom
Application 1	Constant current /VCM	Saturation /STM or VCM	Micro-step /STM	Micro-step /STM
Application 2	Constant current /VCM	Saturation /STM or VCM	Micro-step /STM	Saturation /STM or DCM
Application 3	Constant current /VCM	Micro-step /STM	Micro-step /STM	Saturation /STM or DCM

- Any and all SANYO Semiconductor Co.,Ltd. products described or contained herein are, with regard to "standard application", intended for the use as general electronics equipment (home appliances, AV equipment, communication device, office equipment, industrial equipment etc.). The products mentioned herein shall not be intended for use for any "special application" (medical equipment whose purpose is to sustain life, aerospace instrument, nuclear control device, burning appliances, transportation machine, traffic signal system, safety equipment etc.) that shall require extremely high level of reliability and can directly threaten human lives in case of failure or malfunction of the product or may cause harm to human bodies, nor shall they grant any guarantee thereof. If you should intend to use our products for applications outside the standard applications of our customer who is considering such use and/or outside the scope of our intended standard applications, please consult with us prior to the intended use. If there is no consultation or inquiry before the intended use, our customer shall be solely responsible for the use.
- Specifications of any and all SANYO Semiconductor Co., Ltd. products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.

Specifications

Absolute Maximum Ratings at $Ta = 25^{\circ}C$

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage 1	V _M max		6	V
Supply voltage 2	V _{CC} max		6	V
Output peak current	l _O peak	1ch/2ch/3ch/4ch/5ch/6ch/7ch Pulse width<10ms, ty≤20%	600	mA
Output continuous current	I _O max	1ch/2ch/3ch/4ch/5ch/6ch/7ch	400	mA
Allowable power dissipation 1	Pd max1	Independent IC	0.32	W
Allowable power dissipation 2	Pd max2	Mounted on a specified board *	1.4	W
Operating temperature	Topr		-20 to +85	°C
Storage temperature	Tstg		-55 to +150	°C

Note *1: Mounted on a specified board: 40mm×50mm×0.8mm glass epoxy (four-layer substrate)

Allowable Operating Range at Ta = 25 °C

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage range 1	VM		2 to 5.5	V
Supply voltage range 2	VCC		2.7 to 5.5	V
Logic input voltage	VIN		0 to V _{CC} +0.3	V
Chopping frequency	fchop	1ch, 2ch, 3ch, 4ch	50 to 200	kHz
Clock frequency	fCLK	CLK12, CLK34	to 64	kHz
PWM frequency	fPWM	PWM3, PWM4, PWM5, PWM6	to 100	kHz

Electrical Characteristics at Ta = 25° C, VM = 5V, V_{CC} = 3.3V

Parameter	Symbol	Conditions		Linit		
Farameter	Symbol	Conditions	min	typ	max	Unit
Standby current drain	Istn	ST="L"			1.0	μΑ
Operating current drain 1	IM	ST="H", PWM="H", IN72="H"		50	100	
		no load		50	100	μΑ
Operating current drain 2	ICC	ST="H", PWM="H", IN72="H"		4 0	5.0	mΔ
		no load		4.0	5.0	ША
V_{CC} low-voltage cutting voltage	VthV _{CC}		2.1	2.35	2.6	V
Low-voltage hysteresis voltage	VthHIS		100	150	200	mV
VG reference voltage	VGL		4.4	4.7	5.0	V
Charge pump boost voltage	VGH		VM+3.5	VM+4	VM+4.5	V
Charge pump rise time	tONG	C (VGH)=0.1µF		0.1	0.2	ms
Charge pump oscillation frequency	Fchg	R=20kΩ	100	125	150	kHz
Thermal shutdown temperature	TSD	Design guarantee*	150	160	180	°C
Thermal hysteresis width	∆TSD	Design guarantee*	20	30	40	°C
Stepping motor driver (1ch/2ch)						
Output ON resistance	Ronu1	I _O =400mA, upper		0.6	0.7	Ω
	Rond1	I _O =400mA, lower		0.6	0.7	Ω
Output leak current	I _O leak1				1.0	μA
Diode forward voltage	VD1	ID=-400mA	0.6	0.9	1.2	V
Logic pin input current	I _{IN} L1	V _{IN} =0V (ST, CLK12)			1.0	μA
	I _{IN} H1	V _{IN} =3.3V (ST, CLK12)	20	33	50	μΑ
Logic input "H" level voltage	V _{IN} H1	ST, CLK12	2.5			V
Logic input "L" level voltage	V _{IN} L1	ST, CLK12			1.0	V

Note: * Design target value. These items are not tested.

