

SANYO Semiconductors

DATA SHEET

LV8019LP — Forward/Reverse Motor Driver

Overview

The LV8019LP is a forward/reverse motor driver.

Features

- One H-bridge driver channel
- Provides a constant current output
- Built-in thermal shutdown circuit

Specifications

Maximum Ratings at $Ta = 25^{\circ}C$ and SGND = PGND = 0V

Parameter	Symbol	Conditions	Ratings	Unit
Output block supply voltage	VM max		-0.5 to 8.4	V
Control block supply voltage	V _{CC} max		-0.5 to 7.0	V
Constant current output block supply voltage	VRG max		-0.5 to 6.0	V
Maximum output current	I _O max		1.0	А
	I _O peak1	$t \le 200ms, f = 2Hz$	3	А
	I _O peak2	$t \le 10ms, f = 2Hz$	5	А
Input signal voltage	V _{IN} max		-0.5 to V _{CC} +0.5	А
Allowable power dissipation	Pd max1	Independent IC	0.2	W
	Pd max2	When mounted on a circuit board *1	1.05	W
Operating temperature	Topr		-30 to +85	°C
Storage temperature	Tstg		-55 to +150	°C

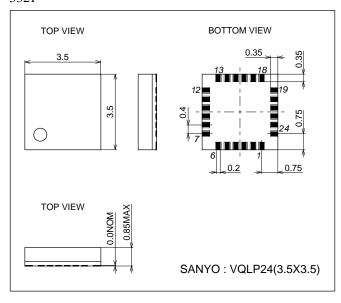
* : Specified substrate : 40×50×0.8mm³, glass epoxy four-layer (2S2P) board

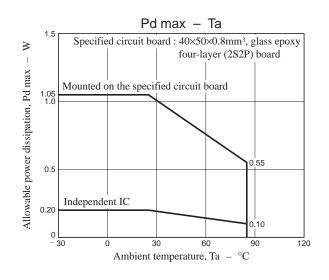
- Any and all SANYO Semiconductor Co.,Ltd. products described or contained herein are, with regard to "standard application", intended for the use as general electronics equipment (home appliances, AV equipment, communication device, office equipment, industrial equipment etc.). The products mentioned herein shall not be intended for use for any "special application" (medical equipment whose purpose is to sustain life, aerospace instrument, nuclear control device, burning appliances, transportation machine, traffic signal system, safety equipment etc.) that shall require extremely high level of reliability and can directly threaten human lives in case of failure or malfunction of the product or may cause harm to human bodies, nor shall they grant any guarantee thereof. If you should intend to use our products for applications outside the standard applications, please consult with us prior to the intended use. If there is no consultation or inquiry before the intended use, our customer shall be solely responsible for the use.
- Specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.

Recommended Operating Conditions at $Ta = 25^{\circ}C$ and SGND = PGND = 0V

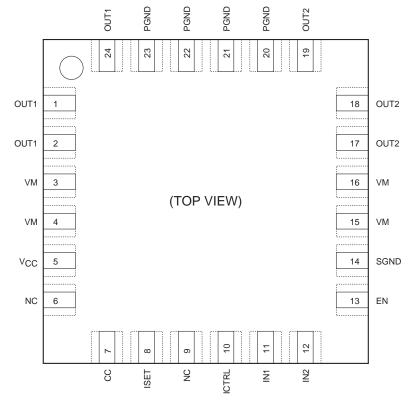
Parameter	Symbol	Conditions	Ratings	Unit
Output block supply voltage	VM		3.0 to 7.4	V
Control block supply voltage	VCC		2.7 to 6.0	V
Constant current output block supply voltage	VRGIN		1.5 to V _{CC}	V
Input signal voltage	VIN		0 to V _{CC}	V
Maximum input signal frequency	f _{max}	Duty = 50%	100	kHz

Electrical Characteristics $Ta = 25^{\circ}C$, $V_{CC} = VM = 5V$, and SGND = PGND = 0V unless otherwise specified.

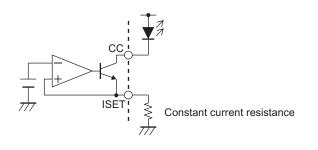

Parameter		Qumbol	Symbol Conditions		Ratings			
Paramet					typ	max	Unit	
Standby mode output block current consumption		IMO	EN = 0V, IN1 = IN2 = ICTRL = 0V			1.0	μΑ	
Control block current	Standby mode	ICCO	EN = 0V, IN1 = IN2 = ICTRL = 0V		0	1.0	μA	
consumption	Operation mode	ICC	EN = 5V		0.8	1.3	mA	
High-level input volt	age	V _{IN} H	IN*	2.5		V _{CC}	V	
Low-level input volta	age	V _{IN} L	IN*	0		0.8	V	
High-level input curr	High-level input current		IN*			1.0	μΑ	
Low-level input curr	_ow-level input current		IN*	-1.0			μΑ	
High-level EN pin cu	High-level EN pin current		EN	15	25	35	μΑ	
Low-level EN pin cu	Low-level EN pin current		EN			1.0	μΑ	
Output on	1	R _{ON} 1	VM = 5V, sink + source		0.30	0.40	Ω	
resistance	2	R _{ON} 2	VM = 3V, sink + source		0.45	0.60	Ω	
ISET setting resista	SET setting resistance		Between ISET pin and SGND	80			Ω	
ISET pin voltage	SET pin voltage		RSET > 80Ω	0.90	1.05	1.20	V	
CC pin output satura	CC pin output saturation voltage		RSET = 150Ω *1			1.5	V	
CC pin output leaka	CC pin output leakage current		CTRL = 0V			1.0	μΑ	
Low voltage shutdown operation voltage		VLVD	V _{CC} pin voltage detection	2.10	2.35	2.60	V	
High-level output turn-on time		ТОН	The transition from 10% to 90% of the output amplitude *2		0.1	1.0	μs	
Low-level output turn-on time TOL		TOL	The transition from 90% to 10% of the output amplitude *2		0.2	2.0	μs	
Thermal shutdown t	emperature	TSD	*2	150	180		°C	
Thermal shutdown h	nysteresis	ΔTSD	*2		40		°C	

