

Rev D3, Page 1/30

FEATURES

Programmable angle resolution from 1 to 256 steps per period Interpolation factors from x0.25 to x64

Input frequency to 115 kHz with x64, to 230 kHz with x32, to 460 kHz with x16

Latency of less than 1 µs

Selectable gain permits single-ended and differential input signals from 10 mV to 1.5 V peak-peak

Index gating input with fine adjustable offset

Programmable index pulse output position and width

Four incremental output modes: quadrature encoder with index, up/down clock, increment/direction, 3 phase commutation

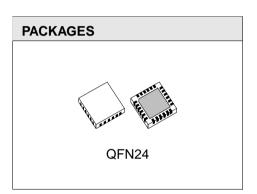
Programmable filter and hysteresis

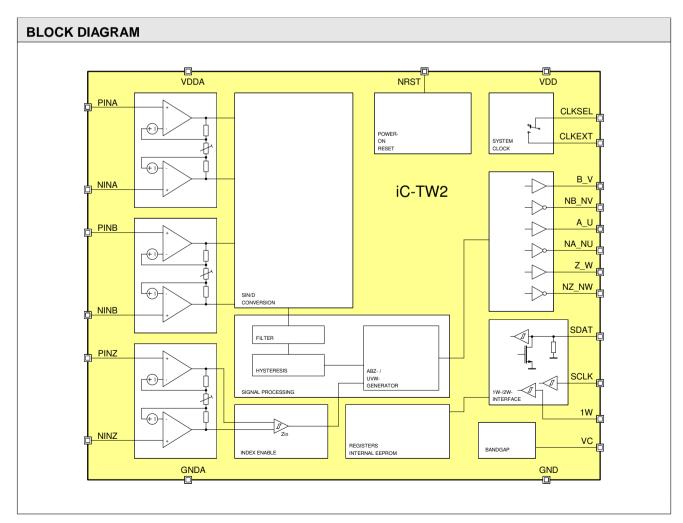
Direct sensor connection, minimized count of external components

Non-volatile setup due to internal EEPROM

Fully re-programmable via serial 1- and 2-wire interfaces

Power-on reset circuit and on-chip oscillator


ESD protection and TTL-/CMOS-compatible outputs


APPLICATIONS

Interpolation IC for position data acquisition from analog sine/cosine sensors

Optical linear and rotary encoders

Magneto resistive sensors and encoders

Copyright © 2010 iC-Haus http://www.ichaus.com

Rev D3, Page 2/30

DESCRIPTION

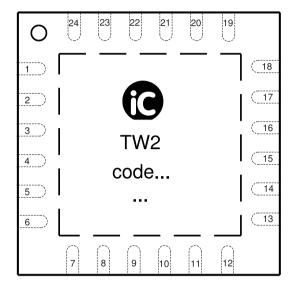
iC-TW2's interpolation engine accepts two fully differential sensor bridges delivering sinusoidal input signals (SIN/COS) to produce a highly interpolated output signal. No further external components are required. Single ended sensor signals are supported by tying the negative input terminal to a signal reference, usually VDD/2.

iC-TW2 generates one index pulse for every input period. The position in respect to the start of the period as well as the width of the pulse is fully programmable. Index pulse position can be used in conjunction with the startup mode to guarantee a desired phase relationship between A, B and index output pulse.

There are four different output modes provided, including 3-phase commutation output for brushless DC motors. It is highly programmable to meet requirements for a wide range of applications. Two serial interfaces have been included to permit configuration of the device, also accessing an internal EEP-ROM. Both interfaces allow complete configuration of the device including transfer of setup and system data to register and EEPROM for non-volatile configuration.

For an illustration of the interpolation function of the iC-TW2 see Figure 2 on page 10.

CONTENTS


PACKAGES	3	CONFIGURATION DEPENDENCIES	19
ABSOLUTE MAXIMUM RATINGS	4	Selecting configuration parameters	19
ABSOLUTE MAXIMUM RATINGS	-	Clock tuning	19
THERMAL DATA	4	DEVICE IDENTIFICATION	20
ELECTRICAL CHARACTERISTICS	5	OTA DT UD	04
	_	START UP	21
REGISTER MAP	8	Power-On-Reset	21
PROGRAMMING	9	Reset	21
DESCRIPTION OF INTERPOLATION	10	1W-/2W-INTERFACE AND EEPROM ACCESS	22
Interpolation vs. Resolution	10	Memory map	22
	. •	2W-Interface	22
INPUT STAGE	11	2W-Interface timing	24
OUTPUT MODES	12	1W-Interface	26
	12	1W-Interface write sequence	26
AB Quadrature And Up/Down and Incr/Dir Modes	13	Writing the register bank to the EEPROM	26
3 Phase Commutation Mode	14	TEST MODES	27
INDEX GATING	15	Production test control bits	
CALIBRATION	17	TVD10.11 4 DD1.10.4T/0.10	
		TYPICAL APPLICATIONS	28
A/B gain and offset calibration			
Oscillator and index window calibration	17	PCB LAYOUT GUIDELINES	29

Rev D3, Page 3/30

PACKAGES

PIN CONFIGURATION QFN24 4 mm x 4 mm

PIN FUNCTIONS

No.	Name	Function
1	VDD	+3 V to +5.5 V Digital Supply Voltage
	B_V	B Signal / V Signal Output
3	NB_NV	Inverted B / Inverted V Signal Output
4	A_U	A Signal/U Signal Output
5	NA_NU	Inverted A / Inverted U Signal Output
6	GND	Digital Ground
7	NZ_NW	Inverted Z/Inverted W Signal Output
8	Z_W	Z Signal / W Signal Output
9	1W	1W-Interface, signal input
10	VDDA	+3 V to +5.5 V Analog Supply Voltage
11	GNDA	Analog Ground
12	n.c.	Pin not connected
13	PINB	Signal Input B+
14	NINB	Signal Input B-
15	CLKSEL	,
16	NRST	External Reset Input (active low)
	NINA	Signal Input A-
	PINA	Signal Input A+
19	VC	1.2 V Reference Voltage Output
20	NINZ	Signal Input Z- (Index)
21	PINZ	Signal Input Z+ (Index)
22	SCLK	2-Wire Interface, clock input
23	CLKEXT	External Clock Input
24	SDAT	2-Wire Interface, serial data in/out
TP		Thermal Pad (bottom side)

The *Thermal Pad* of the QFN package (bottom side) is to be connected to a ground plane on the PCB which must have GND potential. GNDA must be wired to GND.

Only pin 1 marking on top or bottom defines the package orientation (iC-TW2 label and coding is subject to change).

Rev D3, Page 4/30

ABSOLUTE MAXIMUM RATINGS

These ratings do not imply operating conditions; functional operation is not guaranteed. Beyond these ratings device damage may occur.

Item	Symbol	Parameter	Conditions			Unit
No.				Min.	Max.	
G001	VDD, VDDA	Supply Voltage VDD, VDDA	referenced to GND	-0.3	6.0	V
G002	∆VDDA	Supply Voltage Difference VDD vs. VDDA	ΔVDDA = VDD - VDDA	0	0.5	V
G003	V()	Voltage at PINA, NINA, PINB, NINB, PINZ, NINZ, B_V, NB_V, A_U, NA_U, Z_W, NZ_W, 1W, SDAT, SCLK, CLKSEL, CLKEXT	referenced to GND	-0.3	VDD + 0.5 V	V
G004	I()	Current in PINA, NINA, PINB, NINB, PINZ, NINZ, B_V, NB_V, A_U, NA_U, Z_W, NZ_W, 1W, SDAT, SCLK, CLKSEL, CLKEXT, VC		-20	20	mA
G005	Vd	ESD Susceptibility Of Signal Outputs	HBM, 100 pF discharged through 1.5 kΩ; pins A_U, NA_U, B_V, NB_V, Z_W, NZ_W		1.5	kV
G006	Vd	ESD Susceptibility (remaining pins)	HBM, 100 pF discharged through 1.5 kΩ		1	kV
G007	Tj	Junction Temperature		-40	125	°C
G008	Ts	Storage Temperature		-40	125	°C

