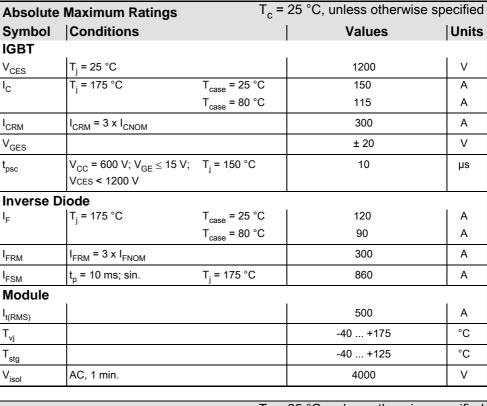


IGBT4 Modules

SKM 100GB12T4G

Target Data

Features


- IGBT4 = 4. Generation (Trench)
 IGBT
- V_{CEsat} with positive temperature coefficient
- High short circuit capaility, self limiting to 6 x I_{CNOM}
- Soft switching 4. Generation CAL diode (CAL4)

Typical Applications

- AC inverter drives
- UPS
- Electronic welders at f_{sw} up to 20 kHz

Remarks

• Case temperature limited to T_c = 125°C max, recomm. T_{op} = -40 ... +150°C, product rel. results valid for $T_i \le 150^\circ$

Characteristics		$T_c = 25 ^{\circ}C$, unless otherwise specified					
Symbol	Conditions		min.	typ.	max.	Units	
IGBT						•	
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_{C} = 4 \text{ mA}$		5	5,8	6,5	V	
I _{CES}	$V_{GE} = 0 V, V_{CE} = V_{CES}$	T _j = 25 °C				mA	
V _{CE0}		T _j = 25 °C		0,8	0,9	V	
		T _j = 150 °C		0,7	0,8	V	
r_{CE}	V _{GE} = 15 V	T _j = 25°C		10,5	11,5	mΩ	
		T _j = 150°C		15,5	16,5	$m\Omega$	
V _{CE(sat)}	I _{Cnom} = 100 A, V _{GE} = 15 V			1,85	2,05	V	
		$T_j = 150^{\circ}C_{chiplev}$		2,25	2,45	V	
C _{ies}				6,2		nF	
C _{oes}	$V_{CE} = 25, V_{GE} = 0 V$	f = 1 MHz		0,41		nF	
C _{res}				0,35		nF	
Q_G	V _{GE} = -8V/+15V			570		nC	
R_{Gint}	T _j = 25 °C			2		Ω	
$t_{d(on)}$						ns	
t _r E _{on}	$R_{Gon} = \Omega$	V _{CC} = 600V		44		ns	
E _{on}	P -0	I _{Cnom} = 100A T _i = 150 °C		11		mJ	
$t_{ m d(off)} \ t_{ m f}$	$R_{Goff} = \Omega$	$V_{GE} \le -8V$				ns ns	
E _{off}		GE = 3V		11		mJ	
R _{th(j-c)}	per IGBT				0,29	K/W	

IGBT4 Modules

SKM 100GB12T4G

Target Data

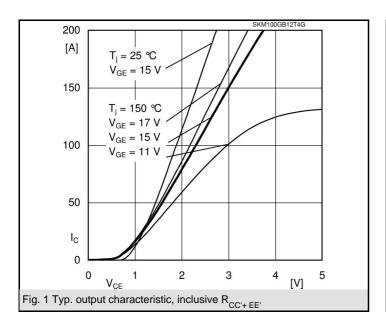
Features

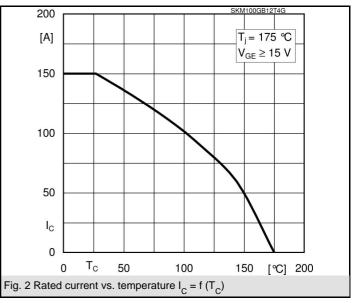
- IGBT4 = 4. Generation (Trench)
 IGBT
- V_{CEsat} with positive temperature coefficient
- High short circuit capaility, self limiting to 6 x I_{CNOM}
- Soft switching 4. Generation CAL diode (CAL4)

