

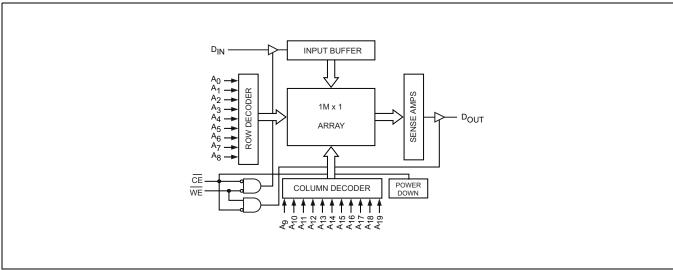
Features

- Pin- and function-compatible with CY7C107B/CY7C1007B
- High speed
 - t_{AA} = 10 ns
- Low Active Power
- I_{CC} = 80 mA @ 10 ns
- · Low CMOS Standby Power

— I_{SB2} = 3 mA

- 2.0V Data Retention
- Automatic power-down when deselected
- · CMOS for optimum speed/power
- · TTL-compatible inputs and outputs
- CY7C107D available in Pb-free 28-pin 400-Mil wide Molded SOJ package. CY7C1007D available in Pb-free 28-pin 300-Mil wide Molded SOJ package

1-Mbit (1M x 1) Static RAM


Functional Description ^[1]

The CY7C107D and CY7C1007D are high-performance CMOS static RAMs organized as 1,048,576 words by 1 bit. Easy memory expansion is provided by an active LOW Chip Enable (\overline{CE}) and tri-state drivers. These devices have an automatic power-down feature that reduces power consumption by more than 65% when deselected. The output pin (D_{OUT}) is placed in a high-impedance state when:

- Deselected (CE HIGH)
- When the write operation is active (\overline{CE} and \overline{WE} LOW)

Write to the device by taking Chip Enable (\overline{CE}) and Write Enable (\overline{WE}) inputs LOW. Data on the input pin (D_{IN}) is written into the memory location specified on the address pins (A₀ through A₁₉).

Read from the device by taking Chip Enable (\overline{CE}) LOW while while forcing Write Enable (\overline{WE}) HIGH. Under these conditions, the contents of the memory location specified by the address pins appears on the data output (D_{OUT}) pin.

Logic Block Diagram

Note
1. For guidelines on SRAM system design, please refer to the 'System Design Guidelines' Cypress application note, available on the internet at www.cypress.com.

Pin Configuration ^[2]

SOJ Top View					
A10 [A11] A12 [A13] A14] A15] A16] A17] A18] A19] DOUT] WE] GND]	○ 1 2 3 4 5 6 7 8 9 10 11 12 13 14	28 27 26 25 24 23 22 21 20 19 18 17 16 15		$\begin{array}{c} V_{CC} \\ A_9 \\ A_8 \\ A_7 \\ A_6 \\ A_5 \\ A_4 \\ A_0 \\ A_2 \\ A_1 \\ A_0 \\ \underline{D_{IN}} \\ \underline{CE} \end{array}$	

Selection Guide

	CY7C107D-10 CY7C1007D-10	Unit
Maximum Access Time	10	ns
Maximum Operating Current	80	mA
Maximum CMOS Standby Current, I _{SB2}	3	mA

Maximum Ratings

Exceeding the maximum ratings may impair the useful life of the device. These user guidelines are not tested.

Storage Temperature65°C to +150°C)
Ambient Temperature with Power Applied55°C to +125°C	2
Supply Voltage on V_CC Relative to GND $^{[3]} \dots -0.5 V$ to +6.0 $\label{eq:supplication}$	/
DC Voltage Applied to Outputs in High-Z State $^{[3]}$	/

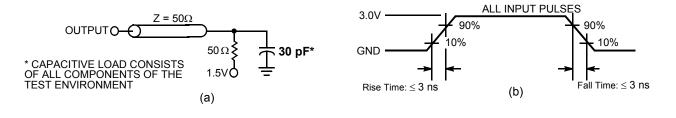
DC Input Voltage [3]	–0.5V to V _{CC} + 0.5V
Current into Outputs (LOW)	20 mA
Static Discharge Voltage (per MIL-STD-883, Method 3015)	> 2001V
Latch-up Current	> 200 mA

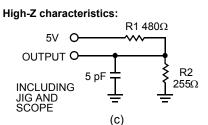
Operating Range

Range	Ambient Temperature	V _{cc}	Speed
Industrial	–40°C to +85°C	$5V\pm0.5V$	10 ns