THERMAL DATA

Item	Symbol	Parameter	Conditions				Unit
No.				Min.	Тур.	Max.	
T01	Та	Operating Ambient Temperature		-40		125	°C
T02	Rthja	Thermal Resistance Chip To Ambient	QFN24 surface mounted to PCB, following JEDEC 51		32		K/W

Rev D3, Page 5/30

ELECTRICAL CHARACTERISTICS

ltem No.	Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
	Device				71		Ш
001	VDD, VDDA	Permissible Supply Voltage VDD, VDDA		3.0		5.5	V
002	I(VDD, VDDA)	Total Supply Current	VDD = 3.3 V at 0 Hz VDD = 3.3 V at 100 kHz VDD = 5.5 V at 0 Hz VDD = 5.5 V at 100 kHz			5 20 8 40	mA mA mA mA
003	Vc()hi	Clamp-Voltage hi at all pins	Vc()hi = V() - VDD; I() = 10 mA	0.5		1.2	V
004	Vc()lo	Clamp-Voltage lo at all pins	I() = -10 mA	-1.1		-0.3	V
Input	Amplifier Pll	NA, NINA, PINB, NINB					
101	Vin()sig	Permissible Input Voltage Range		1.4		VDD - 1.2	V
102	Step(GC)	Nominal Coarse Gain Step Size			6.0		dB
103	, ,	Coarse Gain Absolute Accuracy		-1.0		3.5	dB
104	Step(GF)	Nominal Fine Gain Step Size			0.7		dB
105	AGabs(GF)	Fine Gain Absolute Accuracy		-0.3		0.3	dB
106	CGM	Gain Matching G(CHA)/G(CHB)		0.85		1.15	
107	Vin()os	Input Referred Offset Voltage		-15		15	mV
108	Vout()ossc	Output Referred Offset Correction Step Accuracy		-10		10	mV
109	Step(OFSx)	Nominal Offset Correction Step Size			13		mV
110	Vout()os	Output Referred Offset Voltage		-40		40	mV
111	FR	Permissible Input Frequency; Frequency Ratio FR=f _{cal} / f _{in}	INTER = 1 64, FREQ = 0 INTER = 1 64, FREQ = 1 INTER = 1 64, FREQ = 2 127 INTER = 17 128, FREQ = 0 INTER = 17 128, FREQ = 1 127 INTER = 129 255 INTER = 0	64 128 256 128 256 256 256			
Oscill	ator						и.
201	f _{osc}	Frequency Tuning Range	VDD = 3.0 V, Tj = 25 °C, CLOCK = 0 VDD = 3.0 V, Tj = 25 °C, CLOCK = 31 VDD = 5.5 V, Tj = 25 °C, CLOCK = 0 VDD = 5.5 V, Tj = 25 °C, CLOCK = 31	35 40		25 28	MHz MHz MHz MHz
202	f _{cal}	User Calibrated Frequency fosc	VDD = 3.6 V, Tj = 25 °C VDD = 5.5 V, Tj = 25 °C			25 30	MHz MHz
203	df _{osc} (T)	Frequency Variation	over temperature range -40 °C to 125 °C	-20		0	%
204	df _{osc} (V)	Frequency Variation	over supply voltage range 3.0 V to 5.5 V	0		25	%
EEPR	ОМ						и.
301	Tret	Data Retention Time	Tj = 125 °C Tj = 85 °C	10 100			years years
302	Ncycles	Number of Erase/Write Cycles	Tj = 25 °C	1000			
303	Nread	Number of Read Cycles		10 ⁶			
Refere	ence Voltage	Output VC					u.
401	Vref(VC)	Reference Voltage	$C_L = 100 \text{nF}, I(VC) = 0 \text{mA}$	1.15	1.21	1.27	V
Digita	Inputs NRS	ST					_
501	Vt()hi	Input Threshold Voltage hi	VDD = 3.3 V +/- 10 % VDD = 5.0 V +/- 10 %	1.5 3.3			V
502	Vt()lo	Input Threshold Voltage lo	VDD = 3.3 V +/- 10 % VDD = 5.0 V +/- 10 %			0.8 1.0	V
503	lpu()	Input Pull-up Current	V() = 0VDD - 1 V			-3	μΑ
504	Vpu()	Input Pull-up Voltage	Vpu() = VDD - V(), I() = -3 μA			500	mV

Rev D3, Page 6/30

ELECTRICAL CHARACTERISTICS

Operating conditions: VDD = VDDA = 3.0...5.5 V, Tj = -40...125 °C, unless otherwise stated

Item No.	Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Digita	Inputs CLI	KSEL, CLKEXT					1
601	Vt()hi	Input Threshold Voltage hi	VDD = 3.3 V +/- 10 % VDD = 5.0 V +/- 10 %	1.5 3.3			V V
602	Vt()lo	Input Threshold Voltage lo	VDD = 3.3 V +/- 10 % VDD = 5.0 V +/- 10 %			0.8 1.0	V
603	lpd()	Input Pull-down Current	V() = 1 VVDD	4			μA
604	Vpd()	Input Pull-down Voltage	I() = 3 μA			500	mV
Digita	Outputs A	_U, NA_NU, B_V, NB_NV, Z_W, N	z_nw				
701	Vs()hi	Output Saturation Voltage hi	Vs()hi = V(VDD) - V(), I() = -6 mA; VDD = 3.3 V +/- 10 % VDD = 5.0 V +/- 10 %			0.5 0.4	V
702	Isc()hi	Short-circuit Current hi	V() = GND	-100		-15	mA
703	Vs()lo	Output Saturation Voltage lo	I() = 6 mA; VDD = 3.3 V +/- 10 % VDD = 5.0 V +/- 10 %			0.3 0.25	V
704	Isc()lo	Short-circuit Current lo	V() = VDD	20		140	mA
705	tr()	Output Rise time	VDD = 3.0 V, CL() = 10 pF			4	ns
706	tf()	Output Fall Time	VDD = 3.0 V, CL() = 10 pF			4	ns
707	I()max	Permissible Load Current	source and sink	-10		10	mA
708	twhi	Duty Cycle at Output A, B	referred to period T, see Fig. 1		50		%
709	tAB	Output Phase A vs. B	referred to period T, see Fig. 1		25		%
710	tMTD	Minimum Transition Distance	see Fig. 1		1/ f _{core}		
Signa	l Processin	g					
801	AAabs	Absolute Angular Accuracy	referred to 360° input signal GC(2:0) = 1 INTER(7:0) = 0 FREQ(6:0) = 127 f() < 50 Hz	-6		6	DEG
802	AArel	Relative Angular Accuracy	referred to period of A, B GC(2:0) = 1 INTER(7:0) = 0 FREQ(6:0) = 127 f() < 50 Hz	-20		20	%
803	ABrel	Relative Angular Accuracy A vs. B			1/2 AArel		%
Index	Comparato	r PINZ, NINZ			,		,
901	Vin()sig	Permissible Input Voltage Range		0.0		VDD	V
902	Vin()os	Input Referred Offset Voltage		-15		+15	mV
903	Vin()step	Comparator Offset Step Size	OFSZ = 07 OFSZ = 815		1.5 -1.5		mV mV
Powe	r-Down-Res	et					
A01	VDDon	Turn-on Threshold VDD (power on release)			1.8		V
A02	tbusy()cfg	Duration of Startup Configuration			20		ms

Rev D3, Page 7/30

ELECTRICAL CHARACTERISTICS

Operating conditions: VDD = VDDA = 3.0...5.5 V, Tj = -40...125 °C, unless otherwise stated