Continued from pred	ceding page.						
Parameter		Ourschal	Que d'élèce e		Ratings		
		Symbol	Conditions	min	min typ max		Unit
Current selection reference voltage	4W1-2 phases		Step 16 (1ch comparing level during initialization)	0.185	0.200	0.215	v
level			Step 15 (initialization +1)	0.185	0.200	0.215	V
			Step 14 (initialization +2)	0.185	0.200	0.215	V
			Step 13 (initialization +3)	0.176	0.191	0.206	V
			Step 12 (initialization +4)	0.170	0.185	0.200	V
			Step 11 (initialization +5)	0.162	0.177	0.192	V
			Step 10 (initialization +6)	0.154	0.169	0.184	V
			Step 9 (initialization +7)	0.146	0.161	0.176	V
			Step 8 (initialization +8)	0.129	0.144	0.159	V
			Step 7 (initialization +9)	0.113	0.128	0.143	V
			Step 6 (initialization +10)	0.097	0.112	0.127	V
			Step 5 (initialization +11)	0.079	0.094	0.109	V
			Step 4 (initialization +12)	0.062	0.077	0.092	V
			Step 3 (initialization +13)	0.044	0.059	0.074	V
			Step 2 (initialization +14)	0.024	0.039	0.054	V
			Step 1 (initialization +15)	0.006	0.021	0.036	V
	1-2 phases		Step 16	0.195	0.200	0.215	V
			(1ch comparing level during initialization)	0.165	0.200	0.215	v
			Step 8 (initialization +1)	0.129	0.144	0.159	V
	1-2 phases		Step 16	0.185	0.200	0.215	V
	Tull torque		Step 8 (initialization +1)	0 185	0.200	0 215	V
	2 phase		Step 8	0.105	0.200	0.215	V
Chopping frequence		Echop1	B-20kO	100	125	150	kHz
Current setting refe	erence voltage	VSEN11	$(D_3 D_2) = (0, 0)$	0 185	0 200	0.215	V
o unon ootting fore	include relage	VSEN12	(D3, D2) = (0, 1)	0.100	0.134	0.1/0	V
		VSEN13	(D3, D2) = (1, 0)	0.085	0.100	0.145	V
		VSEN14	(D3, D2) = (1, 3)	0.000	0.066	0.081	V
PWM drive/steppi	ng motor driver (30	ch/4ch)		0.001	0.000	0.001	
Output ON resistar	nce	Ronu2	I _O =400mA, upper		0.6	0.7	Ω
		Rond2	I _O =400mA, lower		0.6	0.7	Ω
Output leak current		I _O leak2				1.0	μA
Diode forward volta	age	VD2	ID=-400mA	0.6	0.9	1.2	V
Logic input current		I _{IN} L2	VIN=0V (PWM3, PWM4)			1.0	μΑ
		I _{IN} H2	VIN=3.3V (PWM3, PWM4)	20	33	50	μΑ
Logic input "H" leve	el voltage	V _{IN} H2	PWM3, PWM4	2.5			V
Logic input "L" level voltage		V _{IN} L2	PWM3, PWM4			1.0	V

Continued from prece	ding page.						
Parameter		Symbol Conditions			Ratings		Linit
		Symbol	Stop 16		typ	max	Onic
Current selection 4W1-2 phases reference voltage			Step 16 (3ch comparing level during initialization)	0.185	0.200	0.215	V
level			Step 15 (initialization +1)	0.185	0.200	0.215	V
			Step 14 (initialization +2)	0.185	0.200	0.215	V
			Step 13 (initialization +3)	0.176	0.191	0.206	V
			Step 12 (initialization +4)	0.170	0.185	0.200	V
			Step 11 (initialization +5)	0.162	0.177	0.192	V
			Step 10 (initialization +6)	0.154	0.169	0.184	V
			Step 9 (initialization +7)	0.146	0.161	0.176	V
			Step 8 (initialization +8)	0.129	0.144	0.159	V
			Step 7 (initialization +9)	0.113	0.128	0.143	V
			Step 6 (initialization +10)	0.097	0.112	0.127	V
			Step 5 (initialization +11)	0.079	0.094	0.109	V
			Step 4 (initialization +12)	0.062	0.077	0.092	V
			Step 3 (initialization +13)	0.044	0.059	0.074	V
			Step 2 (initialization +14)	0.024	0.039	0.054	V
			Step 1 (initialization +15)	0.006	0.021	0.036	V
	1-2 phases		Step 16	0.185	0.200	0.215	V
			(sch comparing level during initialization)	0 1 2 0	0.144	0 150	V
	1-2 phases		Step 16	0.129	0.144	0.159	v
	full torque		(3ch comparing level during initialization)	0.185	0.200	0.215	V
			Step 8 (initialization +1)	0.185	0.200	0.215	V
	2 phase		Step 8	0.185	0.200	0.215	V
Chopping frequency	•	Fchop2	R=20kΩ	100	125	150	kHz
Current setting reference voltage		VSEN21	(D5, D4)=(0, 0)	0.185	0.200	0.215	V
		VSEN22	(D5, D4)=(0, 1)	0.119	0.134	0.149	V
		VSEN23	(D5, D4)=(1, 0)	0.085	0.100	0.115	V
		VSEN24	(D5, D4)=(1, 1)	0.051	0.066	0.081	V
PWM driven forward	d/reverse motor d	river (5ch/6c	h)	•			
Output ON resistance	Э	Ronu3	I _O =400mA, upper		0.6	0.7	Ω
		Rond3	I _O =400mA, lower		0.6	0.7	Ω
Output leak current		I _O leak3				1.0	μA
Diode forward voltage	e	VD3	ID=-400mA	0.6	0.9	1.2	V
Logic pin input currer	nt	I _{IN} L3	V _{IN} =0V (PWM5, PWM6)			1.0	μA
		I _{IN} H3	V _{IN} =3.3V (PWM5, PWM6)	20	33	50	μA
Logic input "H" level	voltage	V _{IN} H3	PWM5, PWM6	2.5			V
Logic input "L" level v	voltage	V _{IN} L3	PWM5, PWM6			1.0	V
Constant current fo	rward/reverse mo	tor driver (70	:h)	•			
Output ON resistance	Э	Ronu4	I _O =400mA, upper		0.6	0.7	Ω
		Rond4	I _O =400mA, lower		0.6	0.7	Ω
Output leak current		I _O leak4				1.0	μA
Diode forward voltage		VD4	ID=-400mA	0.6	0.9	1.2	V
Logic pin input currer	nt	I _{IN} L4	V _{IN} =0V (IN71, IN72)			1.0	μA
		I _{IN} H4	V _{IN} =3.3V (IN71, IN72)	20	33	50	μA
Logic input "H" level voltage		V _{IN} H4	IN71, IN72	2.5			V
Logic input "L" level v	voltage	V _{IN} L4	IN71, IN72			1.0	V
Output constant curre	ent	I _{OUT} 7	Rload=3Ω, SEN7=0.5Ω, LIM7=0.2V	384	400	416	mA
VREF7 output voltage	e	VREF7	(D7, D6)=(0, 0)	0.190	0.200	0.210	V
LIM7 input current		ILIM7	LIM7=0V			1.0	μA
			•				