Electrical Characteristics (Over the Operating Range)

Parameter	Description	Test Conditions		7C107D-10 7C1007D-10		Unit
			-	Min	Max	
V _{OH}	Output HIGH Voltage	I _{OH} = -4.0 mA		2.4		V
V _{OL}	Output LOW Voltage	I _{OL} = 8.0 mA			0.4	V
V _{IH}	Input HIGH Voltage			2.2	V _{CC} + 0.5	V
V _{IL}	Input LOW Voltage [3]			-0.5	0.8	V
I _{IX}	Input Leakage Current	$GND \leq V_I \leq V_{CC}$		-1	+1	μA
I _{OZ}	Output Leakage Current	$GND \leq V_I \leq V_{CC}$, Output Disabled		-1	+1	μA
I _{CC}	V _{CC} Operating Supply Current	V _{CC} = Max,	100 MHz		80	mA
		$I_{OUT} = 0 \text{ mA},$ f = f _{max} = 1/t _{RC}	83 MHz		72	mA
			66 MHz		58	mA
			40 MHz		37	mA
I _{SB1}	Automatic CE Power-down Current— TTL Inputs	$ \begin{array}{l} Max \ V_{CC}, \overline{CE} \geq V_{IH}, \\ V_{IN} \geq V_{IH} \ or \ V_{IN} \leq V_{IL}, \ f = f_{max} \end{array} $			10	mA
I _{SB2}	Automatic CE Power-down Current— CMOS Inputs	$\begin{array}{l} \text{Max V}_{\text{CC}}, \overline{\text{CE}} \geq \text{V}_{\text{CC}} - 0.3\text{V}, \\ \text{V}_{\text{IN}} \geq \text{V}_{\text{CC}} - 0.3\text{V} \text{ or } \text{V}_{\text{IN}} \leq 0.3\text{V}, \text{f} = 0 \end{array}$			3	mA


Capacitance ^[4]


Parameter	Description	Test Conditions	Max	Unit
C _{IN} : Addresses	Input Capacitance	T _A = 25°C, f = 1 MHz, V _{CC} = 5.0V	7	pF
C _{IN} : Controls			10	pF
C _{OUT}	Output Capacitance		10	pF

Thermal Resistance ^[4]

Parameter	Description	Test Conditions	300-Mil Wide SOJ	400-Mil Wide SOJ	Unit
Θ_{JA}		Still Air, soldered on a 3 × 4.5 inch, four-layer printed circuit board	59.16	58.76	°C/W
Θ ^{JC}	Thermal Resistance (Junction to Case)		40.84	40.54	°C/W

AC Test Loads and Waveforms ^[5]

Notes

- 4. Tested initially and after any design or process changes that may affect these parameters.
- 5. AC characteristics (except High-Z) are tested using the load conditions shown in Figure (a). High-Z characteristics are tested for all speeds using the test load shown in Figure (c).

Switching Characteristics (Over the Operating Range) [6]

Parameter	Description		7D-10)7D-10	Unit
		Min	Мах	
Read Cycle	-	·		
t _{power} ^[7]	V _{CC} (typical) to the first access	100		μs
t _{RC}	Read Cycle Time	10		ns
t _{AA}	Address to Data Valid		10	ns
t _{OHA}	Data Hold from Address Change	3		ns
t _{ACE}	CE LOW to Data Valid		10	ns
t _{LZCE}	CE LOW to Low Z ^[8]	3		ns
t _{HZCE}	CE HIGH to High Z ^[8, 9]		5	ns
t _{PU} ^[10]	CE LOW to Power-Up	0		ns
t _{PD} ^[10]	CE HIGH to Power-Down		10	ns
Write Cycle [1]	1]			1
t _{WC}	Write Cycle Time	10		ns
t _{SCE}	CE LOW to Write End	7		ns
t _{AW}	Address Set-Up to Write End	7		ns
t _{HA}	Address Hold from Write End	0		ns
t _{SA}	Address Set-Up to Write Start	0		ns
t _{PWE}	WE Pulse Width	7		ns
t _{SD}	Data Set-Up to Write End	6		ns
t _{HD}	Data Hold from Write End	0		ns
t _{LZWE}	WE HIGH to Low Z ^[8]	3		ns
t _{HZWE}	WE LOW to High Z ^[8, 9]		6	ns

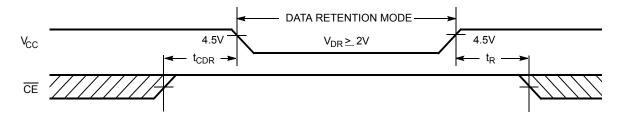
Notes

6. Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V, and output loading of the specified I_{OL}/I_{OH} and 30-pF load capacitance.