Item	Symbol	Parameter	Conditions				Unit
No.				Min.	Тур.	Max.	
2-Wire	Interface S	DAT, SCLK					
B01	Vt()hi	Input Threshold Voltage hi	VDD = 3.3 V +/- 10 % VDD = 5.0 V +/- 10 %	1.5 3.3			V V
B02	Vt()lo	Input Threshold Voltage lo	VDD = 3.3 V +/- 10 % VDD = 5.0 V +/- 10 %			0.8 1.0	V V
B03	lpd()	Input Pull-down Current	V() = 1 VVDD	4			μA
B04	Vpd()	Input Pull-down Voltage	I() = 3 μA			500	mV
B05	Vs()lo	Saturation Voltage lo at SDAT	I() = 2 mA			450	mV
B06	Vs()hi	Saturation Voltage hi at SDAT	Vs()hi = VDD - V(); I() = -2 mA			700	mV
B07	lsc()lo	Short-circuit Current lo at SDAT		3			mA
B08	lsc()hi	Short-circuit Current hi at SDAT				-2.5	mA
B09	fclk(SCLK)	Permissible Clock Frequency SCLK	scales with oscillator frequency timing, see Table 32			1.25	MHz
B10	tbusy()e2p	Max. Duration of EEPROM access	scales with oscillator frequency timing, see Table 32			20	ms
1-Wire	Interface 1	w		"			
C01	Vt()hi	Input Threshold Voltage hi	VDD = 3.3 V +/- 10 % VDD = 5.0 V +/- 10 %	1.5 3.3			V V
C02	Vt()lo	Input Threshold Voltage lo	VDD = 3.3 V +/- 10 % VDD = 5.0 V +/- 10 %			0.8 1.0	V V
C03	lpu()	Input Pull-up Current	V() = 0VDD - 1 V			-3	μA
C04	Vpu()	Input Pull-up Voltage	Vpu() = VDD - V(), I() = -3 μA			500	mV

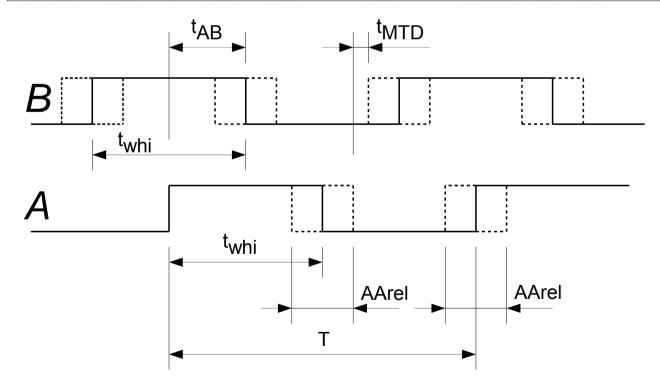


Figure 1: Relative phase distance

Rev D3, Page 8/30

REGISTER MAP

Regist	er Map							
Adr	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Device	Indentification	n						
0x00		IDA	(3:0)			IDB	(3:0)	
Operati	ing Modes				'			
0x01		RESET (P. 21)	CALIB1 (P. 17)	STARTU	P(1:0)(P. 21)	DIR (P. 12)	MODE	(1:0) _(P. 12)
Interpo	lation Rate							
0x02				INTER	(7:0) _(P. 12)			
Index P	osition							
0x03				IPOS(7:0) _(P. 13)			
Index V	Vidth							
0x04				IWIDTH	H(7:0) _(P. 13)			
Conver	sion Settings							
0x05	GRANU- LAR(P. 27)				FREQ(6:0) _{(P. 20}))		
0x06					FILTER	(1:0) _(P. 20)	HYST(1:0) _(P. 20)
Gain ar	nd Offset							
0x07		GFB(1	:0) (P. 11)	GFA(1	(P. 11)		GC(2:0) (P. 11)	
80x0					OFSA(,		
0x09					OFSB(5:0) _(P. 11)		
Bias an	d Oscillator T	rimming						
0x0A		VC(1	:0) _(P. 27)		C	LOCK(4:0) _{(P.}	17)	
Index C	omputation a	nd Miscellane	ous					
0x0B		OFSZ(3:0) _(P. 17)		EN_MON (P. 27)	CLKDLY (P. 27)	CLKDIV (P. 20)	CLKMODE (P. 27)
Reserv	ed and Calibra	ation						
0x0C		Reserved _(P. 27) CALIB2						
0x0D				Reser	ved _(P. 27)			
EEPRO	M Control							
0x0E	EE_READ (P. 27)							
Test Re	gister							
0x0F				MONITO	R(7:0) _(P. 27)			

Table 4: Register Map

Rev D3, Page 9/30

PROGRAMMING

Input Stage GC: GFA/B: OFSA/B:	Coarse gain control (P. 11) Fine gain control on channel A/B (P. 11) Offset control on channel A/B (P. 11)	Device Ident IDA: IDB:	ificationPage 20 Major Device Revision (P. 20) Minor Device Revision (P. 20)
MODE: DIR:	Output mode selection (P. 12) Count direction (P. 12)	Start Up STARTUP: RESET:	
INTER: IPOS: IWIDTH:	Interpolation rate selection (P. 12) Index pulse position (P. 13) Index pulse width selection (P. 13)		erface And EEPROM Access . Page 22 EEPROM store command (P. 26)
	Page 15 Page 17 Calibration mode 1 select (P. 17) Calibration mode 2 select (P. 17) Index comparator offset control (P. 17) Oscillator tune (P. 17)	GRANULAR: VC: CLKMODE:	A/B output edge granularity control (P. 27) Reference voltage fine tuning (P. 27) Clock source selection (P. 27)
Configuratio FREQ: CLKDIV: HYST: FILTER:	Maximum input frequency (P. 20) Master clock divider (P. 20) Hysteresis control (P. 20) Datapath filter control (P. 20)	CLKDLY: EN_MON: MONITOR: EE_READ:	Clock distribution delay line selection (P. 27) Position data monitor control (P. 27) Monitor register (P. 27) EEPROM read command (P. 27)

Rev D3, Page 10/30

DESCRIPTION OF INTERPOLATION

iC-TW2 is a monolithic A/D converter which converts sine/cosine sensor signals with a selectable resolution

and hysteresis into angle position data. The interpolation function is shown in Figure 2.

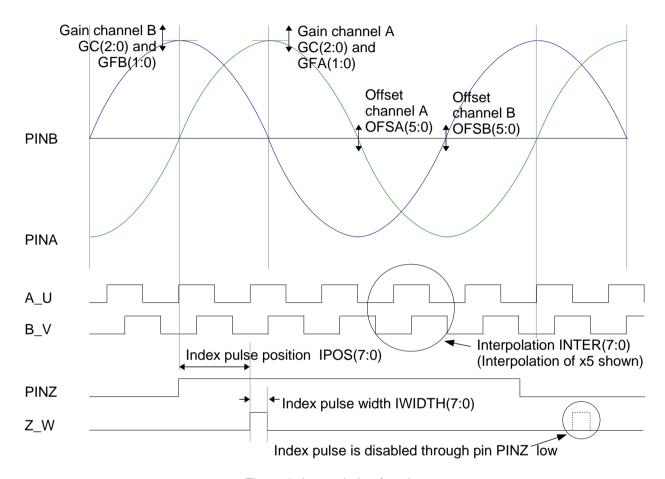


Figure 2: Interpolating function

Interpolation vs. Resolution

There is a difference between interpolation factor and resolution. Resolution (interpolation rate) is determined by the sum of edges at the incremental outputs (AB quadrature output) within one input signal period.

Dividing the resolution by the existing edges of the SINE and COSINE signals (= 4) equals to the inter-

polation factor. The interpolation factor equals to the the resolution divided by 4.

Example:

An interpolation factor of x8 brings a resolution of 32 (edges). To operate with a interpolation factor of 8 configure INTER(7:0) to 32.

Rev D3, Page 11/30

INPUT STAGE

A programmable gain amplifier (PGA) with output referred offset adjustment is used as input stage, shown in Figure 3. The coarse gain is common for both channel A and B and is programmed through register GC(2:0). Table 5 shows the required gain setting for a given input signal amplitude (peak to peak, differential). Fine tuning gain is applied individually to channel A and B by programming registers GFA(1:0) and GFB(1:0) respectively.