1 010				Ratings			
Parameter	Symbol	Conditions	min	typ	max	Unit	
FC7 rapid charge current	Irafc7		300	450	600	μA	
FC7 steady charge current	Ichfc7		5	10	15	μA	
FC7 steady discharge current	ldisfc7		5	10	15	μΑ	
Current setting reference voltage	VSEN41	(D7, D6)=(0, 0)	0.190	0.200	0.210	V	
	VSEN42	(D7, D6)=(0, 1)	0.124	0.134	0.144	V	
	VSEN43	(D7, D6)=(1, 0)	0.090	0.100	0.110	V	
	VSEN44	(D7, D6)=(1, 1)	0.056	0.066	0.076	V	
Serial data transmission pin		•	·			•	
Logic pin input current	I _{IN} L5	V _{IN} =0V (SCLK, DATA, STB)			1.0	μΑ	
	I _{IN} H5	V _{IN} =3.3V (SCLK, DATA, STB)	20	33	50	μΑ	
Logic input "H" level voltage	V _{IN} H5	SCLK, DATA, STB	2.5			V	
Logic input "L" level voltage	V _{IN} L5	SCLK, DATA, STB			1.0	V	
Minimum SCLK "H" pulse width	Tsch		0.125			μs	
Minimum SCLK "L" pulse width	Tscl		0.125			μs	
STB specified time	Tlat		0.125			μs	
Minimum STB pulse width	Tlatw		0.125			μs	
Data setup time	Tds		0.125			μs	
Data hold time	Tdh		0.125			μs	
Maximum SCLK frequency	Fclk				4	MHz	

Package Dimensions

unit : mm (typ)

3326

Pin Functions

Pin No	Pin Name	Description	
5	VM12	STP 1ch/2ch Motor power connection pin	
2	OUT1A	STP 1ch OUTA Output pin	
4	OUT1B	STP 1ch OUTB Output pin	
3	SEN1	STP 1ch Current sensing resistor connection pin	
6	OUT2A	STP 2ch OUTA Output pin	
8	OUT2B	STP 2ch OUTB Output pin	
7	SEN2	STP 2ch Current sensing resistor connection pin	
68	PGND12	STP 1ch/2ch Power GND	
67	CLK12	STP Clock signal input pin	
66	MO	STP Position detection monitor pin	
29	SCLK	Serial data transmission CLK input pin	
27	DATA	Serial data input pin	

Continued from pr	receding page.		
Pin No	Pin Name	Description	
28	STB	Serial data latch pulse input pin	
32	R	Oscillation frequency setting resistor connection pin	
13	VM34	PWM/STP 3ch/4ch Motor power connection pin	
10	OUT3A	PWM 3ch OUTA Output pin	
10	OUT2R	STP 3ch OUTA Output pin	
12	00138	STP 3ch OUTB Output pin	
11	SEN3	STP 3ch Current sensing resistor connection pin	
14	OUT4A	PWM 4ch OUTA Output pin	
		STP 4ch OUTA Output pin	
17	OUT4B	PWM 4ch OUTB Output pin	
		STP 4ch OUTB Output pin	
15	SEN4	STP 4ch Current sensing resistor connection pin	
20	PGND34	PWM/STP 3ch/4ch Power GND	
21	PWM3/CLK34	PWM 3ch PWM Signal input pin	
	DIAMAA	STP Clock signal input pin	
22	PWW4	PWM 4ch PWM Signal input pin	
39	VM56	PWM 5ch/6ch Motor power connection pin	
36	OUT5A	PWM 5ch OUTA Output pin	
38	OUT5B	PWM 5ch OUTB Output pin	
33	PWM5	PWM 5ch PWM Signal input pin	
41	OUT6A	PWM 6ch OUTA Output pin	
44	OUT6B	PWM 6ch OUTB Output pin	
34	PWM6	PWM 6ch PWM Signal input pin	
43	PGND56	PWM 5ch/6ch Power GND	
49	VM7	Constant-current 7ch motor power connection pin	
58	FC7	Constant-current 7ch phase compensation capacitor connection pin	
47	SEN7	Constant-current 7ch current sensing resistor connection pin	
46	OUT7A	Constant-current 7ch OUTA output pin	
48	OUT7B	Constant-current 7ch OUTB output pin	
64	IN71	Constant-current 7ch 1 logic input pin	
65	IN72	Constant-current 7ch 2 logic input pin	
45	PGND7	Constant-current 7ch power GND	
62	VREF7	Constant-current 7ch current setting reference voltage output	
60	LIM7	Constant-current 7ch constant-current setting pin	
51	CPL1	Charge pump capacitor connection pin	
52	CPL2	Charge pump capacitor connection pin	
54	CPH1	Charge pump capacitor connection pin	
56	CPH2	Charge pump capacitor connection pin	
53	VGL	Lower DMOS gate voltage capacitor connection pin	
57	VGH	Upper DMOS gate voltage capacitor connection pin	
24	ST	Chip enable pin	
30	Vcc	Logic power connection pin	
26	GND	Signal GND	
	÷··-=		