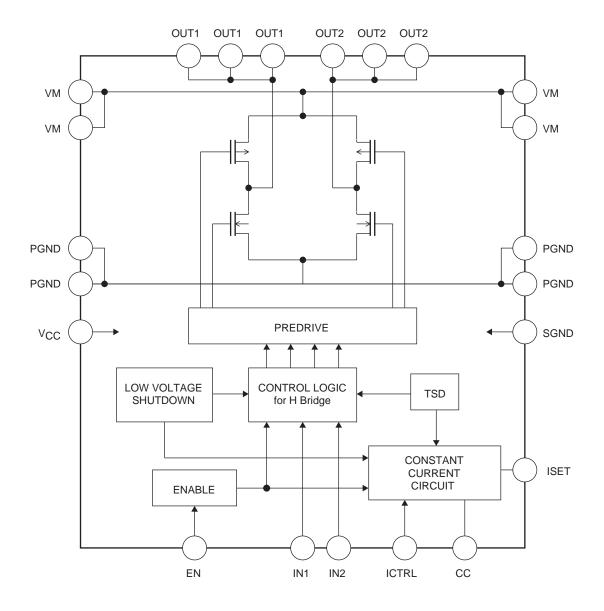

*1 : Voltage between CC pin and ISET pin

*2 : Design guarantee: These characteristics are not measured.


Package Dimensions

unit : mm (typ) 3321




Pin Assignment

Constant current output

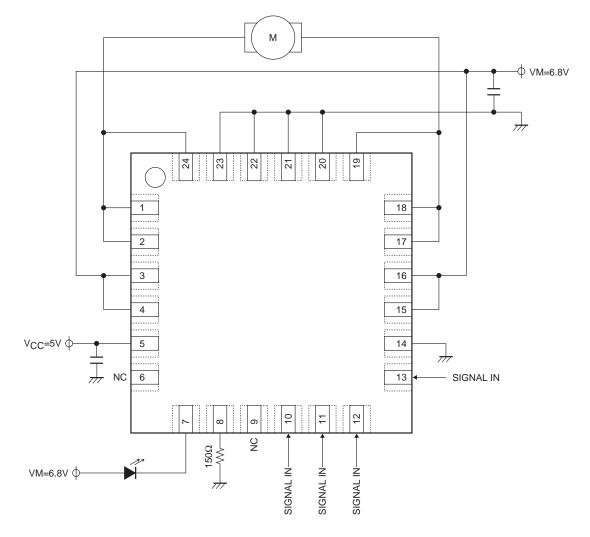
Block Diagram

Truth Table

EN	IN1	IN2	CTRL	OUT1	OUT2	СС	Mode
н	н	н	х	L	L	Х	Break
н	н	L	х	н	L	Х	Forward
Н	L	Н	Х	L	н	Х	Reverse
н	L	L	х	Z	Z	Х	Standby
L	Х	х	х	L	L	L	Standby
н	X	Х	L	х	х	Z	Constant current output off
н	Х	х	н	Х	х	ON	Constant current
							output on

H : High level

L : Low level


Z : Hi-impedance

X : Don't care

LV8019LP

Pin No.	Pin	Description	Equivalent circuit
11 12	IN1 IN2	Logic input 1 Logic input 2 The output is set by the combination of the input 1 and 2 states. See the truth table for details.	
10	ICTRL	Controls the output on/off state of the constant current block.	
13	EN	EN pin Controls the on/off state of the H-bridge output (OUT1 and OUT2) and the constant current output. See the truth table for details.	VCC $10k\Omega$ EN $200k\Omega$ K S-GND V
1, 2, 24, 17, 18, 19	OUT1 OUT2	Output 1 Output 2 The source side is a p-channel transistor and sink side is an n-channel transistor.	OUT*
7 8	CC ISET	Constant current output Constant current setting The output current (CC) is set by connecting a resistor between the ISET pin and ground.	Vcc Vcc SGND Vcc SGND Vcc SGND SGND
5	VCC	Signal system power supply	vcc ()
3, 4, 15, 16	VM	Power system power supply	VM ()
14	SGND	Signal system ground	SGND
21, 22, 23	PGND	Power system ground	PGND

Application Example

- SANYO Semiconductor Co.,Ltd. assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein.
- SANYO Semiconductor Co.,Ltd. strives to supply high-quality high-reliability products, however, any and all semiconductor products fail or malfunction with some probability. It is possible that these probabilistic failures or malfunction could give rise to accidents or events that could endanger human lives, trouble that could give rise to smoke or fire, or accidents that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all SANYO Semiconductor Co.,Ltd. products described or contained herein are controlled under any of applicable local export control laws and regulations, such products may require the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written consent of SANYO Semiconductor Co.,Ltd.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO Semiconductor Co.,Ltd. product that you intend to use.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production.
- Upon using the technical information or products described herein, neither warranty nor license shall be granted with regard to intellectual property rights or any other rights of SANYO Semiconductor Co.,Ltd. or any third party. SANYO Semiconductor Co.,Ltd. shall not be liable for any claim or suits with regard to a third party's intellectual property rights which has resulted from the use of the technical information and products mentioned above.

This catalog provides information as of April, 2007. Specifications and information herein are subject to change without notice.