GC(2:0)	Addr. 0x07; bit 2:0	R/W
Code	Function, defaults to eeprom setting	
000	1.5 V - 800 mV	
001	800 mV - 400 mV	
010	400 mV - 200 mV	
011	200 mV - 100 mV	
100	100 mV - 50 mV	
101	50 mV - 25 mV	
110	25 mV - 10 mV	
111	not defined	

Table 5: Coarse gain control of channel A/B

GFA(1:0)	Addr. 0x07; bit 4:3	R/W
GFB(1:0)	Addr. 0x07; bit 6:5	R/W
Code	Function, defaults to eeprom setting	
00	0 dB	
01	0.7 dB	
10	1.4 dB	
11	2.1 dB	

Table 6: Fine gain control of channel A/B

Offset adjustment is provided at the output of the input amplifier. It is individually programmed through register OFSA(5:0) and OFSB(5:0). Adjustment is made in steps of 13 mV and the corresponding register values are sign magnitude encoded. Input referred offset becomes gain dependent and is defined as follows:

$$OFSA_{input_referred} = \frac{13 \, mV * OFSA(5:0)}{GC(2:0)}$$

OFSA(5:0)	Addr. 0x08; bit 5:0 R/W
OFSB(5:0)	Addr. 0x09; bit 5:0 R/W
Code	Function, defaults to eeprom setting
111111	maximum negative adjust: -403 mV
111110	-390 mV
100001	-13 mV
100000	no correction
000000	no correction
000001	13 mV
011110	390 mV
011111	maximum positive adjust: 403 mV

Table 7: Offset control of channel A/B

Consider Table 8 regarding the relationship between input signal peak-peak differential amplitude, amplifier gain setting and resulting offset correction range.

Input amplifier gain and offset				
Input signal range	Register GC(2:0)	Input referred offset step size	Input referred offset range	
800 mV - 1.5 V	0	26 mV	±806 mV	
400 mV - 800 mV	1	13 mV	±403 mV	
200 mV - 400 mV	2	6.5 mV	±202 mV	
100 mV - 200 mV	3	3.25 mV	±101 mV	
50 mV - 100 mV	4	1.63 mV	±50 mV	
25 mV - 50 mV	5	0.81 mV	±25 mV	
10 mV - 25 mV	6	0.41 mV	±12.6 mV	

Table 8: Input amplifier gain and offset

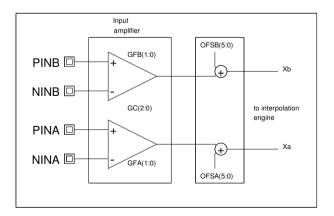


Figure 3: Input stage

Rev D3, Page 12/30

OUTPUT MODES

The iC-TW2 provides four different output modes, which are configured by programming bits MODE(1:0) of register 0x01. Modes 0, 1 and 2 are incremental modes whereas mode 3 is a 3-phase commutation output for brushless DC motors. Consider Figure 4 for a comparison of the 3 incremental output modes.

MODE(1:0)	Addr. 0x01; bit 1:0	R/W
Code	Function, defaults to eeprom setting	
00	AB quadrature mode 0	
01	up / dn mode 1	
10	inc / dir mode 2	
11	3 phase commutation mode 3	

Table 9: Output mode selection

In increment / direction mode the count direction can be inverted via control bit DIR of register 0x01.

DIR	Addr. 0x01; bit 2	R/W
Code	Function, defaults to eeprom setting	
0	Normal count direction	
1	Inverted count direction	

Table 10: Count direction selection

INTER (7:0)	Adr 0x02, Bit 7:	0 R/W	
Code	STEP Angle Steps Per Period	IPF Interpolation Factor	fin()max Maximum Permissible Input Frequency *
0x00	256	64	115 kHz **
0x01	1	0.25	460 kHz
0x02	2	0.5	460 kHz
0x03	3	0.75	460 kHz
0x04	4	1	460 kHz
0x05	5	1.25	460 kHz
			460 kHz
0x3C	60	15	460 kHz
0x3D	61	15.25	460 kHz
0x3E	62	15.5	460 kHz
0x3F	63	15.75	460 kHz
0x40	64	16	460 kHz
0x41	65	16.25	230 kHz
0x42	66	16.5	230 kHz
0x43	67	16.75	230 kHz
0x44	68	17	230 kHz
0x45	69	17.25	230 kHz
			230 kHz
0x7C	124	31	230 kHz
0x7D	125	31.25	230 kHz
0x7E	126	31.5	230 kHz
0x7F	127	31.75	230 kHz
0x80	128	32	230 kHz
0x81	129	32.25	115 kHz
0x82	130	32.5	115 kHz
0x83	131	32.75	115 kHz
0x84	132	33	115 kHz
0x85	133	33.25	115 kHz
			115 kHz
0xFA	250	62.5	115 kHz
0xFB	251	62.75	115 kHz
0xFC	252	63	115 kHz
0xFD	253	63.25	115 kHz
0xFE	254	63.5	115 kHz
0xFF	255	63.75	115 kHz

Table 11: Converter resolution

 $^{^{\}star}$ Depending on configuration FREQ=0, CLKDIV=0 and f_{cal} = 920 kHz.

^{**} Maximum permissible input frequency for commutation operation (mode = 3).

Rev D3, Page 13/30

AB Quadrature And Up/Down and Incr/Dir Modes

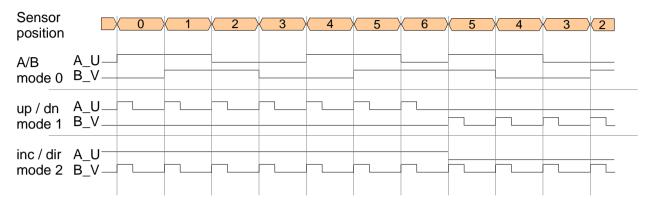


Figure 4: Incremental output modes (mode 0, 1, 2)

IPOS(7:0)	Addr. 0x03; bit 7:0 R/W
Code	Function, defaults to eeprom setting
0	No offset
1	1 increment offset
2	2 increments offset
	Index pulse will shifted by IWIDTH(7:0) increments. Programmed value is within the range of 0 to INTER(7:0) - 1.
255	255 increments offset
Note:	A fixed phase relation to A/B is guaranteed only with STARTUP(1:0) = 0b10 ('ABSOLUTE") or STARTUP(1:0) = 0b11 ('BURST").

Table 12: Index pulse position

IWIDTH(7:0) Addr. 0x04; bit 7:0	R/W
Code	Function, defaults to eeprom setting	
0	disable pulse generation	
1	1 increment width	
2	2 increments width	
Any other value n	Index pulse will extend over IWIDTH(7:0) increments.	
value II	Programmed value is within the range of 0 to	
	INTER(7:0) - 1.	
255	255 increments width	

Table 13: Index pulse width selection

Rev D3, Page 14/30

3 Phase Commutation Mode

The 3 phase commutation output (mode 3) is shown in Figure 5. It is important that register INTER(7:0) is programmed with the value 0x00 in order for the commutation mode to work. The mode = 3 requires an internal interpolation INTER(7:0) of 256. Register IPOS(7:0) is used to accurately position the commutation. IWIDTH(7:4) and IWIDTH(3:0) is subsequently used to fine tune V and W in respect to U. All used offsets within the commutation mode (mode 3) as are IPOS(7:0), IWIDTH(3:0) and IWIDTH(7:4) operate in this step width of 1.4° . There is no other pole count commutation possible to configure as the described 3 phase commutation.

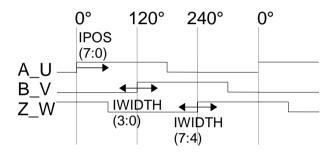


Figure 5: 3-Phase commutation output (mode 3)

IPOS(7:0)	Addr. 0x03; bit 7:0	R/W
Code	Function, defaults to eeprom setting	
0	0°	
1	1.40°	
2	2.81°	
	Programmed value is within the range of 0 to INTER(7:0) - 1.	
255	358,59°	

Table 14: UVW commutation signal position offset

IWIDTH(3:0) Addr. 0x04; bit 3:0	R/W
Code	V output offset, defaults to eeprom setting	
0111	9.84°	
0010	2.81°	
0001	1.40°	
0000	0°	
1111	-1.40°	
1110	-2.81°	
1111	11.25°	

Table 15: V commutation signal position offset

IWIDTH(7:4) Addr. 0x04; bit 7:4	R/W
Code	W output offset, defaults to eeprom setting	
0111	9.84°	
0010	2.81°	
0001	1.40°	
0000	0°	
1111	-1.40°	
1110	-2.81°	
1111	11.25°	

Table 16: W commutation signal position offset

Rev D3, Page 15/30

INDEX GATING

The iC-TW2 can interface to a wide range of index gating sources. Most commonly used are the digital hall sensor and the MR sensor bridge. The digital Hall sensor provides a large swing input signal to the iC-TW2. Depending on the polarity of the Hall it is either connected to pin NINZ or PINZ. Most Hall sensors use an open drain stage pulling the output low in the presence of a magnetic field. The unused terminal PINZ or NINZ should be biased to an adequate mid voltage level to guarantee good noise margin. The iC-TW2 provides a constant 1.21 V at pin VC that can be used for this purpose (refer to Figure 6).