Pin Assignment

L	К	J	Н	G	F	E	D	С	В	A	
	17 OUT4B	15 SEN4	13 VM34	11 SEN3	9 (NC)	7 SEN2	5 VM12	3 SEN1	1 (NC)		1
18 (NC)	16 (NC)	14 OUT4A	12 OUT3B	10 OUT3A	8 OUT2B	6 OUT2A	4 OUT1B	2 OUT1A	67 CLK12	68 PGND12	2
20 PGND34	19 (NC)		-	_		-			65 IN72	66 MO	3
22 PWM4	21 PWM3/ CLK34			63 (NC)	64 IN71	4					
24 ST	23 (NC)		LV8042LG							62 VREF	5
26 GND	25 (NC)									60 LIM7	6
28 STB	27 DATA							57 VGH	58 FC7	7	
30 V _{CC}	29 SCLK		55 56 (NC) CPH					56 CPH2	8		
32 R	31 (NC)									54 CPH1	9
34 PWM6	33 PWM5	36 OUT5A	38 OUT5B	40 (NC)	42 (NC)	44 OUT6B	46 OUT7A	48 OUT7B	50 (NC)	52 CPL2	10
	35 (NC)	37 (NC)	39 VM56	41 OUT6A	43 PGND	45 PGND	47 SEN7	49 VM7	51 CPL1		11

A B C D E F G H J K L

1 3 5 7 9 11 13 15 17 1 (NC) SEN1 (NC) SEN4 OUT4B VM12 SEN2 SEN3 VM34 68 67 2 4 6 8 10 12 14 16 18 2 ΟυΤ1Α ΟυΤ1Β ΟυΤ2Α ΟυΤ2Β ΟυΤ3Α ΟυΤ3Β ΟυΤ4Α PGND12 CLK12 (NC) (NC) 66 65 19 20 3 MO IN72 (NC) PGND34 21 PWM3/ CLK34 22 64 63 4 IN71 (NC) PWM4 62 61 23 24 5 VREF7 (NC) (NC) ST 59 25 60 26 6 LV8042LG LIM7 (NC) (NC) GND 58 57 27 28 7 FC7 VGH DATA STB 55 29 30 56 8 CPH2 (NC) SCLK VCC 54 53 32 31 9 CPH1 VGL (NC) R 50 48 46 44 42 40 38 36 33 34 52 10 PWM5 PWM6 CPL2 (NC) ΟυΤ7ΒΟυΤ7ΑΟυΤ6Β (NC) (NC) OUT5BOUT5A 51 47 45 43 41 39 37 49 35 11 PGND7 CPL1 VM7 SEN7 PGND56 OUT6A VM56 (NC) (NC)

(NC): No Connect

Bottom view

Top View

DataSh

Serial Data Input Specification

Register (D1, D0): Selection of Data Transmission Destination

D1	D0	Mode
0	0	STP reference voltage setting/Monitor output setting/3ch · 4ch drive mode setting
0	1	1ch · 2ch (STP) setting
1	0	3ch · 4ch (PWM/STP) setting
1	1	5ch · 6ch(PWM) setting /7ch (constant current) reference voltage setting

Setting (D1, D0) of serial data as shown in the table above enables selection of the register for status setting of each motor driver.

STP Reference Voltage Setting/Monitor Output Setting/3ch · 4ch Drive Mode Setting

Register No.	Data	Nomenclature	Functions
D0	0	RG_SELECT 1	Register select 1
D1	0	RG_SELECT 2	Register select 2
D2	0 or1	VSEN1_SELECT 1	1ch · 2ch reference voltage select 1
D3	0 or 1	VSEN1_SELECT 2	1ch · 2ch reference voltage select 2
D4	0 or 1	VSEN2_SELECT 1	3ch · 4ch reference voltage select 1
D5	0 or 1	VSEN2_SELECT 2	3ch · 4ch reference voltage select 2
D6	0 or 1	MO_SELECT	Monitor output channel select
D7	0 or 1	PWM/MICRO	3ch · 4ch drive mode setting

1ch · 2ch (STP) Setting

Register No.	Data	Nomenclature	Functions	Channel
D0	1	RG_SELECT 1	Register select 1	
D1	0	RG_SELECT 2	Register select 2	
D2	0 or 1	F/R 1	Forward/reverse setting	
D3	0 or 1	MS 11	Micro-step select 1	
D4	0 or 1	0 or 1 MS 12 Micro-step select 2 0 or 1 HOLD 1 Step hold setting		1ch/2ch (STP)
D5	0 or 1			
D6	0 or 1	RESET 1	Logic reset	
D7	0 or 1	OUT ENABLE 1	Output enable	