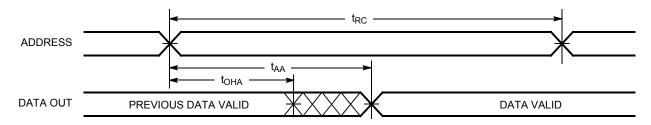
7. t_{POWER} gives the minimum amount of time that the power supply should be at typical V_{CC} values until the first memory access can be performed.

8. At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE} and t_{HZWE} is less than t_{LZWE} for any given device.
9. t_{HZCE} and t_{HZWE} are specified with a load capacitance of 5 pF as in part (c) of "AC Test Loads and Waveforms [5]" on page 4. Transition is measured when the outputs enter a high impedance state.

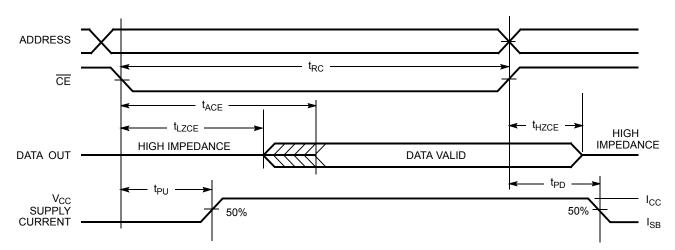
10. This parameter is guaranteed by design and is not tested.


11. The internal write time of the memory is defined by the overlap of CE LOW and WE LOW. CE and WE must be LOW to initiate a write, and the transition of any of these signals can terminate the write. The input data set-up and hold timing should be referenced to the leading edge of the signal that terminates the write.

Data Retention Characteristics (Over the Operating Range)


Parameter	Description	Conditions	Min	Max	Unit
V _{DR}	V_{CC} for Data Retention		2.0		V
I _{CCDR}	Data Retention Current	$V_{CC} = V_{DR} = 2.0V, \overline{CE} \ge V_{CC} - 0.3V,$ $V_{IN} \ge V_{CC} - 0.3V \text{ or } V_{IN} \le 0.3V$		3	mA
t _{CDR} ^[5]	Chip Deselect to Data Retention Time		0		ns
t _R ^[12]	Operation Recovery Time		t _{RC}		ns

Data Retention Waveform

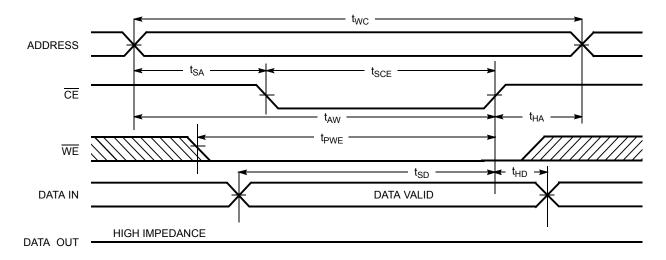


Switching Waveforms

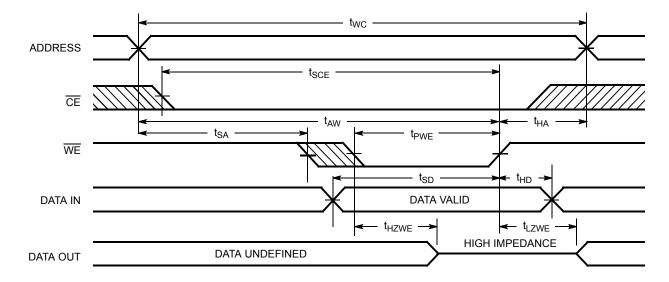
Read Cycle No. 1 (Address Transition Controlled) [13, 14]

Notes

12. Full device operation requires linear V_{CC} ramp from V_{DR} to V_{CC(min)} \ge 50 µs or stable at V_{CC(min)} \ge 50 µs. 13. Device is continuously selected, $\overline{CE} = V_{IL}$.