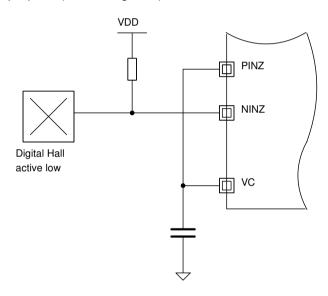


Figure 6: Digital Hall sensor index configuration

An MR sensor differential bridge can also be used to gate the index. Typically, the MR sensor provides a small signal amplitude. In addition, residual side lobes are present that can trigger double indexing. The iC-TW2 provides offset control capability to fine tune the threshold voltage of the index comparator. This greatly simplifies end product calibration as variation in sensor offset can be compensated for. Figure 8 shows a correctly set threshold when using an MR gating sensor. The side lobes are below the threshold line and no parasitic triggering occurs.

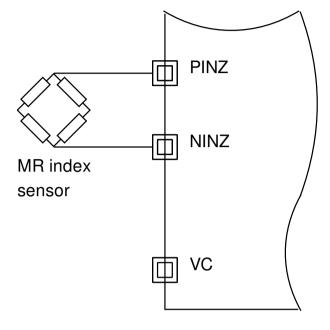


Figure 7: MR sensor index configuration

Index gating should be calibrated at SIN/COS input frequencies below 5 kHz to minimize the effect of latency. Timings shown in Table 17 are valid for input frequencies below 5 kHz and f_{system} of 25 MHz. Once the timings are satisfied according to Table 17, correct operation is guaranteed up to the maximum input frequency as specified in Table 22 on page 19.

Parameter	Description	Condition *	min
t _{setup}	Index window setup time before rising edge of Z_W	no filter 8 average 16 average	$0.4~\mu { m s} \ 0.5~\mu { m s} \ 0.7~\mu { m s}$
t _{hold}	Index window hold time after falling edge of Z_W	no filter 8 average 16 average	$0.4~\mu { m s} \ 0.5~\mu { m s} \ 0.7~\mu { m s}$

f_{system} = 25 MHz, all timings scale with f_{system} Refer to Table 22 for more information

Table 17: Index gating and timing

Rev D3, Page 16/30

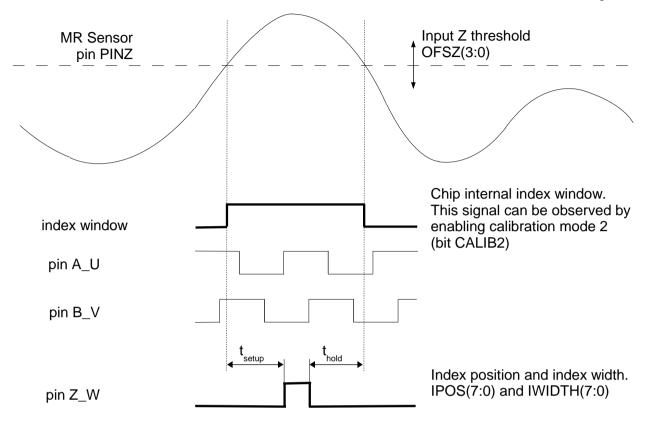


Figure 8: Index gating

Rev D3, Page 17/30

CALIBRATION

In order to facilitate system gain and offset calibration, two calibration modes can be enabled by either setting bit CALIB1 of register 0x01 or CALIB2 of register 0x0C.

CALIB2	Addr. 0x0C; bit 0	R/W
CALIB1	Addr. 0x01; bit 5	R/W
CALIB2;1	Function, defaults to eeprom setting	
00	Normal operation, no calibration	
01	A/B gain and index calbration	
10	Oscillator and index window calibration	
11	Not permitted	

Table 18: Calibration mode

A/B gain and offset calibration

In calibration mode 1 the SIN/COS input is directly passed through two zero-cross comparators to output pin A and B respectively. In addition, the sum of the input signals

$$\frac{SIN + COS}{\sqrt{2}}$$

is also fed through a comparator and driven on pin Z.

The actual calibration process must be carried out in several steps.

- 1. Select proper coarse gain by programming register GC(2:0). Set GFA(1:0) and GFB(1:0) to 0.
- 2. Adjust offset register OFSA(5:0) and OFSB(5:0) until output A and B are 50% duty cycle.
- 3. Adjust fine gain register GFA(1:0) and GFB(1:0) until output Z is equidistant between output A and B.
- 4. Repeat step 1 and 2 until no more improvement can be achieved.

Oscillator and index window calibration

When calibration mode 2 is enabled, the output of the index comparator is driven on pin B_V. In conjunction with the actual index output on pin Z_W, the gating window can be centered around the output pulse. Fine offset adjustment applied to the input of the index comparator is possible through OFSZ(3:0) which is sign magnitude encoded. This is beneficial when using small amplitude index sources such as an MR sensor. Simultaneously, the oscillator frequency $f_{\rm osc}/32$ can be observed on pin A_U. Register CLOCK(4:0) is used to tune the oscillator to its desired frequency.

OFSZ(3:0)	Addr. 0x0B; bit 7:4 R/V	٧
Code	Function, defaults to eeprom setting	
1111	maximum negative adjust, -10.5 mV	
1110	-9 mV	
1001	-1.5 mV	
1000	no correction	
0000	no correction	
0001	1.5 mV	
0110	9 mV	
0111	10.5 mV	
1	calibration mode 2 activated	

Table 19: Index comparator offset control

CLOCK(4:0)	Addr. 0x0A; bit 4:0	R/W
Code	Function, defaults to eeprom setting	
00000	Slowest clock	
11111	fastest clock	

Table 20: Oscillator tuning

Rev D3, Page 18/30

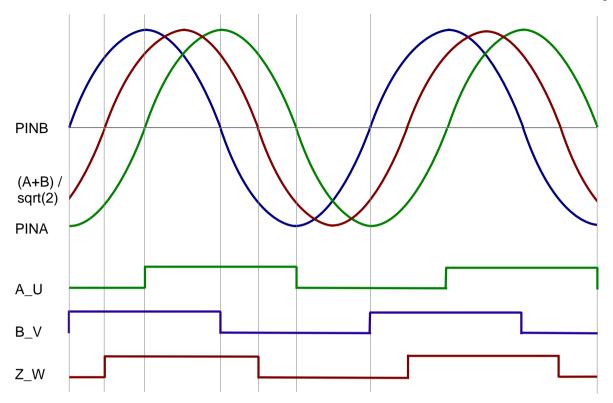


Figure 9: Calibration of A/B gain and offset

Rev D3, Page 19/30

CONFIGURATION DEPENDENCIES

The following paragraph describes dependencies between several chip configuration settings and system performance. It is vital to understand the implication of system parameters to be able to tune the iC-TW2 for full performance. It is especially important to correctly program register FREQ(6:0), since this directly affects accuracy and maximum allowed input frequency.

Selecting configuration parameters

Follow the outlined procedure below to select the proper configuration. Refer to Table 22 for reference.

- 1. Determine the maximum input frequency f_{input} as required by the application.
- 2. Calculate f_{core} based on f_{input} and interpolation rate INTER(7:0).
- 3. Select f_{system} based on the accuracy requirement. See Table 21. Accuracy is a function of interpolation and frequency (registers INTER(7:0) and FREQ(6:0)).

Always use the highest accuracy possible to still satisfy f_{input} .

4. Determine f_{osc} . Selecting the slowest f_{osc} possible lowers power consumption and improves jitter performance.

Clock tuning

- 1. Observe f_{osc}/32 on pin A_U during calibration mode 2.
- 2. Use CLOCK(4:0) to tune the oscillator to the desired f_{cal} frequency. ($f_{pinA} = f_{osc}/32$)
- 3. Be aware that the oscillator can have as much as 20 % frequency variation over the operating temperature range (-40 °C to 125 °C). The oscillator runs slower at higher temperatures. To guarantee performance at 125 °C it is necessary to tune the oscillator to typ. 12 % higher frequency at room temperature of 25 °C.