3ch · 4ch (PWM/STP) Setting

		Nome	nclature	Functions			
Register No Data		3ch · 4ch drive setting (D7)		DIA/IA as a da	OTD mede	Channel	
		"0"	"1"	PWW mode	STP mode		
D0	0	RG_SI	ELECT 1	Register select 1			
D1	1	RG_SI	ELECT 2	Register select 2			
D2	0 or 1	F/R 3	F/R 2	Forward/reverse setting	Forward/reverse setting	3ch	
D3	0 or 1	DECAY 3	MS 21	Current attenuation mode setting	Micro-step select 1	PWM	
D4	0 or 1	F/R 4	MS 22	Forward/reverse setting	Micro-step select 2	4ch	3ch/4ch
D5	0 or 1	DECAY 4	HOLD 2	Current attenuation mode setting	Step hold setting	PWM	(STP)
D6	0 or 1	(DUMMY)	RESET 2	(Dummy data) Logic reset			
D7	0 or 1	(DUMMY)	OUT ENABLE 2	(Dummy data)	Output enable		

Register No.	Data	Nomenclature	Functions	Channel
D0	1	RG_SELECT 1	Register select 1	
D1	1	RG_SELECT 2	Register select 1	
D2	0 or 1	F/R5	Forward/reverse setting	5ch
D3	0 or 1	DECAY5	Current attenuation mode setting	PWM
D4	0 or 1	F/R6	Forward/reverse setting	6ch
D5	0 or 1	DECAY6	Current attenuation mode setting	PWM
D6	0 or 1	VSEN7_SELECT 1	7ch constant-current reference voltage select 1	7ch
D7	0 or 1	VSEN7_SELECT 1	7ch constant-current reference voltage select 2	Constant current

5ch · 6ch (PWM) Setting/7ch (constant-current) Reference Voltage Setting

Serial Data Input Setting

Input DATA and SCLK after setting of STB = "L". SCLK is not accepted in the state with STB = "H". Input DATA from D0 to D7 in this order. CLK performs data transmission at the rise edge and latches all data at rise of STB after transmission of all data.

All of serial data is reset to "0" with ST = L". and at the voltage to cut V_{CC} low voltage.

Timing to Reflect Serial Data to the Output

- PWM mode (Applicable to 3, 4, 5, and 6ch)
 - Type 1: FR and DECAY settings during PWM drive are reflected simultaneously with the STB signal of data latching.
- STP mode (Applicable to 1, 2, 3, and 4ch)
 - Type 1: HOLD, RESET, CUT ENABLE settings and reference voltage setting are reflected simultaneously with the STB signal of data latching.
 - Type 2: Forward/reverse (F/R) and excitation mode (MS) settings made during STEP setting are reflected at rise of the next clock of data latching.

Input		Operation mode	Charge pump sireuit	
ST	CLK12	Operation mode	Charge pump circuit	
L	*	Standby mode	Stop	
н		Excitation step feed	Operating	
н		Excitation step hold	Operating	

1ch · 2ch (STP) Status Setting Serial Data: (D1, D0=0, 1)

D7 (OE)	D6 (RST)	D5 (HOLD)	D4 (MS2)	D3 (MS1)	D2 (F/R)	Operation mode
*	*	*	*	*	0	CW (forward)
*	*	*	*	*	1	CCW (reverse)
*	*	*	0	0	*	2 phase excitation drive
*	*	*	0	1	*	1-2 phases full torque excitation drive
*	*	*	1	0	*	1-2 phases excitation drive
*	*	*	1	1	*	4W1-2 phases excitation drive
*	*	0	*	*	*	Step hold cancel
*	*	1	*	*	*	Step hold
*	0	*	*	*	*	Counter reset (Excitation at initial position)
*	1	*	*	*	*	Counter reset cancel
0	*	*	*	*	*	Output high impedance
1	*	*	*	*	*	Output operation state

*: Don't Care

1ch · 2ch Reference Voltage Setting Serial Data: (D1, D0=0, 0)

D3 (VSEN1_SELECT2)	D2 (VSEN1_SELECT1)	Current setting reference voltage (at 100%)
0	0	0.2V
0	1	0.134V
1	0	0.1V
1	1	0.066V

The reference voltage to set the output current can be changed over in four stages by the serial data. This is effective for power saving during hold power application of the motor.

Set Current Calculation Method

 $I_{OUT} = (reference voltage \times set current ratio) / SEN resistance$

As the reference voltage is variable (0.2V, 0.134V, 0.1V, 0.066V) by the serial data, the output current can be set from the reference voltage and SEN resistance.

(Example) The output current as shown below flows when the reference voltage is 0.2V, the set current ratio is 100%, and the SEN resistance is 1Ω .