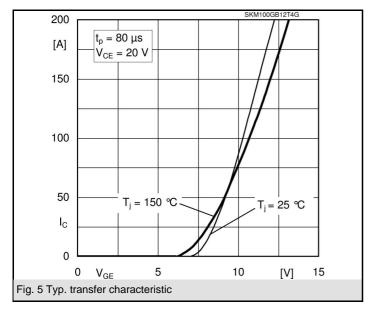
Typical Applications

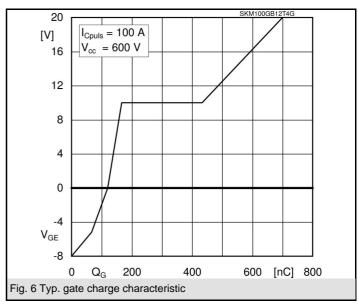
- AC inverter drives
- UPS
- Electronic welders at f_{sw} up to 20 kHz

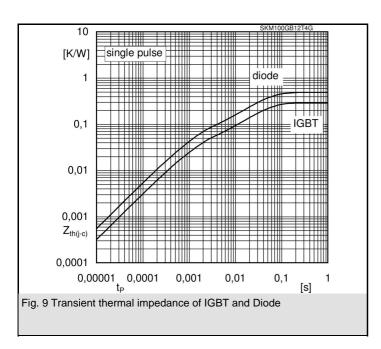

Remarks

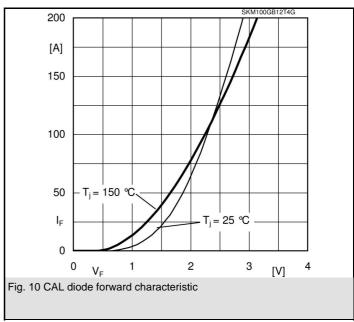

• Case temperature limited to T_c = 125°C max, recomm. T_{op} = -40 ... +150°C, product rel. results valid for $T_i \le 150^\circ$


Characteristics										
Symbol	Conditions		min.	typ.	max.	Units				
Inverse Diode										
$V_F = V_{EC}$	I _{Fnom} = 100 A; V _{GE} = 0 V			2,25	2,55	V				
		$T_j = 150 ^{\circ}C_{\text{chiplev.}}$ $T_j = 25 ^{\circ}C$		2,2	2,5	V				
V_{F0}		T _j = 25 °C		1,3	1,5	V				
		$T_j = 150 ^{\circ}\text{C}$ $T_j = 25 ^{\circ}\text{C}$		0,9	1,1	V				
r _F				9,5	10,5	mΩ				
		$T_j = 150 ^{\circ}\text{C}$ $T_j = 150 ^{\circ}\text{C}$		13	14	mΩ				
I _{RRM}	I _{Fnom} = 100 A	T _j = 150 °C				A				
Q _{rr}	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			7.5		μC				
E _{rr}	V _{GE} ≤ -8V			7,5		mJ				
R _{th(j-c)}	per diode				0,49	K/W				
Freewheeling Diode										
$V_F = V_{EC}$	$I_{Fnom} = A; V_{GE} = V$	$T_j = {^{\circ}C_{chiplev.}}$				V				
V_{F0}		$T_{j} = {^{\circ}C_{chiplev}}.$ $T_{j} = {^{\circ}C}$ $T_{j} = {^{\circ}C}$ $T_{j} = {^{\circ}C}$				V				
r _F		$T_j = {^{\circ}C}$				V				
I _{RRM}	I _{Fnom} = A	T _j = °C				Α				
Q _{rr}						μC				
E _{rr}						mJ				
	per diode					K/W				
Module										
L _{CE}				15	20	nΗ				
R _{CC'+EE'}	res., terminal-chip	T _{case} = 25 °C			0,35	mΩ				
		T _{case} = 125 °C			0,5	mΩ				
R _{th(c-s)}	per module			0,02	0,038	K/W				
M _s	to heat sink M6		3		5	Nm				
M _t	to terminals M6		2,5		5	Nm				
w					325	g				


This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.


This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.





4 11-07-2007 SCH © by SEMIKRON

5 11-07-2007 SCH © by SEMIKRON