INTER(7:0)	FREQ(6:0)	Accuracy Mode	Theoretical Absolute Accuracy
129 to 256; 0	0 to 127	High accuracy	±2.8°
65 to 128	0	Medium accuracy	±5.6°
	1 to 127	High accuracy	±2.8°
1 to 64	0	Low accuracy	±11.2°
	1	Medium accuracy	±5.6°
	2 to 127	High accuracy	±2.8°

Table 21: Accuracy modes

Description	Parameter / Condition	Requirement or relationship	Control bit
Oscillator frequency	fosc [Hz]	$<30 \text{MHz}$, when $V_{DD} = 5 \text{V}$ $<25 \text{MHz}$, when $V_{DD} = 3.3 \text{V}$	CLOCK(4:0)
System Clock	f _{system} [Hz]	$f_{\text{system}} = f_{\text{OSC}}$, if CLKDIV = 0 $f_{\text{system}} = f_{\text{OSC}}/2$, if CLKDIV = 1	CLKDIV
Core Clock	f _{core} [Hz]	$f_{core} = f_{system} / (1 + FREQ(6:0))$	FREQ(6:0)
Max front-end input frequency	f _{front} [Hz]	f _{front} = f _{system} / 256, if High Accuracy f _{front} = f _{system} / 128, if Medium Accuracy f _{front} = f _{system} / 64, if Low Accuracy	FREQ(6:0) INTER(7:0)
Max back-end frequency	f _{back} [Hz]	f _{back} = f _{core} / INTER(7:0)	INTER(7:0)
Max iC-TW2 input frequency	f _{input} [Hz]	$f_{input} = min(f_{front}, f_{back})$	
Min A/B edge separation	t _{edge}	$t_{\text{edge}} = 1 / f_{\text{core}}$	
A/B edge granularity	t _{gran}	t _{gran} = 1 / f _{system}	
Hysteresis		±(HYST(1:0) x 1.4°), if High Accuracy ±(HYST(1:0) x 2.8°) if Medium or Low Accuracy	HYST(1:0)
SIN/COS to A/B output latency	t _{latency} [µs]	10 / f _{system} [MHz] + 0.2, if no filter 18 / f _{system} [MHz] + 0.2, if 8 sample average 26 / f _{system} [MHz] + 0.2, if 16 sample average	FILTER(1:0)

Table 22: Configuration dependencies

Rev D3, Page 20/30

FREQ(6:0)	Addr. 0x05; bit 6:0	R/W
Code	Function, defaults to eeprom setting	
0x00	$f_{\text{core}} = f_{\text{system}}$	
	$f_{\text{core}} = \frac{f_{\text{system}}}{1 + FREQ(6:0)}$	
0x7F	$f_{\text{core}} = \frac{f_{\text{system}}}{128}$	
	$f_{\text{core}} = \frac{\text{-system}}{128}$	

Table 23: Maximum input frequency selection

Interpolation setting (register 0x02) in conjunction with the frequency divider (register 0x05) defines the iC-TW2's accuracy mode. Table 21 explains the correlation. Based on the selected accuracy mode other system parameters are defined as shown in Table 22.

It is recommended to use the divider at all times when support for high input frequencies is not required.

CLKDIV	Addr. 0x0B; bit 1	R/W
Code	Function, defaults to eeprom setting	
0	fsystem = f _{osc}	
1	$fsystem = \frac{f_{OSC}}{2}$	

Table 24: Master clock divider

Hysteresis is dependent upon chosen accuracy. The Table below is valid for *high accuracy* operation.

HYST(1:0)	Addr. 0x06; bit 1:0	R/W			
Code	Function, defaults to eeprom setting				
00	no hysteresis				
01	±1.4°				
10	±2.81°				
11	±5.63°				

Table 25: Master clock divider

An averaging filter can be enabled to remove loop instability noise. It is recommended to enable the filter in almost all cases. Enabling the filter increases SIN/COS input to A/B output latency. See Table 22 on page 19 for details.

FILTER(1:0)	Addr. 0x06; bit 3:2	R/W				
Code						
00	filter disabled					
01	Average of 8 samples					
10	Average of 16 samples					
11	undefined					

Table 26: Datapath filter control

DEVICE IDENTIFICATION

IDA(3:0)	Addr. 0x00; bit 7:4	R/W	
Code	Function, Major device identification		
	Mask Programmed Value Identifies Major Revision		

Table 27: Major device revision

IDB(3:0)	Addr. 0x00; bit 3:0	R/W	
Code	Function, Minor device identification		
	Mask Programmed Value Identifies Minor Revision		

Table 28: Minor device revision

Rev D3, Page 21/30

START UP

Power-On-Reset

The iC-TW2 contains a built-in Power-On-Reset (POR) circuitry. The POR keeps the iC-TW2 in reset as long as the applied power supply voltage does not allow reliable operation. Once the power supply ramps up above 1.8 V, the POR releases the reset and the iC-TW2 starts the configuration cycle. 20 ms after the device goes out of reset, normal operation begins.

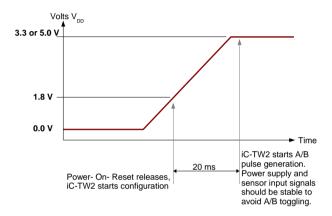


Figure 10: Power supply ramp-up

To avoid A/B output toggling it is important that the power supply and the input signals are stable as soon as normal operation begins. In applications with a slowly rising power supply, it might be necessary to connect an external RC reset to pin NRST to prolong the reset. In applications where startup A/B toggling is acceptable, no precaution must be taken as the iCTW2 will properly power up on an indefinitely slow supply rise time.

The iC-TW2 startup behaviour is controlled by programming the two control bits STARTUP(1:0) in register 0x01. Three possible startup configurations are allowed, shown in Figure 11. The default behaviour must be specified by the eeprom.

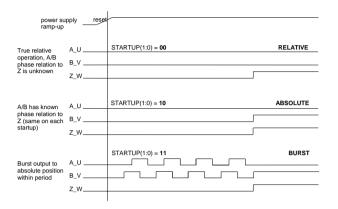


Figure 11: Startup behaviour

STARTUP	(1:0) Addr. 0x01; bit 4:3 R/W
Code	Function
00	RELATIVE A/B output signals are kept low during startup. This resembles true relative operation since there is no relationship between A/B levels and sensor position (and therefore Z output) on startup.
01 Reserved	
10	ABSOLUTE A/B output signals are phase-related to Z output. A/B output levels are defined by the absolute sensor position within a period. The register IPOS can be used to program the desired A/B to Z phase relationship.
11	BURST The absolute sensor position within the period is output by an A/B burst.

Table 29: Startup sequence selection

Reset

A control bit RESET is provided to block any burst A/B pulses during chip reconfiguration by a microcontroller. While RESET is set A/B/Z output generation is stopped. Access to the interface and register bank is not affected.

RESET	Addr. 0x01; bit 6	R/W		
Code	Function			
0	normal operation default			
1	initiate reset			

Table 30: Restart interpolation engine

Rev D3, Page 22/30

1W-/2W-INTERFACE AND EEPROM ACCESS

Memory map

Figure 12 depicts the iC-TW2 memory map and interface diagram. A 2-wire read/write interface and a 1-wire write-only interface allow access to the register bank and the EEPROM bank. The register bank is 8 bits wide and it is used to control all chip functional-

ity. Refer to section "Register Map" on page 8 for an overview of all registers.

The EEPROM bank on the other hand is 32 bits wide. Address 0x05, 0x06 and 0x07 (3 * 4 bytes = 12 bytes) can be used to store user data such as product serial numbers, calibration and manufacturing information.