 $I_{OUT}=0.2V\times 100\%/1\Omega=200mA$

Monitor Output Channel Setting Serial Data: (D1, D0=0, 0) MO Pin (Pin 66)

D6 (MO_SELECT)	Monitor output channel	Monitor output state	
0	1ch · 2ch STP		
1 3ch · 4ch STP		^a L ^a output at the initialization position of STP	

Initial Excitation Position (Monitor output position)

Excitation mode	1ch	2ch
2 phase	100%	-100%
1-2 phases full torque	100%	0%
1-2 phases	100%	0%
4W1-2 phases	100%	0%

OUTPUT ENABLE (D7), RESET (D6) Operation Description

With OE (D7) data = "0", the output is turned OFF and becomes high impedance at rise of STB. As the internal logic circuit is operating, however, the position number proceeds while CLK is input. Therefore, with OE (D7) data returned to "1", the level along the position number proceeding with the CLK input is output.

With RST (D6)= "0", the output is initialized at rise of STB and the MO output becomes Low. With RST (D6)= "1" subsequently, the position number proceeds at the next CLK input.

HOLD (D5) Operation Description

With HOLD (D5) data = "1", the external CLK data is held as it is in the internal CLK. In the step hold (1) timing as shown above, the (external) CLK is at "L", so that the internal CLK is held at "L." In the step hold (2) timing, the (external) CLK is at "H", so that the internal CLK is held at "H." With HOLD (D5) data = "0", the internal CLK is synchronized with the normal (external) CLK. The output holds the status in the timing of input of step hold. After canceling of step hold, the position No. proceeds in the timing of CLK (rise).

As long as the hold status continues, the position No. does not proceed even when (external) CLK is input.

Output Current Vector Locus (one step is normalized to 90 degree)

Set Current Ratio in Each Excitation Mode

OTED	4W1-2 p	hase (%)	1-2 pha	ses (%)	1-2 phases f	ull torque (%)	2 pha	se (%)
STEP	1ch (3ch)	2ch (4ch)	1ch (3ch)	2ch (4ch)	1ch (3ch)	2ch (4ch)	1ch (3ch)	2ch (4ch)
θ0	0	100	0	100	0	100		
θ1	8.69	100						
θ2	17.39	100						
θ3	26.08	95.65						
θ4	34.78	91.3			/			
θ5	43.48	86.95						
θ6	52.17	82.61						
θ7	60.87	78.26						
θ8	69.56	69.56	69.56	69.56	100	100	100	100
θ9	78.26	60.87						
θ10	82.61	52.17						
θ11	86.95	43.48						
θ12	91.3	34.78			/			
θ13	95.65	26.08						
θ14	100	17.39						
θ15	100	8.69						
θ16	100	0	100	0	100	0		

2 Phase Excitation (D4="0", D3="0", D2="0": CW mode)

1-2 Phases Full Torque (D4="0", D3="1", D2="0": CW mode)

1-2 Phases Excitation (D4="1", D3="0", D2="0": CW mode)

>t4TT

LV8042LG

Basic Operation of Set Current Step Changeover and Forward/Reverse Changeover (D2 (F/R))

DA converter in IC proceeds by one bit at rise of input clock pulse.

D2 (F/R) data causes changeover of CW and CCW modes; the position No. decreases in the CW mode and increases in the CCW mode.

When viewed from the 1ch current, the 2ch current is delayed by 90 degree in phase in the CW mode.

When viewed from the 1ch current, the 2ch current is delayed by 90 degree in the CCW mode.

LV8042LG

When the excitation mode is changed over during power application to the motor, the motor operates in the following sequence. (CW mode)

Before excitation mode changeover		Step position after excitation mode changeover				
Excitation mode	Position No.	4W1-2 phase	1-2 phases	1-2 phases full torque	2 phase	
	(16)		(8)	(8)'	(8)'	
	(15) to (9)		(8)	(8)'	(8)'	
4W1-2 phase	(8)		0	0	(8)'	
	(7) to (1)		(8)	(8)'	(8)'	
	0		-(8)	-(8)'	-(8)'	
	(16)	(15)		(8)'	(8)'	
1-2 phases	(8)	(7)		0	(8)'	
	0	-(1)		-(8)'	-(8)'	
	(16)	(15)	(8)		(8)'	
1-2 phases full torque	(8)'	(7)	0		(8)'	
	0	-(1)	-(8)		-(8)'	
2 phase	(8)'	(7)	0	0		

* The symbol "-" such as -(8) in the table indicates that the phase has been reversed.

Current Control Operation Specification

Sine wave increasing direction

Sine wave decreasing direction

In each current mode, the motor operates in the following sequence.

- The motor enters the CHARGE mode at rise of chopping oscillation. (Regardless of the magnitude of the coil current (ICOIL) and set current (IREF), the section in which the CHARGE mode is forced (hereinafter called the "forced CHARGE" mode) exists for 1/8 of one chopping cycle.)
- The coil current (ICOIL) is compared with the set current (IREF) in the CHARGE mode.

In the case of ICOIL<IREF in the forced CHARGE section

The CHARGE mode continues up to the point where ICOIL≥IREF. Subsequently, the mode is changed to the SLOW DECAY mode and finally to the FAST DECAY mode within the 1/8 portion of one chopping cycle. In case when ICOIL<IREF does not exists in the forced CHARGE section

The mode changes to the FAST DECAY mode. The coil current is attenuated in the FAST DECAY mode till one chopping cycle is over.

Above steps are repeated. Normally, the SLOW (+FAST) DECAY mode is effective in the sine wave increasing direction, the FAST DECAY mode continues till the current is attenuated to the set level, then the SLOW (+FAST) DECAY mode becomes effective subsequently.