14. WE is HIGH for read cycle.

15. Address valid prior to or coincident with \overline{CE} transition LOW.



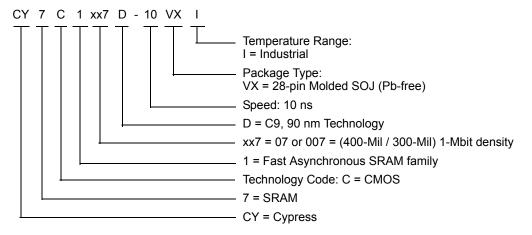
Switching Waveforms(continued)

Write Cycle No. 1 (CE Controlled)^[16]

Write Cycle No. 2 (WE Controlled) ^[16]

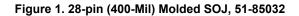
Truth Table

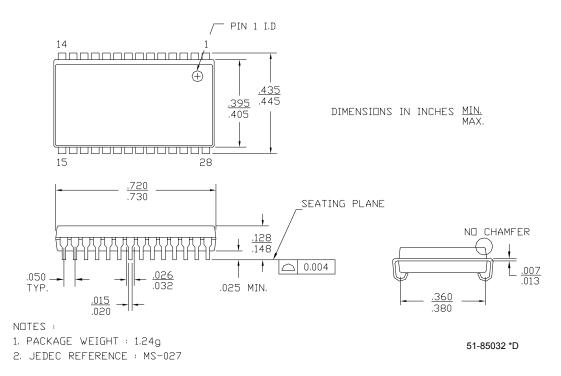
CE	WE	D _{OUT}	Mode	Power
Н	Х	High Z	Power-Down	Standby (I _{SB})
L	Н	Data Out	Read	Active (I _{CC})
L	L	High Z	Write	Active (I _{CC})


Note ______ 16. If $\overline{\text{CE}}$ goes HIGH simultaneously with $\overline{\text{WE}}$ going HIGH, the output remains in a high-impedance state.

Ordering Information

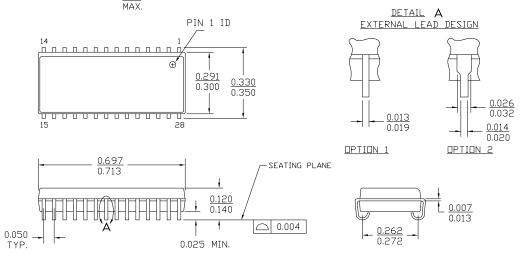
Speed (ns)	Ordering Code	Package Diagram	Package Type	Operating Range
10	CY7C107D-10VXI	51-85032	28-pin (400-Mil) Molded SOJ (Pb-free)	Industrial
	CY7C1007D-10VXI	51-85031	28-pin (300-Mil) Molded SOJ (Pb-free)	


Ordering Code Definitions



Please contact your local Cypress sales representative for availability of these parts.

Package Diagrams



Package Diagrams(continued)

Figure 2. 28-pin (300-Mil) Molded SOJ, 51-85031

NDTE :

- 1. JEDEC STD REF MOO88
- 2. BODY LENGTH DIMENSION DOES NOT INCLUDE MOLD PROTRUSION/END FLASH MOLD PROTRUSION/END FLASH SHALL NOT EXCEED 0.006 in (0.152 mm) PER SIDE
- 3. DIMENSIONS IN INCHES MIN.

51-85031 *D

All product and company names mentioned in this document may be the trademarks of their respective holders.

Document History Page

REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change
**	201560	See ECN	SWI	Advance Information data sheet for C9 IPP
*A	233722	See ECN	RKF	DC parameters modified as per EROS (Spec # 01-02165) Pb-free offering in Ordering Information
*В	263769	See ECN	RKF	Added Data Retention Characteristics table Added T _{power} Spec in Switching Characteristics Table Shaded Ordering Information
*C	307601	See ECN	RKF	Reduced Speed bins to –10 and –12 ns
*D	560995	See ECN	VKN	Converted from Preliminary to Final Removed Commercial Operating range Removed 12 ns speed bin Added I_{CC} values for the frequencies 83MHz, 66MHz and 40MHz Updated Thermal Resistance table Updated Ordering Information Table Changed Overshoot spec from V_{CC} +2V to V_{CC} +1V in footnote #3
*E	802877	See ECN	VKN	Changed I_{CC} specs from 60 mA to 80 mA for 100MHz, 55 mA to 72 mA for 83MHz, 45 mA to 58 mA for 66MHz, 30 mA to 37 mA for 40MHz
*F	2898399	03/24/2010	AJU	Updated Package Diagrams
*G	3104943	12/08/2010	AJU	Added Ordering Code Definitions.

© Cypress Semiconductor Corporation, 2004-2010. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.