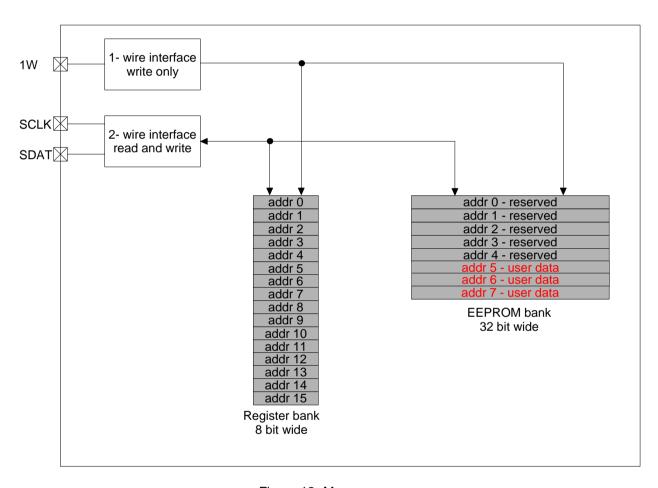


Figure 12: Memory map

2W-Interface

The first control interface is a standard 2-wire serial interface. It uses an external clock and bidirectional data line. It allows read and write access to all internal registers as well as access to the user EEPROM. The interface consists of two pins, a dedicated input SCLK, the shifting clock and SDAT for bidirectional serial data.

The interface handles four types of access requests:

1. Write to control register

- 2. Read from control register
- Write to EEPROM register (including block access and erase)
- 4. Read from EEPROM register

Control register access is shown in Figure 13 (write) and Figure 14 (read) respectively. If SDAT is **00** after the start bit a write access is requested. The data word d(7:0) will be written into register a(4:0). Please note that a(4) is always 0 since the iC-TW2 only has 16 addressable registers.

Rev D3, Page 23/30

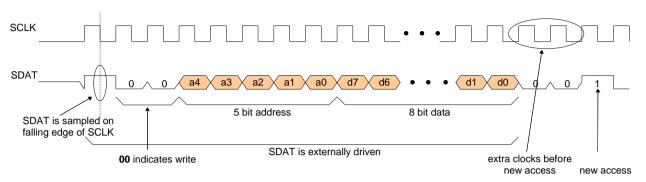


Figure 13: Register bank write access on 2W-Interface

On a register read access the register content is shifted out on SDAT. A read access is indicated by SDAT 10 after the start bit. There is an idle clock required between the last address bit a(0) and the first data bit d(7) returned on SDAT. This clock cycle is used to avoid any bus contention while turning around the bus driver.

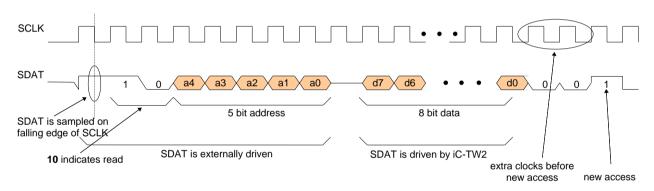


Figure 14: Register bank read access on 2-wire interface

Write access to the EEPROM follows the procedure depicted in Figure 15. A start bit is followed by four command bits c-1-e-b. The encoding of the command bits is shown in Table 31. The most useful command

is **0100** which performs an erase followed by a write therefore allowing the user to write a new value to the EEPROM with only one interface access.

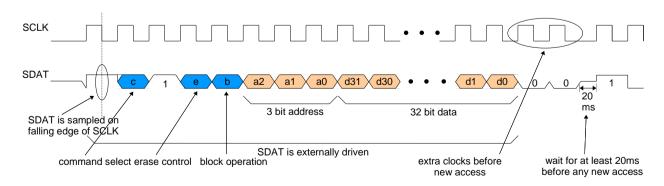


Figure 15: EEPROM write access on 2-wire interface

Rev D3, Page 24/30

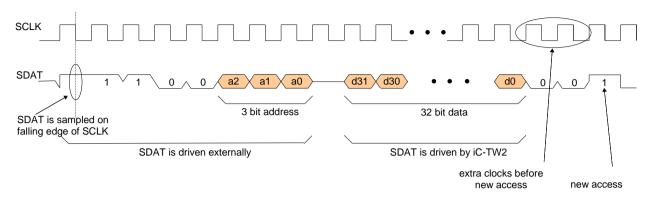


Figure 16: EEPROM read access on 2-wire interface

The 3 bit address a(2:0) selects the EEPROM register to write to (Figure 12). Each EEPROM register is 32 bits wide, therefore 32 data bits d(31:0) are sent across the interface. At least 20 ms delay is required after every transaction before any new access can start.

EEPROM read access is shown in Figure 16. The start bit is followed with the 4 bit read command **1100** and the 3 bit address a(2:0). An idle clock cycle is used

to avoid any contention on SDAT while reversing data flow direction. Finally d(31:0) is shifted out on SDAT. EEPROM read access is slow. Please take notice of the timings in Table 32.

At least one extra clock with SDAT low is required after every transaction on the 2-wire interface before a new access is started. The interface will not work correctly if this clock cycle is omitted.

E	EEPROM Commands				
С	1	е	b	Description	Purpose
0	1	0	0	Erase followed by write	Normal EEPROM programming
0	1	0	1	Block erase followed by block write	
0	1	1	0	Block write	Test only
0	1	1	1	Read. Please refer to Figure 16 for more details	
1	1	0	1	Reserved. Do not use this command	
1	1	1	0	Erase	Test only
1	1	1	1	Block erase	Special production environment

Table 31: EEPROM Commands

2W-Interface timing

The timing of the 2W-Interface is dependent on the type of access performed. Register bank access and EEPROM write access can be performed at full speed. EEPROM read access requires a slow SCLK. Also a 20 ms delay is required after every EEPROM write access before a new transaction of any kind is started (this includes read and write to the register bank).

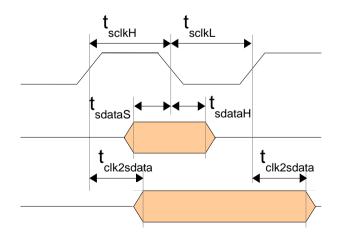


Figure 17: 2W-Interface timing diagram

Rev D3, Page 25/30

2W-Interface timing				
Parameter	Description	Condition	min	max
t _{sclkH}	SCLK high	EEPROM read access	2 µs	0
		Any other access	400 ns	
t _{sclkL}	SCLK low	EEPROM read access	2 µs	
		Any other access	400 ns	
t _{sdataS}	SDAT setup before falling edge of		100 ns	
	SCLK		100 ns	
t _{sdataH}	SDAT setup hold after falling edge of		100 ns	
t _{sdataH}	SCLK		100 ns	
t _{clk2sdata}	SDAT setup hold after falling edge of	5 ns	105 ns	
	SCLK			

Table 32: 2W-Interface timing

Rev D3, Page 26/30

1W-Interface

The 1W-Interface provides a write-only access port to the register bank. It is intended as a minimal configuration interface to program the internal EEPROM during in-field service or production. An infrared phototransistor can directly connect to the pin to build a cost effective wireless write port. The input bit stream is pulse-width modulated (or duty-cycle modulated) as shown in Figure 18. A zero-bit is encoded as a short low followed by a long high. A one-bit is encoded as a long low followed by a short high. The modulated signal is independent of the receiver or transmitter clock frequency. Since the iC-TW2 uses a free-running oscillator, it is important to implement a robust, frequency-insensitive protocol.

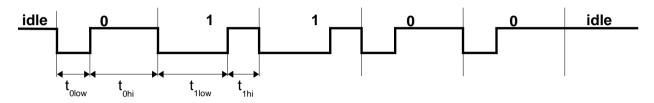


Figure 18: Pulse width modulated bit stream

The interface timing is specified in the following Table.

Parameter	Description	min	max
t _{Olow}	Low time bit 0	40 μs	100 μ s
t _{0hi}	High time bit 0	120 μs	200 μs
t _{1low}	Low time bit 1	120 μs	200 μs
t _{1high}	High time bit 1	40 μs	100 μs

Table 33: 1W-Interface timing

1W-Interface write sequence

Figure 19 describes the write sequence to the register bank, which uses the same protocol as the 2W-Interface. On an idle wire, a write sequence is initiated by writing a start bit (1) followed by the write command (00) followed by the address and register data. At the end of the sequence, a stop-bit (0) is required.

1W-Interface write access to the EEPROM bank is shown in Figure 20. The 4 bit EEPROM command after the start bit is decoded in Table 31.

Writing the register bank to the EEPROM

To permanently store a configuration in the internal EEPROM the following procedure should be followed.