Output stage transistor function

The OUTA \rightarrow OUTB direction is assumed to be for charge (current increasing direction).

Chopping frequency (fchop) setting method

This is the frequency for chopping, which is determined by the external resistor for constant-current control. The chopping frequency set by the resistance connected to R pin (pin 32) is shown below.

The recommended chopping frequency ranges from 50 to 200kHz.

PWM Drive/Stepping Motor Driver (3ch/4ch)

3ch · 4ch drive motor setting serial data: (D1, D0=0, 0)

	Or continue and a	Pin function		
D7 (PWM/MICRO)	Operation mode	Pin 21	Pin 22	
0	PWM2 system	PWM3	PWM4	
1	Micro-step driven STP1 system	CLK34	Not used	

By setting D7 (PWM/MICRO) data as shown in the table above, changeover to two systems of direct PWM drive H-bridge driver and single system of micro-step driven stepping motor driver can be made.

PWM Drive Mode (3ch · 4ch drive mode setting D7="0")

3ch (PWM) truth table: (D1, D0=1, 0)

	Input Output		Operation mode					
ST	PWM3	D2	D3	OUT3A	OUT3B	Operation mode	Charge pump circuit	
L	*	*	*	OFF	OFF	Standby	Stop	
Н	Н	0	*	H ^{Note}	L	CW(Forward)		
н	Н	1	*	L	H ^{Note}	CCW(Reverse)	On anothin a	
Н	L	*	0	OFF	OFF	FAST DECAY(output OFF)	Operating	
Н	L	*	1	L	L	SLOW DECAY(brake)		

4ch (PWM) truth table: (D1, D0=1, 0)

	Inp	out		Output		On continue and de	
ST	PWM4	D4	D5	OUT4A	OUT4B	Operation mode	Charge pump circuit
L	*	*	*	OFF	OFF	Standby	Stop
н	Н	0	*	H ^{Note}	L	CW(Forward)	
Н	Н	1	*	L	H ^{Note}	CCW(Reverse)	Operating
н	L	*	0	OFF	OFF	FAST DECAY(output OFF)	Operating
н	L	*	1	L	L	SLOW DECAY(brake)	

*: Don't care

Note: When the sensing resistor is connected to SEN 3 and 4 pins, the constant-current drive through chopping is made for the set current. Connection of SEN3 and 4 pins to GND allows saturation drive.

Output Stage Transistor Function

3ch · 4ch Reference Voltage Setting Serial Data: (D1, D0=0, 0)

D5 (VSEN2_SELECT2)	D4 (VSEN2_SELECT1)	Current setting reference voltage
0	0	0.2V
0	1	0.134V
1	0	0.1V
1	1	0.066V

Since the reference voltage is changed over for 3ch and 4ch simultaneously, individual setting cannot be made.

Constant-Current Chopping Drive

When the sensing resistor is connected to SEN 3 and 4 pins, the constant-current drive through chopping is made for the set current calculated from the reference voltage and SEN resistor.

Set Current Value (constant current) Calculation Method

IOUT = Reference voltage/SEN resistor

Since the reference voltage can be made variable (0.2V, 0.134V, 0.1V, 0.066V) with the serial data, the output current can be set from the reference voltage and SEN resistor.

(Example) The output current as follows flows when the reference voltage is 0.2V and SEN resistance is 1Ω .

 $I_{OUT} = 0.2V/1\Omega = 200mA$

Input		Operation mode		
ST	CLK34	Operation mode	Charge pump circuit	
L	*	Standby mode	Stop	
Н		Excitation step feed	Operating	
н		Excitation step hold	Operating	

$3ch \cdot 4ch$ (STP) Status Setting Serial Data: (D1, D0=1, 0)

D7(OE)	D6(RST)	D5(HOLD)	D4(MS2)	D3(MS1)	D2(F/R)	Operation mode
*	*	*	*	*	0	CW (Forward)
*	*	*	*	*	1	CCW (Reverse)
*	*	*	0	0	*	2 phase excitation drive
*	*	*	0	1	*	1-2 phases full torque excitation drive
*	*	*	1	0	*	1-2 phases excitation drive
*	*	*	1	1	*	4W1-2 phase excitation drive
*	*	0	*	*	*	Step hold cancel
*	*	1	*	*	*	Step hold
*	0	*	*	*	*	Counter reset (Excitation at initial position)
*	1	*	*	*	*	Counter reset cancel
0	*	*	*	*	*	Output high-impedance
1	*	*	*	*	*	Output operation status

*: Don't care

3ch · 4ch Reference Voltage Setting Serial Data: (D1, D0=0, 0)

D5 (VSEN2_SELECT2)	D4 (VSEN2_SELECT1)	Current setting reference voltage (at 100%)
0	0	0.2V
0	1	0.134V
1	0	0.1V
1	1	0.066V

The output current setting reference voltage can be changed in four stages by the serial data. This is useful for power saving during hold power application to the motor.

Set Current Value Calculation Method

IOUT = (reference voltage × set current ratio) /SEN resistance

Since the reference voltage can be made variable (0.2V, 0.134V, 0.1V, 0.066V) with the serial data, the output current can be set from the reference voltage and SEN resistor.

(Example) The output current as shown below flows when the reference voltage is 0.2V, the set current ratio is 100%, and SEN resistance is 1Ω .