- 1. The 1W-/2W-Interface is used to fully write the desired configuration into the register bank.
- A logic one is written to bit EE_WRITE of register 0x0E. This will initiate a write sequence which copies all registers into the internal EEPROM. A complete write takes 100 ms. During this time, no access to the register bank through either the

- 1W-/2W-Interface is allowed or data corruption might occur.
- Finally the register content, after a device reset and configuration, should be verified to ensure a successfull EEPROM write sequence.

Writing the registers to the EEPROM using EE_WRITE takes up to 100 msec. During this access to the register bank either through the 1W- or 2W-Interface is prohibited. Any access will corrupt data written to the EEPROM.

EE_WRITE	Addr. 0x0E; bit 6 W
Code	Function, bit is automatically reset upon completion of operation
0	Normal operation (default)
1	Store registers into EEPROM

Table 34: EEPROM store command



Figure 19: 1W-Interface register bank write sequence

Figure 20: 1W-Interface EEPROM write sequence

Rev D3, Page 27/30

TEST MODES

The iC-TW2 provides various control bits located in different registers to enable or disable certain test modes. The majority of these is only required for extended chip testing capability, others are required for production test.

GRANULAF	R Addr. 0x05; bit 7	R/W
Code	Function, test mode only	
0	normal operation	
1	test mode only	

Table 35: A/B output edge granularity control

VC(1:0)	Addr. 0x0A; bit 6:5	R/W
Code	Function, test mode only	
	register must be set to 0 for correct device functionality	

Table 36: Reference voltage fine tuning

CLKMODE	Addr. 0x0B; bit 0	R/W
Code	Function, test mode only	
0	Select comparator clock default	
1	Select direct oscillator clock	

Table 37: Clock source select

CLKDLY	Addr. 0x0B; bit 2	R/W
Code	Function	
0	Normal operation	
1	Add clock delay	

Table 38: Clock distribution delay line selection

Enabling the position monitor will allow access to the internal absolute period position. The position can be read through register 0x0F. This is considered a test mode and should not be used during normal operation.

EN_MON	Addr. 0x0B; bit 3	R/W
Code	Function	
0	Position monitor disabled default	
1	Monitor enabled	

Table 39: Position monitor control

MONITOR(7	7:0) Addr. 0x0F; bit 7:0	R/W
Code	Function	
	Access to the internal absolute period position. RT only!	

Table 40: Monitor register

EE_READ	Addr. 0x0E; bit 7 W
Code	Function
0	Normal operation
1	Read all iC-TW2 registers from the EEPROM. Bit is automatically reset upon completion. Not required during normal operation since this is done automatically on start-up.

Table 41: EEPROM read command register

Production test control bits

Production test control bits are reserved bits. Do not use the production test control bits during normal operation. Keep reserved bits "0".

Reserved	Addr. 0xC; bit 7:1	R/W
Reserved	Addr. 0xD; bit 7:0	R/W
Reserved	Addr. 0xE; bit 2:0	R/W
Code	Function	
0	Normal operation	
1	Do not use or alter to	

Table 42: Test modes

Rev D3, Page 28/30

TYPICAL APPLICATIONS

The circuit in Figure 21 depicts a typical application. Differential sensor signals (or differential SIN / COS encoder signals) are directly connected to the iC-TW2. Index gating is single ended active low as is frequently the case when using a HALL switch. The VC signal

of 1.21 V is used to bias the positive input PINZ. It is recommended to decouple VC with a small capacitor when it is used as a reference. When VC is left unconnected, no capacitor is required.

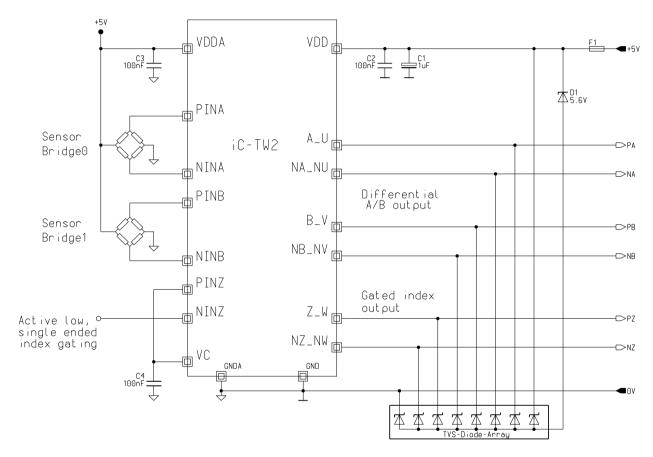


Figure 21: Example of application circuit with differential sensor and single ended index gating

Rev D3, Page 29/30

PCB LAYOUT GUIDELINES

The iC-TW2 is a noise sensitive mixed signal device, which requires careful PCB layout considerations. Violating the layout guidelines can result in poor performance. Please consider Figure 22.

Power pins VDDA (pin 10) and VDD (pin 1) must be decoupled with $1\,\mu F$.

Trace length to VDD pins must be no longer than 3 mm.

The decoupling caps can be placed on the bottom side of the PCB directly connecting it to the iC-TW2 pads using vias.

Ground pins GND (pin 6) and GNDA (pin 11) must be tied to the center exposed pad.

The exposed pad is then directly connected to the PCB ground plane using several vias.

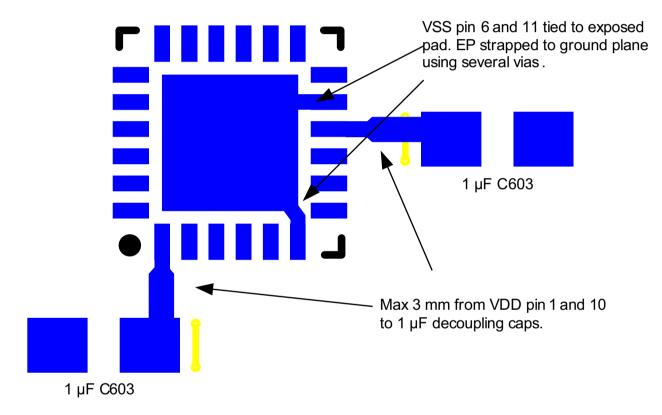


Figure 22: PCB layout guidelines

iC-Haus expressly reserves the right to change its products and/or specifications. An Infoletter gives details as to any amendments and additions made to the relevant current specifications on our internet website www.ichaus.de/infoletter; this letter is generated automatically and shall be sent to registered users by email.

Copying – even as an excerpt – is only permitted with iC-Haus approval in writing and precise reference to source.

iC-Haus does not warrant the accuracy, completeness or timeliness of the specification on this site and does not assume liability for any errors or omissions in the materials. The data specified is intended solely for the purpose of product description. No representations or warranties, either express or implied, of merchantability, fitness for a particular purpose or of any other nature are made hereunder with respect to information/specification or the products to which information refers and no guarantee with respect to compliance to the intended use is given. In particular, this also applies to the stated possible applications or areas of applications of the product.

iC-Haus conveys no patent, copyright, mask work right or other trade mark right to this product. iC-Haus assumes no liability for any patent and/or other trade mark rights of a third party resulting from processing or handling of the product and/or any other use of the product.

As a general rule our developments, IPs, principle circuitry and range of Integrated Circuits are suitable and specifically designed for appropriate use in technical applications, such as in devices, systems and any kind of technical equipment, in so far as they do not infringe existing patent rights. In principle the range of use is limitless in a technical sense and refers to the products listed in the inventory of goods compiled for the 2008 and following export trade statistics issued annually by the Bureau of Statistics in Wiesbaden, for example, or to any product in the product catalogue published for the 2007 and following exhibitions in Hanover-Messe).

We understand suitable application of our published designs to be state-of-the-art technology which can no longer be classed as inventive under the stipulations of patent law. Our explicit application notes are to be treated only as mere examples of the many possible and extremely advantageous uses our products can be put to.

Rev D3, Page 30/30

ORDERING INFORMATION

Туре	Package	Order Designation
iC-TW2 Evaluation Board	,	iC-TW2 QFN24 iC-TW2 EVAL TW2_2D

For technical support, information about prices and terms of delivery please contact:

iC-Haus GmbH Tel.: +49 (61 35) 92 92-0
Am Kuemmerling 18 Fax: +49 (61 35) 92 92-192
D-55294 Bodenheim Web: http://www.ichaus.com
GERMANY E-Mail: sales@ichaus.com

Appointed local distributors: http://www.ichaus.com/sales_partners