 $I_{OUT}=0.2V\times 100\%/1\Omega=200mA$

Initial Excitation Position (Monitor output position)

Excitation mode	3ch	4ch
2 phase	100%	-100%
1-2 phases full torque	100%	0%
1-2 phases	100%	0%
4W1-2 phase	100%	0%

* For the monitor setting, refer to the description made for 1ch/2ch.

PWM Driven Motor Driver (5ch/6ch)

5ch (PWM) truth table: (D1, D0=1, 1)

Input Ou		tput	Operation mode	Charge nump sizewit			
ST	PWM5	D2	D3	OUT5A	OUT5B	Operation mode	Charge pump circuit
L	*	*	*	OFF	OFF	Standby	Stop
Н	Н	0	*	H ^{Note}	L	CW (Forward)	
Н	Н	1	*	L	H ^{Note}	CCW (Reverse)	On another a
Н	L	*	0	OFF	OFF	FAST DECAY (output OFF)	Operating
Н	L	*	1	L	L	SLOW DECAY (brake)	

6ch (PWM) truth table: (D1, D0=1, 1)

	Inp	out		Output		Operation mode	Chargo pump airquit
ST	PWM6	D4	D5	OUT6A	OUT6B	Operation mode	Charge pump circuit
L	*	*	*	OFF	OFF	Standby	Stop
Н	Н	0	*	H ^{Note}	L	CW (Forward)	
н	Н	1	*	L	H ^{Note}	CCW (Reverse)	On another a
Н	L	*	0	OFF	OFF	FAST DECAY (output OFF)	Operating
Н	L	*	1	L	L	SLOW DECAY (brake)	

*: Don't care

Note: Since there is no SEN pin, saturation drive is made.

7ch (Constant-current) Truth Table								
	Input		Output		Mada			
ST	IN71	IN72	OUT7A	OUT7B	Mode	Charge pump circuit		
L	*	*	OFF	OFF	Standby	Stop		
н	L	L	OFF	OFF	Output OFF			
н	L	н	н	L	CW (Forward)	On eventie e		
Н	Н	L	L	Н	CCW (Reverse)	Operating		
н	Н	Н	L	L	Brake			

*: Don't care

7ch Reference Voltage (VREF7 voltage) Setting Serial Data: (D1, D0=1, 1)

D7 (VSEN7_SELECT2)	D6 (VSEN7_SELECT1)	Current setting reference voltage (VREF7 voltage)
0	0	0.2V
0	1	0.134V
1	0	0.1V
1	1	0.066V

Set Current Value Calculation Method

I_{OUT} = LIM7 voltage/SEN7 resistance

Since LIM7 voltage is the external input, the reference voltage can be freely set.

Since the VREF7 voltage can be made variable (0.2V, 0.134V, 0.1V, 0.066V) with the serial data, short-circuiting the VREF7 pin with the LIM7 pin enables varying the reference voltage.

Input of the voltage obtained by dividing VREF7 with the resistor can produce any arbitrary reference voltage (0.2V or less).

Recommended Application Circuit

The value at each element is the recommended one. For each input condition numerical value, confirm the previous allowable operation range.

1ch/2ch micro-step drive

3ch/4ch micro-step drive (changeover to PWM drive possible: See 5ch/6ch recommended circuit)

5ch/6ch saturation drive (described separately)

7ch constant current drive

- Note 1: GND wiring should be made with one-point grounding as much as possible.
- Note 2: A 1 Ω resistor is attached for each of the SEN pin registers. This sets an output of 200mA when the current ratio is 100%.
- Note 3: Set the LIM7 reference voltage by short-circuiting VREF7 (or dividing with resistance) before input or by applying the voltage from the outside.

5ch/6ch Recommended Circuit

For 5ch/6ch, STM and DCM (VCM) can be driven by using two H-bridge circuits. (For 3ch/4ch, the following application is possible when the mode is set to the PWM drive mode.)

Application (1) · · · STM

Note 4: To drive STM, serial data must be input for each excitation (phase changeover)

Application $(2) \cdots$ DCM (Double output capacity)

Note 5: Short-circuit each input/output. (When short-circuiting, be sure to connect OUT5A and OUT6A, OUT5B and OUT6B correctly.)

Application $(3) \cdots VCM$

- SANYO Semiconductor Co.,Ltd. assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein.
- SANYO Semiconductor Co.,Ltd. strives to supply high-quality high-reliability products, however, any and all semiconductor products fail or malfunction with some probability. It is possible that these probabilistic failures or malfunction could give rise to accidents or events that could endanger human lives, trouble that could give rise to smoke or fire, or accidents that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all SANYO Semiconductor Co.,Ltd. products described or contained herein are controlled under any of applicable local export control laws and regulations, such products may require the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written consent of SANYO Semiconductor Co.,Ltd.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO Semiconductor Co.,Ltd. product that you intend to use.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production.
- Upon using the technical information or products described herein, neither warranty nor license shall be granted with regard to intellectual property rights or any other rights of SANYO Semiconductor Co.,Ltd. or any third party. SANYO Semiconductor Co.,Ltd. shall not be liable for any claim or suits with regard to a third party's intellctual property rights which has resulted from the use of the technical information and products mentioned above.

This catalog provides information as of April, 2007. Specifications and information herein are subject to change without notice.